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NEUTRON INTERACTION IN FISSILE ASSEMBLIES 

By A. F. THOMAS* and R. A. SCRIVEN~ 

Abstract-Existing methods for assessing the degree of criticality of an array of interacting 
fissile units are reviewed from a practical viewpoint. Emphasis is placed upon those methods 
which rely mainly upon direct experimental evidence and special reference is made to the 
“interaction parameter” method. 

1. INTRODUCTION 
WHEN two or more pieces of fissile material are brought near together, the 
neutron output of each piece exceeds its output in isolation due to neutron 
exchange and multiplication between the pieces. This interaction between fissile 
bodies in array can lead to the system becoming critical even when each indivi- 
dual unit is well subcritical, and an assessment of its effect is of great importance 
in the safe and economic working of plants which produce and fabricate fissile 
material and in the associated problems of transport and storage. One solution 
to the interaction problem is to place the separate units far enough apart for it 
to be obvious that interaction is negligible. In most practical cases this solution 
is grossly uneconomic, and there is evidently a need for techniques which will 
provide estimates of the m inimum safe spacing (or maximum number of objects) 
which are as realistic as possible and demonstrably conservative. 

The present work describes the methods which have been developed at three 
major establishments concerned with interaction problems for assessing the 
degree of criticality of arrays of fissile bodies. The description is lim ited to those 
methods which rely primarily upon experimental data, whether it be obtained 
from direct interaction experiments or from multiplication measurements on 
allied systems. Purely theoretical approaches to the problem have been 
made’l-4) but in the main they are restricted to applications of two or 
multigroup diffusion theory with the result that in certain cases the intrinsic 
errors of the method are unpredictable and may lead to non-conservative results. 
It is for this reason that the semi-experimental methods described below are 
believed to be more consistent and therefore more satisfactory from the safety 
point of view. 

*Nuclear Research Division, Atomic Weapons Research Establishment, Aldermaston, 
Berks. 

tWork done in the Mathematical Physics Division, Atomic Weapons Research Establish- 
ment, Aldermaston, Berks. Present address: Central Electricity Generating Board, Research 
and Development Laboratories, Leatherhead, Surrey. 
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The published work of Paxton et al. of the Los Alamos Scientific Laboratory 
deals almost exclusively with arrays of Uas5 metal spheres, and whilst it is the most 
direct method of the three to be described it is also the most lim ited in applica- 
tion. Cubic and plane arrays of the spheres are constructed and external 
multiplication measurements made. The number of bodies required to give 
criticality in the environments studied is then estimated by extrapolation. A 
theoretical correlation of the data has been attempted by Ketzlach of Hanford, 
although no great detail is available. 

The method developed by Henry and co-workers at the Oak Ridge Gaseous 
Diffusion Plant in conjunction with Callihan et al. of the Oak Ridge National 
Laboratory is designed primarily to deal with fissile solutions and correlates 
theoretical two-group multiplication factors (1~) with measured solid angles in 
critical arrays. In this way a recipe for the safe arrangement of solution 
containers is obtained. 

The “interaction parameter” method used at the Atomic Weapons Research 
Establishment, Aldermaston, derives in a very general way conditions for the 
safety of arrays of fissile bodies in terms of the neutron outputs induced in the 
bodies by unit sources placed at the positions of the other bodies. Such outputs 
can either be measured experimentally or estimated theoretically. This method 
is given most space in the present account for the reason that it has not pre- 
viously been written up in detail in open literature, although certain mathematical 
aspects have been published elsewhere by Mayneos). 

2. LOS ALAMOS INTERACTION EXPERIMENTS 
Interaction work published openly by Los Alamos consists of a series of 

lattice experiments carried out by Paxton et al. using Us35 metal spheres’s)? (6). 
The initial purpose of these experiments was to clear, criticality-wise, storage 
arrays of particular interest to Los Alamos, and it is only recently that the 
results have been used by Ketzlach (7) of Hanford as the basis for formulating a 
systematic method of clearing arrays of spheres in vaults or other communal 
reflecting material. Unfortunately, Ketzlach’s paper is only a preliminary report 
and contains no great detail. Thus, apart from a brief outline of his proposed 
method, this section merely presents the experimental information and direct 
deductions from it. To date, it is the only published data on many-body arrays 
of high-enrichment metal spheres (essentially fast neutron systems) and as such 
has been kept apart from the solution work (thermal neutron systems) of Henry 
and Callihan to be described in Section 3. 
2.1 The Measured Multiplications 

In each of the lattices considered by Paxton (Zoc. cit.) the following multipli- 
cation factors were measured. 

(i) The “self” multiplication factor, defined as the ratio of the external 
neutron flux of one isolated unit, with a central mock fission source, to 
that of a natural uranium replica with the same source. 
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(ii) the “overall” multiplication factor, defined as the ratio of the external 
neutron flux with a mock fission source placed in the central unit of the 
array (i.e. with the other units present) to that with the source placed in a 
natural uranium replica of one unit in isolation. 

The “cross” multiplication factor, defined as the ratio of the overall to the self 
multiplication factor, was deduced from these measurements and gave a measure 
of the effect of interaction upon the central body of the array. 

The reciprocal of overall and cross multiplication was found to vary approxi- 
mately linearly with the number of units in the lattice (as had been predicted 
theoretically) and linear extrapolation of these results to zero reciprocal multi- 
plication was used to estimate the number of units required to bring about 
criticality. A log-log plot of this number as a function of the mean lattice 
density (units/f@) produced a linear variation. 

2.2 The Lattices Considered and the Results Obtained 
An account of two series of experiments with metal spheres each equivalent 

in reactivity to 20 kg “oralloy” (93.5 %  U235) is given in reference (5) together 
with details of the multiplication measurements. The first series was conducted 
with up to 27 units arranged on a cubic lattice, bare and placed inside 5 ft, 4 ft, 
and 3 ft concrete vaults with walls 1 ft thick. The second series used up to 5 
units on a cubic lattice, bare and inside 3 ft, 2 ft, and 1 ft vaults, again with walls 
1 ft thick. In all cases where a vault was used the vault size was adjusted to be 
three times the lattice spacing. 

In both series of experiments the effect of the following factors was 
considered. 

(a) Varying the lattice spacing and number of units. 
(b) The presence of vault walls and top. 
(c) Tamping of each unit by a contiguous non-uniform reflector of natural 

uranium; this had the effect of increasing the self-multiplication of each 
unit from 3 to about 5. 

(d) Splitting each unit (except the central one) into two hemispheres laid 
side by side at the lattice point. 

(e) The presence of a paraffin “man” and boron plastic within the vault. 
Table 1 (p. 256) gives a summary of the results obtained by extrapolation for 

the numbers of units in critical cubic arrays. 
Only in the case of the 3 ft vault did the reciprocal overall multiplication fall 

below 0.05; in most cases the lowest value reached was in the range 0.10-0.15. 
The extrapolations to critical given in Table 1 may therefore be subject to errors of 
order 10 %  or more, and so some caution must be used when applying these results 
to lattices containing more than about three-quarters of the critical number of 
units shown. 

Two points can be deduced from the values listed in Table 1. 
(i) The number of critical units m inus one is inversely proportional to the 
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self-multiplication of one unit. That this should be approximately true 
is apparent from equations (4.7) and (4.16) of Section 4 and is borne 
out by comparing the results for bare and tamped units in Table 1, 
the self-multiplications of which are 3 and 5, respectively. 

TABLE 1 
Number of 20 kg Oy* Units in Critical Cubic Arrays 

Vault 
size 
(ft) 

Centre-to-centre 
spacing 

(in.) 

20 
16 
11 
8 

Contact 

Lattice 
density 

(units/fP) 

0,217 
0.422 
l-30 
3.38 

25.7 

Number of units in critical 
array 

Bare Tamped Split 

99 60 - 
37 73 ;; 
19 45 

12 - 16 
3.6 - - 

(ii) If the average density of fissile material in a given size of lattice is 
maintained but is represented by a larger number of units of smaller 
mass then the overall degree of criticality of the lattice is reduced, i.e. 
more “split” units have to be introduced to maintain criticality. 

0, 02 04 0810 2 4 68,O 
Lattice density, units/ft3 

FIG. 1. Approximate critical arrays of similar oralloy metal units. 

The results for bare units listed in Table 1 are given graphically in Fig. 1, 
together with some results listed in reference (6) which refer to experiments done 
on plane square arrays of units each equivalent to 32 kg oralloy. In each case 
the plane array was situated 10 in. above a concrete floor. 
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The effect of the concrete vault walls and top was to increase the overall 
multiplication of the cubic lattices by factors varying from about 1.2-l *5 for a small 
number of units to about 2-2.5 for a large number of units. The presence of a 
paraffin “man” in the vault reduced the overall multiplication by a small amount. 
The introduction of one type of boron plastic (48 %  B, 43 %  H, 31% C, 21% 0 by 
atoms) increased the overall multiplication, reflection overcoming the absorption 
in the boron, whilst another type containing more boron (81.3 %  B, 7.4 %  H, 
11 *O %  C, O-7 %  0 and O-2 %  Ca) decreased the multiplication. 

2.3 Proximity Tests 
As a guide to assessing the effect of interaction in flooded arrays reference (5) 

gives the variation of reciprocal multiplication as a function of separation 
distance for (a) two 20 kg Oy units in air, (b) two similar units completely 
surrounded by water, and (c) 2, 3 and 4 cylinders of oralloy, 4 in. diameter and 
weighing 13.2 kgm, each contained in a magnesia crucible 42 in. outer diameter 
and 11 in. high, surrounded by graphite, 58 in. outer diameter and 11 in. high, 
and the whole array completely immersed in water. The results are given in 
Figs. 2 and 3. 

2.4 Correlation of the Lattice Data 
An attempt to correlate the results given in Table 1 into a systematic method 

for estimating the critical number of units of arbitrary mass and spacing in a 
cubic arrangement has been carried out recently by Ketzlach (lot. cit.). He 
assumes that the cubic lattices can be replaced by spheres of uniform low density 
oralloy in infinite reflecting material, and relates the critical radius of such a 
sphere to the critical radius when the density of the reflector is correspondingly 
reduced, the latter radius being simply equal to the critical radius for full density 
core and reflector divided by the factor of reduction. The difference between 
these two radii, analogous to a reflector savings, he fits empirically to Paxton’s 
results, and indicates very briefly how the modification to arbitrary mass and 
spacing of units m ight be carried out. 

Paxton’s results on “split” units indicate that an homogenized model of a 
critical array of metal spheres will in fact be subcritical, so that in transforming 
from Ketzlach’s model back to a lumped system the degree of criticality is likely to 
be increased. This could be an objection to the method, although this difficulty 
has to some extent been avoided by empirically fitting to experiment. At this 
stage, however, it would seem unwise to apply the method to units in array which 
are larger or have higher self-multiplications than the units used by Paxton in his 
experiments. 

Larrick’s) has also used an homogenization technique in treating the storage 
of MTR-type fuel elements. In the U2as/Hs0 systems that he considers the 
dangers brought about by redistributing the fissile material are even more 
apparent. 
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FIG. 2, Proximity test on a pair of fissile units, dry and flooded. 
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FIG. 3. Proximity test on 2 to 4 oralloy cylinders in melting geometry, flooded. 
Dry the multiplication of 4 units in contact (5.15 in.,centre-to-centre‘ is less than 3. 



Neutron Interaction in Fissile Assemblies 259 

3. INTERACTION STUDIES AT THE OAK RIDGE 
GASEOUS DIFFUSION PLANT 

Over the past few years interaction studies have been carried out at the Oak 
Ridge Gaseous Diffusion Plant (ORGDP) with a view to obtaining rules of thumb 
for designing plant and storing cylinders which are to contain solutions of fissile 
material, mainly in the form of aqueous solutions of uranyl fluoride (UOsFs). 

For air-spaced arrays of such systems three working principles have been 
evolved. 

(i) Each individual container must be safe (as opposed to being merely 
subcritical’s)) when completely surrounded by water. 

(ii) The container separation may never be less than 12 in. 
(iii) Containers must always be separated so that the maximum total solid 

angle subtended at the most central unit does not exceed some prescribed 
safe value. 

Criteria (i) and (ii) are designed to prevent criticality being caused by acci- 
dental or purposeful flooding of the array, since 12 in. of water effectively isolates 
any one component from its neighbours in the array. 

Criterion (iii) refers more specifically to interaction in the array and has been 
considered in some detail by Henry, Knight and Newlon in a series of ORGDP 
reports(s)* ~1 (10). These authors use the experimental results of Callihan et 
&(11)9 (i2)* (1s) on critical assemblies of similar interacting containers. They plot 
the total solid angle subtended at the most central unit in the critical configura- 
tion against the value of k* for each container in isolation. These k-values are 
obtained by group diffusion methods, as will be indicated later. 

3.1 Experimental Basis of the Method 
KnighW) describes a typical experiment on two interacting cylinders in the 

following terms. 
Two similar cylindrical containers of “carefully measured” dimensions are 

placed at a known distance apart and a solution containing enriched uranium is 
pumped in through the bottom of each cylinder by means of pipes. The solution 
height is kept the same in both cylinders and the level gradually raised until 
criticality is reached. The geometry at this stage, and the composition of the 
solution allow the critical solid angle, Q, and the multiplication factor, k, for 
each container in isolation to be evaluated. 

In these experiments the aspect ratios of the cylinders and the H/Us35 ratio 
of the solution were varied; for the latter the range 44.3 to 337 was covered at a 

’ Us35 enrichment of 90%. Multibody arrays of bare cylinders and slabs were 
also examined, and a summary of results for the total solid angles at critical as 
functions of the k-values for individual containers is given in Fig. 4, this being 
a reproduction of Fig. 1 of reference (9). 

*The factor k used here is the multiplication factor per generation, i.e. kenn in reactor 
theory. 
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3.2 Safety Criteria for Bare Containers 
From Fig. 4 Henry, Knight, and Newlon conclude that, for bare containers: 
(a) for units with the same k-value but different shapes, interaction in- 

creases with increasing solid angle; 
(b) the assumption that the total solid angle subtended at the central unit 

be used for multi-body air-spaced arrays is conservative. 
Included in Fig. 4 is the “calculated m inimum critical curve”. This refers to 

pairs of infinite cylinders* containing the most reactive solution found in the 
plant (H/Usss ratio equal to 44.3 at 90% assay) as calculated from the two 

I.00 ’ ’ ’ ’ ’ 
6 

1’ 1 1 
- 
( 

090 \ ,-sin cy 15. I I I I , ,.,\I I. 

0.10 . -. 
’ 2 -2Oin cytsr 

0 I IP%l . I 
OZC 040 050 O-60 0.70 080 090 100 

Multiplication factor, k. of individual container 

FIG. 4. Interaction vs multiplication factor: 
-90% Uas6 assay. 

H/Us35 atomic ratios: 
-44.3 for 6 in. and 8 in. cylinders. 
N 169 for 20 in. cylinders. 
-330 for 3 in. and 6 in. slabs. 

Variable extrapolation length, e, used for slabs. 
l Indicates cylinders in contact. 

group formulae to be given in Section 3.6. Although the maximum solid angle 
for two cylinders in contact is about 20% of 4~ the part of the curve for solid 
angles larger than this value will give a conservative theoretical lim it for multi- 
body systems. 

Curve A of Fig. 4 is termed by New1or-P) “an ‘eye’ fit for safety . . . for 
unreflected systems”, as it includes allowances for experimental and theoretical 
uncertainties. It is sufficiently conservative for use under any conditions where 

*Similar calculations for i&mite slabs give results which are not appreciably different 
and only one curve is shown for both, 
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sign&ant neutron reflection of system components is virtually impossible. 
c “However, for cases where the calculated k is greater than 0.9 it is suggested 

that interaction specifications depend upon direct experimental data.” n 
When the value of k for a given container has been determined, the maximum 

* permissible solid angle subtended at the most central body in an array of such 
containers is obtained from Curve A. The spacing of the containers is then 
adjusted so that this value is not exceeded. Several worked examples are given 
in reference (lo), and Nicholls et uZ.(14) give values of general interest in the range 
covered by the experimental data. These values are reproduced. below in Tables 
2 and 3. 

TABLE 2 
kiVa1ue.s for Bare Cylinders of UOsFs Aqueous Solution (93 % Assay) 

Diameter Height ~/u235 kg 0f 1~235 
(in.) (in.) ratio per litre 

-- 
12 
24 

;” 
24 

;“2 
24 
co 

50 
50 
50 

150 
150 
150 
350 
350 
350 

0.48 
0.48 
0.48 
o-17 
0.17 
0.17 
0.075 
o-075 
0.975 

: 
12 
6 

Ei 

50 
150 
150 
350 
350 
350 

150 
350 

0.48 
o-17 
0.17 
0.075 
o-075 
0.075 

12 6 
12 6 

0.17 
0.075 

- 

TABLE 3 

- 

-- 

- 

k 

O-52 
o-55 
0.57 
o-47 
0.50 
0.52 
0.39 
0.42 
0.43 

0.68 
0.63 
0.81 
0.54 
o-70 
0.77 

0.83 
0~72 

Maximum k-Values for UO2Fs Aqueous Solution 

System Maximum k 

5 in. diameter cylinder 
8 in. diameter sphere 
l-25 in. thick slab 
350 g U285 in 11.4 in. dia. 

sphere (volume 12.5 litres) 

O-58 
0.67 
0.24 

0.65 
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3.3 Efsects of Full and Partial Reflection 
ORGDP philosophy on the effect of neutron reflectors upon units in an array 

is summarized in criteria (i) and (ii) at the beginning of this section. Water is a 
good reflector and is the only one that need be of concern to the ORGDP, 
accidentally or otherwise. Experiments showing that vessels which are separated 
by one foot of water are essentially isolated are quoted in support of criteria (i) 
and (ii). This is also apparent from the Los Alamos data for two spheres in 
water reproduced here in Fig. 2. 

However, it is possible for two containers to be partially reflected and yet 
have no neutron absorbing material between them. The interaction in such a 
system is obviously greater than in either the bare or fully flooded systems at 
separations of one foot or more. The worst case of such partial reflection is 
when a thick reflector is placed on the outside half of each of the pair of units. 
In this case the value of k for each partially reflected container (k%) would be 
expected to lie roughly half-way between the fully bare and the fully reflected 
value, i.e. 

Again the worst case here is when the fully reflected unit is just critical in its own 
right, a condition that would always be avoided in setting up the array. A safe, 
effective, value of k to be used for arrays where partial reflection is possible is 
therefore, 

k+ = *@bare + 1) (3.1) 

Experiments that have been done at ORNL indicate that evaluating k, from 
(3.1) is conservative even when the container is critical with full reflection. 

The application of equation (3.1) to Curve A of Fig. 4, the safe curve for bare 
containers, produces the curve in Fig. 4 labelled Curve B. From what has been 
stated above, this curve should give an adequate safety curve for partially 
reflected systems, and, if the criterion of one foot m inimum spacing is also 
observed, should suffice for any amount of reflection. 

3.4 Interaction Between Dissimilar Units 
Reference (10) mentions, without details, experiments that have been carried 

out with pairs of interacting units which are dissimilar in shape and content. 
The results seem to indicate that if unit A is safe at distance dA from a similar 
unit, and another unit B is safe from its twin at distance dB, then the dissimilar 
units A and B are safe when separated at distance (dA + dB)/2. A justification 
for this rule when separation distances are reasonably large is presented in 
Section 5.3 and a generalization is given for smaller separations. 

It is also stated that there appears to be no appreciable effect upon inter- 
action due to differences in assay or moderation in the types of dissimilar 
systems studied. 
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3.5 Other Factors AfSecting Interaction in the ORGDP Method 
The ORGDP safety criteria laid down so far are based upon interaction 

experiments with highly and well-moderated fissile materials. At a given k-value 
a low-enrichment unit is less sensitive to changes in external neutron sources 
than is a high-enrichment unit, so that curves A and B of Fig. 4 are more con- 
servative for low-enrichments than for high-enrichments. Also, from a practical 
point of view, conditions of half-reflection are less likely to be achieved with the 
physically larger low-enrichment units. 

For poorly-moderated units (arbitrarily defined as those with H/U235 ratios 
less than 20) no such general ruling can be given owing to the scarcity of experi- 
mental data on such systems. It would therefore seem to be unwise to apply the 
ORGDP method to poorly-moderated systems until further checks have been 
carried out. 

It is possible for the uranium solution concentration to change during storage, 
for example, by precipitation. To allow for this contingency Henry et al(g) have 
calculated the change in k-value with volume for a bare sphere containing the 
m inimum “safe” mass of U2s5 (350 g). They find a maximum k-value of 0.65 at 
12.5 1. Hence, in dealing with containers in which this effect can occur this 
maximum k-value should be used when evaluating the safe solid angle from 
Fig. 4. 

3.6 Summary of the Method and Formulae for k 
An array of identical solution containers is considered to be safe if the 

following criteria are satisfied. 
(1) That all containers are safe individually when completely reflected by 

water. 
(2) The container separations are never less than 12 in. 
(3) The total solid angle subtended at the most central unit by all other 

units is less than the following values: 

0.48 x 4n for k < O-3 

(O-72 - 0+3Ok) x 47~ for 0.3 < k < 0.8 

Containers which are shielded from the most central unit are not 
included in the total solid angle. 

(4) For k > 0.8, the separation should be based on direct experimental data. 
(5) A solid angle of 0.04% of 4n may be neglected when considering the 

interaction between individually safe units. 
Values of k for use in the above criteria are calculated from the following 

formulae(l0). They apply only to highly enriched, well-moderated, bare systems. 

k = WfUt, (3.2) 
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where 
r] = average number of fast neutrons produced per thermal capture in Usss. 
f = probability of capture in Usss (thermal utilization factor). 
Uf = probability that a fast neutron does not escape from the system before 

thermalization (non-leakage probability for fast neutrons). 
Ut = probability that a thermal neutron does not escape from the system 

before capture (non-leakage probability for thermal neutrons). 
For low-assay systems the resonance escape probabilityoe) must also be 

included in (3.2). 
In highly enriched uranium 7 is constant with the value 2*09(10). The factor f 

is determined from the ratio at thermal energies of the absorption cross section 
of Us35 to the total absorption cross section. When the only absorber present in 
addition to Us35 is hydrogen (as for example with UOsFs solutions) the value of 
f is given by 

f 
1 

= 1 + 4.8 x 1O-4 x (H/U23s) 

The fast non-leakage probability, Uf, can be obtained from the following 
empirical relation : 

1 
‘,= (1 + B:)(l + 4*2B:)(l + 20*16B;) (3.4) 

where &s is the geometric buckling (in cm-s) of the system for fast neutrons. 
This is obtained from the usual formulae, demonstrated in Table 4 below, with 
an extrapolation length, A, of.2.5 cm. 

TABLE 4 
Geometric Bucklings 

I 
System 

Plane Slab, thickness T 

Sphere, radius R 

Cylinder, height H 
diameter D 

Buckling (Bz) 

73 
(T ;2W 

CR $4” 
4.812 

(H + 2X)* + (D + 242 

The two-group formula (3.4) is quoted by KnighP) as giving good agree- 
ment with experiment for 90 %  assay solutions with H/Us35 atomic ratios greater 
than 40. It is also usable at lower assays with a proper value for the resonance 
escape probability included. 
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.The thermal non-leakage probability, Ut, is given by 

u, = 1 
1-t B;L” 

265 

(3.5) 

where B22 is the geometric buckling (cm-s) for thermal neutrons and L2, the 
square of the diffusion length, is given by 

ti = 8.29(1 -f), (cm’). (3.6) 

Bs2 is obtained in exactly the same manner as Bl2 except that an extrapolation 
length of 0.36 cm is to be used in place of 2.5 cm. 

Values of k can, of course, be calculated by more accurate means than the 
set of equations (3.2, 3,4, 5, 6) given above. However, it must first be checked 
that the two-group values of k are not significantly larger than the more 
accurate values for then the use of Fig. 4 (designed to fit the two-group values) 
may give results erring on the dangerous side. 

The check calculations that have been done by Henry et uZ.(s) refer to poorly 
moderated systems of low assay, for it is with such systems that the two-group 
recipe gives poorest results. Table 5 below gives a brief summary of the results 
for bare containers of UOsFs which were experimentally measured to be critical, 
i.e. the exact value of k is unity. 

TABLE 5 
Comparison of Two-group Recipe 

with Multigroup D@%on Theory for Critical Systems 

~233 H/Us= 
AsSay Ratio 

37.5 %  0.1 
37.5 %  5.1 
30.0 %  32.0 
30.0 %  32.0 

k 

I.0491 
1.1995 
1.0414 
1.1368 

Calculation 
method 

Multi-group 
Multi-group 
Multi-group 
2-group 

In the above cases the calculations are conservative, the two-group approxi- 
mation being more conservative than the more accurate multigroup approach. 
However, this does not mean that a multi-group approach which does not 
employ the diffusion approximation (e.g. Carlson’s Sn method( will also be 
conservative. Also no check has been made for systems with small values of k, 
although in this region Fig. 4 indicates that on Henry’s criterion a fairly large 
error in k can be tolerated without hazard. One of us (R.A.S.) has checked that 
the one-group form of (3.2) is conservative for all k < 1 when compared with 
onegroup Car&on-Se calculations on bare Oy(93.5) spheres of various sizes 
up to the critical size. 

18 
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For practical purposes it would seem advisable to employ the simple two- 
group recipe set out above and to keep to the regions where it is known to be c 
reliable. 

4. THE INTERACTION PARAMETER METHOD 

This method was first used at AWRE in 1954 by one of us (A.F.T.) when 
considering arrays of metal spheres, and has been applied elsewhere by 
Mayne(i5) and Woodcock(l4). It is designed to provide a measure of the 
degree of criticality of an array of fissile bodies in terms of a quantity which 
is characteristic of each body and which is capable of experimental measurement 
with single bodies or of deduction from other experimental data. A practical 
method of this type was required at that time since the calculating methods then 
in existence were not considered reliable enough for safety purposes. Present 
techniques, using fast computers, are bringing theory more into line with 
experiment and nowadays calculated values of the parameter can be used with 
more confidence. 

The “interaction parameter”, 423, for one body (i) as viewed from another 
body in the array (‘j) is defined as the total neutron output induced in i when one 
neutron leaves j and does not interact with any other bodies in transit. Alter- 
natively, if Fi is the total neutron output of body j when situated in the array 
then the output induced in body i due to body j alone is qsj Fj. 

As defined in this way qtj can be represented as the product of the probability, 
pu, that a neutron leaves body j and reaches body i without interacting with any 
other bodies on the way, and the surface multiplication, Msr, of body i to 
neutrons reaching it from j. The quantity pal will in general depend upon 

(i) the shape of body j and the angular distribution and energy spectrum 
of neutrons leaving j; 

(ii) the separation between i and j and the neutronic properties of the 
intervening medium; 

(iii) the amount of screening presented by other bodies of the array in 
transit from j to i. 

The quantity MS{ is governed entirely by the multiplication properties of body 
i for neutrons reaching it from j, due account being taken of the fact that 
neutrons induced in i may return to i for subsequent multiplication without 
having interacted with other bodies in the array. 

In practice it is almost certain that exact values of qij, implying a full know- 
ledge of the factors (i), (ii) and (iii) above, will not be available except for simple 
two-body systems. Here in principle the necessary measurements can be made, 
but values of qij obtained from two-body experiments are not exactly the same 
as those which obtain when the remainder of an array is brought into place, 
even ignoring screening effects, for the consequent change in angular distribution 
of emission of the source body and a possible change of spectrum will play 
their part. 
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Hence in translating from the quantity 423 defined above to a practical para- 
meter to be used\ in clearing arrays these effects of angular distribution and 
spectrum must be simulated in such a way as to overestimate the required 
interaction. In what follows the theory will be set up ignoring these practical 
difficulties. Means of overcoming them will be mentioned in the sections 
devoted to assigning experimental or theoretical values to the parameter qgf. 

4.1 Application of the Method to Arrays 
The use of the parameter qri in establishing the safety of arrays of fissile 

bodies is described below, firstly for the case of two interacting bodies and then 
for a multi-body array. 

4.1.1 The two-body problem.-Consider two fissile bodies whose steady 
neutron outputs in isolation are FI and Fz, respectively. Suppose that when 
placed at some finite distance apart these outputs rise to values F’i and F’2. From 
the definition of the interaction parameter the number of neutrons induced in 
body 1 as a result of the presence of body 2 is qlzF’2, and so 

Similarly 

Hence 

F; = F, + q12F;. 

F; = F, -I- q21F;. 

(4.1) 

(4.2) 

FI + qd’, F;=-- 
1 - q12q21’ 

Fi = F, + q21Fl 
1 - q12q21 

(4.3) 

From (4.3), subcritical states correspond to cases where 

q12q21 < 1. (4.4) 

In the critical state 912 qzi is equal to unity, for then finite values of F’l and F’z 
can be maintained in the absence of neutron sources. 

For two like bodies 

F; = F; = F’, F, = F, = F, and q12 = q21 = q, 

and equations (4.3) reduce to 

F’ =F/(l - q) (4.5) 

Some idea of the way in which the value of q varies with separation for two 
20 kgm oralloy spheres in water can be obtained by associating the reciprocal 
multiplication in Fig. 2 with F/F’, i.e. with (l-q) from (4.5). 

4.1.2 The n-body problem.-The generalization of equations (4.1.2) to the 
case of n bodies is immediate. Let Fz, F’z be the outputs of the ith body in 
isolation and in array, respectively. 
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Then 
F; = F1 + qx2F; + q& + . . . + qd;, 

F; = q2$‘; + Fz + q&j -I- . . . + qz,,F;, 

F; = qalF; + q3zF; + F, + . . . + q3,,F;, 

and so on. 
The condition for criticality is now 

DE 

-1 q12 q13 * - - 

cl21 - 1 q23 * * * 

q31 q32 - 1 . . . 
. 

4”l 4n2 - * - - 1 

=o 

Equation (4.6) will be referred to as the “critical equation”. 

(4.6) 

Hence in principle if all the appropriate two-body interactions, qu, are known 
the degree of criticality of the array can be assessed. In practice, especially with 
large arrays, the solution of (4.6) to give the critical conditions can be tedious 
and it is usually sufficient to make use of approximate solutions. 

4.1.3 Approximate but safe solutions of the critical equation.-As a rough 
guide one can replace all values of 425 in (4.6) by the maximum value that occurs, 
call it qmax. This will obviously underestimate the safe number in the array. 
Then 

D = (-l)“-‘(1 + qmax)n-l[(n - l)qmax - 1-J 

and so for criticality 

(a - hnax = 1. (4.7) 

Equation (4.7) is often too conservative to apply in practice and some 
refinement is needed. This can be carried out in the following manner. 

At criticality the equations for the neutron outputs take the form 

Fi=C’qijF(i,i =1,2 ,..., n (4.8) i 

where the prime attached to the summation sign indicates that the term with 
i =j is omitted. Suppose that the largest output comes from the body with 
i = X. Then from (4.8) 

FI 6 F:Si, Si ~ C’ qii, (4.9) 
i 
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and in particular 

i.e. 
F: 6 F;S,, 

(4.10) 
S,& 1. 

Hence for criticality at least one of the quantities 5’d must exceed unity, and 
so the condition 

S,,, E max{S,> < 1 (4.11) 
i 

is sufficient to ensure that the array is subcritical. 
For a symmetrical array of like bodies the maximum value of Ss will occur for 

the most centrally situated body (x) and the qxj will all be proportional to the 
interaction parameter (q) at unit lattice spacing. Equation (4.11) then provides 
a safe upper lim it to the value of q. 

For an infinite symmetrical array all the SZ are equal (to S, say) and S < 1 
again ensures subcriticality. 

In most cases of practical interest equation (4.11) is sufficient to give reason- 
ably accurate results. For symmetric arrays of like bodies where the body with 
maximum output is known the solution can be carried on iteratively in the 
following way. 

Substitute equation (4.9) into (4.8) to get 

F; s F;S$“, S,c’) E c’ qijSj 
i 

which leads to (4.11) being replaced by 

Sg& E max{Si(l)> < 1, 
I 

(4.12) 

and so on to higher approximations. 
Table 6 below gives the values for the maximum interaction parameter at 

unit lattice spacing obtained from these successive approximations when the 
interaction is assumed to fall off inversely as the distance in various arrays of 
like bodies, the shielding of one body by another not being allowed. 

TABLE 6 
SuccessiL~e Approximations to the Maximum-q Value at Unit Spacing 

Array 1 q=l/n-1 ’ 

I 1 

&n,,= 1 Sm&)= 1 Snlsx(~)= 1 Complete 
solution 

Square 3 X 3 0.1250 0.1464 0.1638 0.1700 0.1786 
Square 4 X 4 0.0667 0.1003 0.1099 0.1133 0.1169 
“Hexagonal” 7 0.1667 0.1667 0.1892 0.1962 0.2048 
“Hexagonal” 19 0*0X56 0.0802 0.0894 0.0932 0.0999 
Cubic 27 0.0385 0.0523 0.0586 0.0614 0.0652 
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In the above cases the difference between the solution obtained from (4.11) and 
the true solution is never more than 20 % , erring on the safe side. When consider- 
ing general asymmetrical arrays, the extra computational effort required to 
obtain a more accurate solution than that given by (4.11) is rarely justified. 

When the most reactive body or bodies in an array are surrounded by a large 
number of much smaller bodies it is often useful to work in terms of the 
complementary condition to (4.1 l), namely 

T,,, E max{C’ qij} < 1. 
i 1 

(4.13) 

This relation can be obtained directly from (4.8) by summing these equations 
over i and rearranging from a sum by rows to a sum by columns. In this way 

so that 
T(- 1 + q)F; = 0, Tj = C’qij. 

i 

The outputs F’j are all necessarily positive, so that in general some of the factors 
Tj will be greater than unity and the remainder less than unity. In particular 
Tmax as defined by (4.13) will be greater than unity in the critical system. The 
criterion that Tmsx should not exceed unity for any given array therefore ensures 
that the array is subcritical. 

From the definition of qtj it is obvious that the factors St and Tj represent 
effective multiplication factors for the array as a whole. & gives the total 
number of neutrons induced in body i when one neutron leaves each other body 
of the array but does not react with bodies other than body i on the way, and Tj 
gives the total number of neutrons produced in the same way in all other 
bodies of the array when one neutron leaves body j. 

4.1.4 Generalpoints on the evaluation of Sa and Tj.-To apply (4.11) or (4.13) 
to practical arrays, the values of SZ or Tj are calculated for all bodies in the 
array (unless it is obvious where their maxima lie). If the maximum value 
occurring is less than unity the array is safe. If the maximum value is slightly 
greater than unity it may be worthwhile going to a higher approximation or 
even directly evaluating the determinant in (4.6) if this is feasible. However, in 
most cases this event would be an indication that the array was unsafe and 
alterations to the array in the form of increasing the lattice pitch, decreasing the 
number of bodies, or the introduction of neutron absorbers, necessary. 

The way in which the effect of the shielding of one body by another is intro- 
duced into the value qzj for estimating SZ to Ti is left to the discretion of the user. 
It has been the practice at AWRE to completely ignore shielding in order to 
allow flexibility in the conditions imposed by the resulting criticality clearances. 
For example, in workshops handling fissile material the positions are not 
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immutable and line-of-sight shielding could not be assumed without enforcing 
considerable restrictions upon freedom of movement. (In the technique of 
Henry et al. described in the last section line-of-sight shielding in air-spaced 
lattices is allowed.) 

Further, it has been AWRE practice to assume even when dealing with air- 
spaced lattices that the value of qtj falls off inversely as the first power of the 
separation distance [see equation (4.22)] rather than the second power at large 
enough separations. This assumption will always be conservative and is intended 
to overestimate the effect of such scattering objects as walls and floors of 
buildings. 

4.2 Experimental Estimation of q 
Since individual units of arrays must themselves be subcritical under all 

reasonable circumstances of damage and accidental reflection they tend in fact 
to be well subcritical and hence have only moderate neutron multiplications. 
Values of q for such bodies are often small (x 10-4-10-a) and difficult to 
measure with accuracy. Thus measurements are usually made with the fissile 
body and a neutron source” rather than with the two fissile bodies in question. 
This raises the problem of how best to simulate the second fissile body by means 
of a small neutron source so as to ensure that the value of q obtained is either 
accurate or at least errs on the side of safety. 

4.2.1 The experimental method.-The principle of the method of measure- 
ment is as follows 

59 Counter 

Fissile 

@  

Source 
target 

e 
t 

A  

FIG. 5. 

To measure the output induced in a fissile target at A (see Fig. 5) due to a source 
at B the following count rates are measured. 

(I) Source at A alone (Cl) 
(2) Fissile body at A alone (Ca) 
(3) Source at B alone (Cs) 
(4) Fissile body at A, source at B (Cd) 

*Usually small mock fission sources, PO-B, F, Be, Na (CY, n), with outputs of about 
106 neutron&x are used. 
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Then if Q  is the neutron output of the fissile body in isolation, S is the source 
strength, and El, Es the counter efficiencies for the source at A and B, 
respectively, then : 

c, = E,S, 

G  = ElQ, 

C, = E2S, 

C, = E,(Q + qs) + ES, 

q being the required interaction parameter. 

Thus c4 - cc, + Cd 4= 
Cl 

For q as obtained from (4.14) to be a good approximation to the required 
q-value for two bodies the following conditions should be fulfilled. 

(a) That the source simulates as closely as possible the neutron emission of 
the body it replaces. 

(b) The counter efficiencies for neutrons leaving the target body at position 
A, and the source at position A should be equal. 

(c) The counter position should be such that none of the neutrons which 
contribute to the count Cs should be absorbed or deflected by the target 
body in count Cd. 

As stated earlier, condition (a) cannot always be realized and the best that 
can be done is to arrange the position of source and counter so that an over- 
estimate of q is obtained. Then, whenever possible, corrections are applied 
(conservatively) to improve the value. 

4.2.2 Application of the method.-A series of measurements on the interaction 
parameter for uranium cylinders of 93 %  U 235 alone and diluted with natural 
uranium and graphite, illustrates the technique. 

Cd plated 
r steel liner 

Top view of container assy 

FIG. 6. Experimental arrangement for measuring the interaction between transit 
containers. 
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The value of q was required for 2.9 in. diameter cylinders of uranium of 
varying enrichments and highly enriched uranium mixed with graphite in wooden 
transit containers used for the transport and storage of the metal and of broken 
crucible pieces. The containers are of teak with dimensions, 12 in. x 12 in. x 
34 in., and have a central cavity 4 in. x 4 in. x 26 in., cadmium lined. The 
experimental arrangements are shown in elevation and plan in Fig. 6. 

The value of q as given by equation (4.14) was measured for a series of 
cylinders of solid 93 % Uss5, and for cylinders of 93 % Us35 and natural uranium 
or graphite made up of interleaved Q in. thick discs. The source used was a mock 
fission source [PO, - B, F, Be, Na (a, n)] and was placed half-way up the cavity 
in container B on the wall nearest container A for counts Cs and CJ and at the 
centre of the cavity of container A for count Cl. 

The value of q so measured was not the value appropriate to an average 
neutron leaving a cylinder in container B, since 

(a) the efficiency of the counters for a source at the centre of container A 
was greater than for a source distributed over the target cylinder; 

(b) the fraction of the neutrons leaving a source at P which strike the fissile 
target was greater than that for a source appropriately distributed over 
a similar source cylinder; 

(c) the distribution of the re-emitted neutrons from the target cylinder was 
more peaked towards the centre with a source at P than with a distributed 
source in container B, thus giving too high a count rate for count C4. 

Of these effects, (a) would tend to make the value of q obtained an under- 
estimate, whilst (b) and (c) will give an overestimate. 

Subsidiary experiments were performed to determine (i) the variation of 
count rate on both counters with source position in container A, (ii) the variation 
in the count rate of a U235 fission counter with position in container A for a 
source at position P, (iii) the variation in multiplication of the cylinder of fissile 
material with the position of a source on its axis. 

If x and y denote distances of points X and Y from the centres A and B 
respectively, and : 

E(x) = relative efficiency of the counters for a source at X 
p(x, y) = relative probability that a neutron leaving Y will strike the target 

cylinder at X 
Mx) = Multiplication of the fissile cylinder for a source at positions 
MY) > Xand Y 

Then 4 = K x q (apparent) 

where 
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The values of K were evaluated for the 9 in. and 18 in. cylinders, using the 
value of p(L/2,0) for (X - y) > L/2 ( overestimating X). The values obtained 
were as follows: 

TABLE 7 
Values of K 

Target Counter 1 Counter 2 

9 in. cylinder (18 kg Usss) 
18 in. cylinder (36 kg Uass) 

The resulting values of q are listed in Table 8. 
In experiment 8, the target cylinder was placed in the left-hand container 

(Fig. 6) so that the value of q is appropriate to that for containers separated by a 
third container. No correction has been applied to this result; it would be 
expected to be intermediate between that for the 9 in. (18 kg) and 18 in. (36 kg) 
cylinders in adjacent containers. 

TABLE 8 

Interaction Parameters for Transit Containers 
..~ 

Experimen Source 
position 

8 

8 a 

(4 

(4 

(4 

(4 

(4 

-- 

-- 

Target 

36 kg 93 % U235 
18 kg 93 % U2s5 
18 kg 93 % U235 
9kgUa=+ C 
(25 % U by vol.) 
4:kgUaaa+ C 
(123 % U by vol.) 
18 kg Ue3s 
18 kg Nat U 
27 kg ~335 
9kgNatU 
18 kg U2s5 
(Cd liner removed) 
36 kg U2= 

q (Uncorrected) x 102 

Counter 1 Counter 2 

4.07 f 0.02 4.01 f 0.03 
2.27 f 0.03 2.31 f 0.04 
1.85 f 0.03 1.76 f 0.04 
1.09 f 0.04 0.92 f 0.10 

044 f 0.04 0.34 f 0.06 

1.85 f 0.03 1.92 f 0.03 

2.65 f 0.04 2.67 f 0.04 

6.11 5 0.05 6.58 f 0.05 

0.285&0*108 0.247*0*020 

T 

-- 

-- 

q x 10s 
(Corrected 

mean) 

2.85 f 0.02 
1.97 * 0.03 
1.82 f 003 
0.73 f 0.03 

0.30 f 0.03 

1.32 f 0.02 

1.86 f 0.03 

- 

- 

Source position-(a) half-way up cavity in container B at wall nearest A. 
(b) centre of 18 kg Uaaa cylinder in container A to simulate a distributed 

source. 

4.2.3 Application of the results to arrays of transit containers.-The results 
given in Table 8 indicate that dilution of a given mass of U2s5 by graphite or 
natural uranium reduces the interaction parameter. If assumptions are made 
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about the variation of the parameter with the centre-to-centre separation (d) of 
the containers deductions can be made as to the safety of arrays of loaded 
containers. In these calculations take qo, the interaction parameter for 36 kg 
Us35 cylinders in adjacent containers, to be 0.0293 (mean value + 4 standard 
deviations). 

(i) Assume that qcc l/d. This will overestimate the value of q for large 
separations as stated earlier. 

For N loaded containers in a rectangular plane lattice it can be 
shown that 

S,,,, < 3*525(@ - l)q, (4.15) 

for the most reactive arrangement*. 
Combining condition (4.11) with (4.15) above gives 

N<114 

as a sufficient condition for subcriticality. 
For three-dimensional parallelepiped stacking of the containers it is 

reasonable to assume that the interaction parameter for non-coplanar 
containers is equal to that for coplanar containers at the same separation. 

Then proceeding as above it is found that 

for safety. 
N < 60 

(ii) Now assume that qcc eddId. 
This is a more plausible assumption, for this type of variation is 

indicated by one-group diffusion theory if a is associated with the 
diffusion length in the reflecting material (see equation 4.22)). For 
brevity write p for the attenuation factor in the wood (function of m). 
Then on the same assumptions as used above it can be shown that the 
safety criterion for the infinite three-dimensional lattice is 

For the array of fully loaded containers this condition is satisfied if p is 
less than 0.252. This in turn is true if the value of q obtained in Expt. 8 
is less than 0.126 of the value obtained in Expt. 1, i.e. provided 

q(8) < 0.359 & 0.003 x 1O-2 

Thus, in view of the very conservative assumptions made about the 
interaction between non-coplanar containers, the above results indicate 
very strongly that an infinite array of loaded containers would be 
subcritical. 

*This result was derived independently by Mayne(l@. 
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4.2.4 Other experimental results .-Some other experimental results of general 
interest for metal spheres are given in Table 9 below. 

TABLET 

Interaction Parameters for Metal Spheres at 2ft 6 in. 
Centre-to-Source Separation 

Target 

(a) 20 kg 93 %  
U285 

(b) 20 kg 93 %  
u2s5 

(c) 20 kg 93 %  
u2s5 

(d) 20 kg 93 %  
UZSS 

(e) 9 kg Pu 
(156 gm/M 

(f) 9 kg Pu 
(g) 7.6 kg Pu 

(h) 4.6 kg Pu 

- 

_- 

_- 

Intervening Interaction parameter 
medium q x 104 

Air 
(6 ft from ground) 

Air 
(Container on ground) 

Sand-Cd covered 
Uncovered 

Water-Cd covered 
Uncovered 
Air 

(Container on ground) 
Water-Cd covered 

Air 
(Container on ground) 

Air 
Container on ground) 

58.4 f 3.9 
51.7 f 3.3 
71.3 f 2.3 
70.6 f 1.2 
54.6 + I.1 

45 f 0.4 
29.0 f 0.4 

0.09 f 0.01 
0.37 f 0.02 
83 f 6 
76 f 6 
1.2 + 1.2 
60 j, 4 

29 f 3 

(90”) 
(130”) 

(40”) 
(90”) 

(135”) 

;;I; 
(90”) 
(90”) 
(90”) 

(135”) 

g:; 

W) 

- 

q x 4?r/.QMc 

1.05 f 0.07 
0.93 f 0.06 
1.28 f 0.04 
1.27 f 0.02 
0.98 f 0.02 
0.08 f 0.01 
0.52 f 0.07 
1.6 x 1O-3 
7.0 x 10-a 
144 f 0.10 
1.33 f 0.10 
0.02 f 0.02 
1.48 f 0.10 

1.58 f 0.16 

(i) Angles given in parentheses refer to the angle fl in Fig. 5. 
(ii) In experiments (b) to (h) the source and the target sphere were at the centre of steel 

containers, 24 in. high and 12 in. diameter; the steel thickness was & in. 
(iii) In experiments (c) the containers stood on the ground and were buried in sand with a 

minimum thickness of 1 ft in all directions. 
(iv) In experiments (d) and (f) the containers stood in a tank and were flooded to a level of 

1 ft above the containers. 

Column 4 lists values of q divided by the product of the solid angle fraction 
subtended by the sphere at 2 ft 6 in. and the central source multiplication, M ,, of 
the sphere. This quantity is thus a measure of the effect of scattering and 
absorption in the surrounding medium, the value of this quantity for air-spaced 
systems being always of order unity. The importance of a cadmium shield is well 
illustrated in experiments (c) and (d). 

4.3 Estimation of Interaction Parameters from Multiplication Measurements 
In certain cases the direct measurement of an interaction parameter involves 

long and tedious experiments. However, it is usually sticient to show that the 
q-value in question is less than the optimum value required to ensure the safety 
of the array and approximate but conservative q-values can be obtained from 
experimental values of central source multiplications. If the latter are not 
already available they can be measured fairly simply. 
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The starting point in this method is the equation mentioned at the beginning 
of Section 4, namely 

4=pM, (4.16) 

where the suffices i and j have been dropped for brevity. In describing methods 
of estimatingp, the transmission probability, and M ,, the surface multiplication, 
it is convenient to distinguish between bare and reflected systems. Furthermore, 
it will be implied that these systems have spherical symmetry since, apart from 
other considerations of simplicity, non-spherical shapes are less reactive and 
have values of M, which vary over the surface. 

4.3.1 Bare Systems.-For a bare fissile core the value of p is given simply by 
the mean solid angle fraction subtended by the core at the second body. The 
word “mean” here is used in the same sense as used by Henry et al. (see Sec- 
tion 3). However, some confusion can arise for closely spaced bodies and for 
safety purposes the solid angle fraction subtended at the nearest point of the 
second body is usually employed. 

To estimate MS for a bare system, call it Msa, this quantity must first be 
related to the measured multiplication, i.e. the central source multiplication, 
defined as the number of neutrons emerging from the sphere when a unit iso- 
tropic source is placed at the centre. 

To do this consider an isotropic point source of strength Q placed on the 
surface of the system. Each ingoing neutron, +Q in number, will give rise to Msb 
outgoing neutrons; the $Q outgoing neutrons do not return to the system. The 
total emission is therefore 

HMs, + l>Q. 

If this same source is placed at the centre of the sphere the total emission 
would be A!&Q. Hence we can write 

i.e. 
t@fsb + l>Q = M,,Q@ 

(4.17) 
MS, = 20M,, - 1, 

where 0 is a function which specifies the relative importance of neutrons injected 
at the outside to neutrons injected at the centre. 

For systems whose dimensions are of the same order or smaller than one 
neutron mean free path there is no preferential point at which neutrons can be 
injected with peculiarly high multiplication, and for such systems 0, Mcb and 
Msb will all be of order unity. For systems containing several mean free paths 
diffusion theory can be used as a guide. In this case it can be shown that the 
number of neutrons, U (a, r), emerging from a sphere of radius “a” due to the 
presence of an isotropic spherical delta-function source of unit strength at radius 
r (< a) is proportional to (sin Br)/(Br), where Bs is the material buckling. Hence 
since 

MB, 0) = Mcb, Ma, a> = Wsb + 1) 
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it follows from (4.17) that 
@(diffusion theory) = sin Ba/(Ba) (4.18) 

Equation (4.18) has been checked against multi-group Monte Carlo results for 
bare metal spheres of various sizes and found to be quite accurate. 

Thus for bare metal spheres there is sufficient evidence to indicate with some 
certainty that 0 is always less than unity, and consequently that, from (4.17): 

MS,, 5 2M,, - 1. (4.19) 
Intuition suggests that neutrons injected at the centre of a spherical system will, 
in general, be more effective than neutrons injected at the outside and hence that 
(4.19) is valid for any system. However, this has not yet been demonstrated, and 
a programme of calculations is at present under way at AWRE to test this thesis. 

4.3.2 Fully reflected systems.-Two types of fully reflected system have to be 
distinguished, (i) where the whole lattice of fissile bodies is immersed in some 
continuous reflecting material (e.g. a fully flooded array), and (ii) where each 
fissile core is completely surrounded by a shell of reflecting material but the array 
of such units is air-spaced. In case (i) the factor p involves both scattered and 
unscattered neutrons, and the requisite Ma is equal to Msb multiplied by some 
factor to allow for reflection. In case (ii) p is equal to the solid angle fraction 
subtended by the reflected unit at the point in question and MS now refers to the 
reflected unit. 

To evaluate the factor MS for case (i) let <a be the number of neutrons which 
return to the fissile core from the surrounding medium for each neutron emitted. 
One neutron incident upon the core produces Msb outgoing neutrons; a fraction 
Ed of these return to the core and each of these in turu will produce MS6 outgoing 
neutrons, and so on. The total emission of the core per neutron incident on the 
surface is therefore 

M,=M,,+-e,M$,+, , .=l-FM (4.20) 
m  sb 

It should of course be stressed that Msb in (4.20) refers to the energy spectrum of 
neutrons incident upon the core, a spectrum which in most practical instances 
will be softer than the emitted spectrum. 

Combining equation (4.19, 20) gives an upper lim it to MS in terms of Mcb 
and Ed. In some cases the latter can be estimated directly from experimental 
data on neutron reflection. Where this does not exist an upper lim it to coO can be 
obtained if it is possible to estimate the surface multiplication, Ms’b, of the bare 
sphere of the material in question which is just critical when fully reflected, since 

from (4.20). The “less than” rather than the “equal to” sign appears in this 
relation as the critical sphere will be larger than the sphere whose q-value is 
required and coO increases with the sphere radius. 
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If information on Msb is not available then some calculating method for 
obtaining cm directly must be used. It is not possible to generalize here in any 
way owing to the diversity of reflecting media that can occur, and each case must 
be treated on its merits. The simple one-group diffusion theory value of cm is 
sometimes of use; this takes the form 

1-P 
E, =- 

1+$ 
L t (4.21) 

where “a” is the radius of the sphere, and La and Lt are the diffusion length and 
transport mean free path, respectively, in the reflecting medium. Equation (4.21) 
has not been checked for conservativeness and so should only be used as 
a last resort, and then only in the cases where LCE and Lt can be meaningfully 
defined. 

Similar comments apply to the evaluation of p, the remaining factor required 
to calculate q from (4.16). If the necessary transmission data already exists or 
can be measured fairly readily then p can be estimated. If not, then calculating 
methods must be resorted to, preferably along the lines indicated in Section 4.4. 
A simple imitation of these methods is to replace the (point) source by a spherical 
surface source at the same radius and then to calculate by conventional diffusion 
methods the number of neutrons per unit source strength which fall upon a 
completely “black” sphere of the same radius as the target, this being p. In the 
same manner as (4.21) was obtained and with the same notation the result of this 
calculation is 

1 a - - , 

where r is the distance of the source from the centre of the sphere. 
Equation (4.22) demonstrates the way in which the interaction in an infinite 

medium of reflecting material may be expected to decrease with increasing 
distance between source and target, and this variation has been implied in 
putting forward the over-conservative 1 /r law mentioned in Section 4.1.4. 
However, unless it can be demonstrated for the case in question that (4.22) will 
give conservative results this relation should not be used direct as it is well known 
that diffusion theory underestimates neutron densities near to sources but 
overestimates them at large distances. As a safe and probably useful upper lim it 
to p, the probability of neutrons reaching the sphere without collision should 
be added to the value given by (4.22). An upper lim it to this factor is 
ew [-(r - 4/L 1 t multiplied by the fractional solid angle subtended by the 
sphere at a point distant r from the centre. 

Now consider the air-spaced reflected cores of case (ii). Let E and T denote 
the albedo and transmission of the shell to neutrons injected at the inner surface, 
and let E’ and T’ denote the corresponding quantities for neutrons injected at the 
outer surface, i.e. for one neutron incident upon the outer face T’ neutrons reach 
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the inner face and E’ return to the outer face. Then by arguments similar to those 
leading up to (4.20) it follows that the number of neutrons emerging from the 
reflected unit per neutron incident upon the outer surface is given by 

(4.23) 

Equation (4.23) is of little practical use as it stands but serves as a starting 
point for developing useful conservative approximations to M ,,. The form that 
any particular approximation takes may be dictated by circumstances but the 
following example is fairly typical. 

If the central source multiplication for the system, Mer, has been measured 
it will in fact be given by 

(4.24) 

the division by T/(1 - e) being included because of the way in which experi- 
mental count rates are normalized, a dummy run being done with a pure 
scattering core (say graphite) in place of the fissile one. Then from (4.23,24) 

(4.25) 

It should be noted that various details such as changes in angular distribution 
of neutrons after transmission through the outer reflector have been glossed 
over in setting up (4.23). This will to some extent be rectified in (4.25) where the 
experimentally measured value of A4 ler is employed. In any event such effects are 
probably swamped by the conservative approximations to be made later. 

Equation (4.25) can be developed further as follows. Let wi and ws be the 
solid angles subtended at the reference point by the inner fissile core and the 
whole reflected unit, respectively. Assume that all neutrons incident upon the 
unit in solid angle wr reach the core (conservcltive). Neutrons from the source 
which travel inside the cone with solid angle ws but outside the cone with solid 
angle wr must have at least one collision before hitting the fissile core. Assume 
that one half of these neutrons hit the core (conservative), and that the remaining 
half all escape from the unit*. In this approximation 

‘=.I w2 - 01 
PE 2’7 

*In certain cases, say, with thin or low density reflectors, more than one half of these 
neutrons will escape. However in such cases the number which hit the core after scattering 
will have been overestimated, and it is these neutrons that carry most weight. 
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Further, T + E 6 1, i.e. T/(1 - c) 5 1. Then from (4.16, 19, 25, 26, 27) it is 
seen that the interaction parameter q satisfies 

where 

Means of calculating more accurate values of q will be considered in Section 4.4. 
4.3.3 Partially reflectedsystems.-In Section 3.1.2 it was pointed out that the 

most dangerous situation can occur when two interacting units are reflected on 
the sides away from the other unit with no absorbing material between the units 
to prevent direct interaction. However, at ORGDP it is only anticipated that 
water can come between units and in this case they are immediately shielded 
from one another by the absorbing properties of the water. Obviously a more 
dangerous situation may arise if a purely scattering material (e.g. graphite or 
absorbent packing) is placed between partially reflected units for then neutron 
exchange by scattered paths may exceed the direct interaction obtained from 
air-spacing. 

Such a situation is a compromise between cases (i) and (ii) given in Section 
4.3.2 above and interaction parameters can obviously be deduced by a combi- 
nation of the methods outlined there. In practical examples of partially reflected 
units that have occurred at AWRE some conservative fully reflected model of the 
actual unit has been adopted to obtain an estimate of the surface multiplication 
of each unit and if some interstitial scatterer is also present a method such as that 
outlined in Section 4.3.2 has been used to obtain the probability of neutrons 
reaching one unit from another. 

4.4 Calculation of Interaction Parameters 
Until quite recently little has been done at AWRE in the way of calculating 

values of q to compare with experiment or to use in their own right, except for 
certain exceptional cases (e.g. the transit container problem mentioned in 
Section 4.2.2) when Monte Carlo techniques have been employed. The advan- 
tages of Monte Carlo methods using fast computers is (a) the accuracy of the 
results given good statistics, and (b) their applicability to non-spherical geo- 
metries. However, offset against (a) is the fact that tolerable accuracy requires a 
large amount of computer effort with the programmes at present available. In 
this account only the faster but more approximate methods that have been 
developed will be described. 

Some work on the problem of calculating directly in two dimensions the 
interaction between two like spheres embedded in i&rite scattering and absorb- 
ing material has also been carried out using simple diffusion methods. This will 
be published elsewhere in the near future. 

19 
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4.4.1 Externalsphericalsource programme; &-approximation.-Veryrecently 
the familiar Carlson &,-method (16) for solving the neutron transport equation 
has been adapted to computing the steady state neutron densities and (physical) 
fluxes maintained in a spherically symmetric subcritical system by neutrons 
emitted from a source in the form of a spherical surface. This source represents 
an aggregate of point sources all at the same radial position and, as the outputs 
due to non-multiplicative sources are additive, the total (symmetrical) output 
due to the surface source will be equal to the total (asymmetrical) output due to 
a point source of the same strength. 

In the programme (EXSO) as it stands* the position of the source and the 
spectrum and angular distribution of the emitted neutrons are factors which can 
be controlled at will. A complete range of multiplication factors, albedos, and 
transmissions can therefore be covered. The basic lim itation is the way in which 
scattering is treated. Allowance for anisotropy is only made in the diagonal 
terms of the (multigroup) scattering matrix so that strongly moderating materials 
cannot be coped with adequately. An estimate of the errors that do occur in 
such cases is being made. 

Two examples of the results obtained using EXSO are given below. 
4.4.2 Multiplication factors for 20 kg U2ss spheres with and without graphite 

reflectors.-The first system considered was a 20 kg sphere of 93 %  Us35 at density 
18.7 g/cm3 and with a central cavity of radius 1.1 cm reflected by various thick- 
nesses of graphite (density 1.6 g/ems). The source was placed in either of two 
positions, (1) at the surface of U 235, (2) at the outer surface of the graphite, and 
was isotropic with the conventional fission spectrum. &,-approximation was used 
together with seven energy groups spanning the range 18 keV-10 MeV. Table 
10 below gives the calculated values for the total number of neutrons crossing 
the boundaries (1) and (2) when one neutron is released at the source 

TABLE 10 
Numbers of Neutrons per Unit Source Strength Crossing the Various 

Interfaces in the System : 20 kg U235 (93 %) Sphere plus Graphite Reflector 

Source 
position (1) I (2) 

! ( 1 ---I 
Interface 

out- In- Out- In- 
wb3 going going going going 

----- 
0 in. 0.5 o-5+1*374 
1 in. 0*5+0*413 0.5+2*410 0 2-495 O-371 0.980 
2 in. 0*5+0*772 0.5+3*334 0 3.058 O-287 0.752 

*Written for the IBM 709 by L. H. Underhill’s group, Mathematical Physics Division, 
AWRE!. 
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The direct contribution to the net flux from neutrons leaving the source, 0.5 * for a unit isotropic source, is indicated in each case. 
The values listed in Table 10 allow the various transmission, reflection, and 

G multiplication factors used in Section 4.3 to be deduced as functions of the 
graphite thickness. These factors are listed in Table 11 below. 

TABLE 11 
Surface Multiplications and Transmission and Reflection Factors 

for 20 kg IP5 (93 %> Sphere in Graphite ReJector 

Graphite 
thickness 

0 in. 1 in. 2in. 

k&b 
M8, 

H 

;, 

2.148 2.639 2.621 
2.748 2.218 1.930 

0 1 0.142 0.857 o-201 o-797 

0 1 0.537 0.463 o-730 0.270 

The variation in the surface multiplication Msb, of the inner Us35 sphere 
alone as the graphite thickness increases is due to the slight difference in spectrum 
and angular distribution between neutrons reflected back from the graphite and 
neutrons emitted by the source. The “central source” multiplication calculated 
by the same means with the source surface on the outside of the 1-l cm cavity 
is found to be 3.334. 

If the values of Msb, E, T, E’, and T’ given in Table 11 are inserted in equation 
(4.23) the values for A&, so obtained are in agreement with the calculated values. 

44.3 Calculation of the interaction between two undermoderated systems.--In 
order to obtain clearance for storage prior to doing critical mass experiments it 
was desired to know the interaction between spheres*, each of volume 100 in.3 
composed of a UOs/paraKin wax compact. The composition by atoms of the 
batch of material to be considered here was 4-5 %  U335, 10.4 %  Usss, 18.2 %  C, 
37.2 %  H, 29.7 %  0, with a bulk density of 6.42 g/cc, and so Henry’s method of 

c Section 3 is not applicable. 
In applying the EXSO method to estimate the surface multiplication, MS, 

of such spheres three difficulties present themselves : 4 (i) the lim itations of the assumptions made concerning the scattering laws 
will preclude an accurate estimate of MS; 

(ii) the possible inaccuracies in the available nuclear data for Usss; 
(iii) the angular distribution and spectrum to which the spheres are subjected 

in the array are unknown. 
*The material was actually to be stored in blocks with dimensions 5 in x 5 in. x 4 in. 
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Regarding point (i) it was checked that the same calculating regime when 
applied to estimating critical sizes of Uss5/HsO m ixtures and solutions 
gave underestimates of these sizes over a wide range of H/U235 ratios. It 
therefore seems certain that EXSO will overestimate the required surface 
multiplication. 

Point (ii) was overcome conservatively by replacing the U2s*, atom-for-atom, 
by U2s5. 

Considering (iii) use was made of the fact that the surface multiplication of a 
sphere is greatest when the neutrons are injected radially. In the calculations that 
were done the source was placed on the surface of the sphere and neutrons 
injected both radially and isotropically. 

When situated in an array of identical spheres the spectrum that a sphere 
receives is exactly the same as the spectrum that it emits. The calculations were 
therefore carried out iteratively, first subjecting the sphere to a flux constant 
over velocity and noting the emergent spectrum and multiplication, feeding this 
spectrum back into the sphere as the source spectrum and noting the new emer- 
gent spectrum and multiplication, and so on until the emergent spectrum 
coincided with the source spectrum, or rather until the surface multiplication 
converged to the desired degree of accuracy. 

The results of these calculations are given in Table 12 below. 

TABLE 12 
Iterated Source Calculations on UOs/ Wax Compacts 

(100% U2s6 enrichment) 

Radial source Isotropic source 

Uniform 

:;; 
(3) 

l-891 
l-642 
1.634 
l-634 

Uniform 
(1) 

1.747 
1.616 
1.566 
l-546 

I II 

It is seen that, for this system, MS is not sensitive to variations in the angular 
distribution and spectrum of the source. The change with angular distribution is 
small since the diameter of the sphere represents several neutron mean free paths 
for the fast neutrons. 

Table 13 opposite shows the change in source spectrum with successive itera- 
tions for the radial source case. The quantities listed are the neutron fluxes per 
unit total source strength (i.e., per neutron per unit area per second released by 
the surface source) in each of the eight velocity groups employed. 
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41 Thus although the converged flux protie is significantly different from the 
uniform one assumed for the fist iteration the overall multiplication is only 
changed by 10%. 

TABLE 13 
Change of Neutron Flux Profile with Successive Iterations 

NeutJoh Iteration 
Uniform (1) (2) 

group \ 
(3) 

\ 
(4) 

Group 1 
11 MeV - 1.6 MeV 

0.125 0.32654 0.29545 0.28851 0.28112 

Group 2 
1.6 MeV - 0.78 MeV 

0.125 0.19214 O-17765 0.17272 0.17182 

Group 3 
0.78 MeV - 0.18 MeV 

0.125 0.21733 O-22655 0.22322 0.22167 

Group 4 
0.18 MeV - 10 keV 

0.125 0.19290 024485 0.25796 0.26022 

Group 5 
10 keV - 0.26 keV 

0.125 0.04555 0*04601 0.04859 0.04940 

Group 6 
0.26 keV - 15 eV 

0.125 6.01304 0.00713 0.00717 000732 

Group 7 
15 eV - 0.4 eV 

0.125 0@0995 000225 0~00180 0.00181 

Group 8* 
0.4 eV - 0 

0.125 0.00256 0*00012 0~00004 0@)004 

Surface multiplication 1.8194 1.6424 1.6344 1.6343 
- 

*Thermal group with cross sections averaged over Maxwell ian distribution. 

c As an example of applying these results for M8 to the clearance of an array 
of UOs/wax units consider an air-spaced array of 100 units. From equation 
(4.7) these units can be arranged in any geometry provided that no two units are 

I( closer together than would make q exceed the value l/99. Taking MS = 2 as an 
absolute upper lim it this requires that no unit can subtend a solid angle fraction 
of more than l/198 at any other unit, and this in turn corresponds to a m inimum 
edge-to-edge separation of 20 in. 

If in practice it were proposed to place this array, say, on a concrete 
floor, then some extra allowance must be made for the reflecting properties 
of the floor. -\ 
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5. COMPARISON OF THE ORGDP METHOD WITH THE 
INTERACTION PARAMETER METHOD 

From what has been said in Sections 3 and 4 it is clear that in the method 
adopted by Henry et al. the solid angle fraction and the k-factor correspond, 
respectively, to the general transmission probability p (which for air-spaced 
arrays is equal to the solid angle fraction) and the surface multiplication, MS. 
However, it could be claimed that the factor MS has more immediate physical 
significance than the theoretical factor JC in the sense that a large value of MS 
conveys more quickly the potential danger of an object in the array than does the 
nearness to unity of the k-value for that object. For this reason and also so that 
q-values for thermal systems may be deduced from k-values it is desirable to 
have available some relationship, preferably simple, between MS and Jc. 

5.1 Upper Limits to MS and q in terms of the k-factor 
From the definition of k, one neutron released in the eigen-distribution of the 

system produces k neutrons in the next generation. These k neutrons produce 
k2 neutrons in the next generation, and so on, the eventual multiplication being 

1 
l+k+k’+. , . =- 

1 - 12 ’ 
provided k is less than unity. 

In the notation of Section 3.6 a fraction (l-Uf> of the fast neutrons produced 
per generation escape from the system. The fraction Uf remain in the system to 
be slowed down and produce UfUt thermal captures and Uf(l - UC) thermal 
escapes. The total number of neutrons escaping from the system per generation 
is therefore 

(1 - Uf) -I- U,(l - UJ = 1 - ufu* = 1-s 

The number of neutrons which emerge from the sphere per neutron born in the 
eigen-distribution is therefore given by 

(5.1) 

As pointed out in Section 4.3.1 the number of neutrons which emerge from 
a system per neutron released isotropically at some point within the system will, 
in most cases of interest, vary monotonically between the values MC, for neutrons 
released at the centre, to (MS + 1)/2 for neutrons injected at the surface. Under 
these circumstances the weighted mean multiplication &? will satisfy 

and so from (5.1) 
M ,~.~_r(M,+l), (5.2) 

(5.3) 
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Over the range of applicability of the Henry method the factor Tf is virtually 
equal to 2 so that the factor l/(1 - k) of the Henry method bears favourable 
comparison with the MS of the interaction parameter method, although for general 
calculation purposes the factor [l -(2/qf)] in (5.3) should not be discarded. 

For the air-spaced systems considered by Henry the transmission probability, 
p, is equal to the solid angle fraction QR/4rr, and so from (5.3) 

q s 1 + L1 - GW)lk Q 
l-k * G  (5.4) 

Equation (5.4) can be used to deduce conservative values of q for the types of 
systems covered by Henry’s recipe for evaluating k, and the rules governing the 
use of q-values as set out in Section 4.1 apply. 

5.2 Numerical Examples and Checks 
The relation (5.4) m ight be criticized on the grounds that (5.2) has only been 

demonstrated for metal spheres and that therefore (5.3) and (5.4) m ight give 
erroneous results when applied to the types of thermal system considered by 
Henry and Callihan. To check this (5.4) will be used to calculate some lattice 
spacings that correspond to critical experiments carried out by Callihan 
(see Fig. 4). 

Consider two identical containers containing fissile solution with H/U235 
ratio equal to 93.75. This value is chosen so as to make vf equal to 2 and so 
(5.4) reduces to 

1 Q 

In the critical state q is equal to unity (cf. equation 4.5) so that the solid angle 
fraction satisfies 

The straight line in Fig. 4 where the solid angle fraction is equal to (1 - k), 
shown as the broken curve C, should therefore represent a safety line for this 
H/U23s ratio, with critical systems all lying above the line and subcritical 
systems below. As it is seen all the experimental points quoted lie above curve C 
with the exception of one point which refers to two 20 in. diameter cylinders of 
height 5.83 in. containing solution with H/U 235 = 169 and this lies fractionally 
below the line. However, the k-values for these cylinders (0.964) exceed the safe 
lim it (O-9) imposed by ORGDP on bare cylinders. 

As a further check example consider an hexagonal array of six cylinders, 
8 in. diameter and containing UOaFa solution with H/U23s ratio of 44.3, placed 
symmetrically about a central unit. Let the neutron output of the outer cylinders 
be F and the output of the central cylinder be G. Let d be the spacing of adjacent 
cylinders. 
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Then as the central cylinder “sees” all six surrounding cylinders 

G = 6q@)F. (5.5) 

Each outer cylinder “sees” two other outer cylinders at distance d, two more at 
distance 2/(3)d, and the central cylinder at distance d, so that 

F = 2Ma) + d,/W )lF + dd)G (5.6) 

For simplicity assume that q (d(3)d) = q(d)/3, using the inverse square law for 
air-spaced lattices ; for near spacings this is approximate but in this case will give 
a conservative result. Then equations (5.5, 6) provide a quadratic equation for 
q(d) with the solution q(d) = O-2426 in the critical array. Hence from (5.4) with 
the appropriate value of qf, the critical solid angle fraction for two adjacent 
cylinders satisfies. 

1R>QC- l-k 
4n = G = o’2426 1 + 090227k (5.7) 

Table 14 below compares the values of GC/4n with the solid angle fractions 
measured in critical experiments on such arrays(s). 

TABLE 14 
Comparison of Q&rr with Measured Critical Solid Angle Fractions 

Cylinder height 
(in.) 

k for single 
cylinder 

Measured critical 
solid angle fraction 

7.2 O-7448 0.159 0.0609 
10-l 0.8343 0.102 o-0395 
13.1 0.8836 0075 0.0277 
16.4 0.9146 0.062 0.0203 
22.0 0.9425 0.043 0.0137 

As before it is seen that the use of (5.4) with the equality sign gives conserva- 
tive estimates for critical solid angle fractions, thus indicating that (5.4) does 
indeed provide an upper lim it to q. 

It is worthy of mention that if the relation (4.11) is used in the last example in 
place of the accurate equations (5.5, 6), the numerical coefficient in (5.7) is 
reduced to the value & and the corresponding results for QC/4a are even more 
conservative. 

5.3 On the Interaction Between Pairs of Dissimilar Containers 
Relations (4.4) and (5.4) enable a check to be made upon the validity of 

Henry’s empirical rule for dissimilar containers mentioned in Section 3.4. 



Neutron Interaction in Fide Assemblies 289 

Consider two dissimilar containers with k-values kl and kz, and assume in the 
first instance that the separation distances involved are large enough for the solid 
angle fractions to be represented by the cross-sectional areas of the containers, 
A1 and AZ, say, divided by 4n times the square of the separation distance. Then 
from relations (4.4) and (5.4) the two dissimilar containers are safe at a mutual 
separation distance dl2 satisfying 

1+ Cl - (Vd,)lk, 4 1+ Cl- CQJdIk, 4 * < 1 1 - kl ‘Gig’ 1 - kz 4nd&. (5.8) 

For pairs of like containers of types 1 and 2 to separately form subcritical 
systems their respective q-values must be less than unity, i.e. their respective 
separations dl and d2 must satisfy 

1 + Cl - (2/VJJlk 4 1 - ki *4nd; < 1, i = 1 3 2 * (5.9) 

Hence from (5.8, 9) the separation between dissimilar containers must satisfy 

(5.10) 

i.e. that dlz must exceed the geometric mean of dl and dz whereas Henry’s 
empirical rule requires that dl2 is equal to (or exceeds) the arithmetic mean of dl 
and d2. It is well known that the arithmetic mean of two quantities always 
exceeds the corresponding geometric mean and so Henry’s rule is in fact con- 
servative as the experiments that he mentions appear to demonstrate. 

The argument used above can immediately be generalized to eliminate the 
assumption regarding the dependence of solid angle fraction upon separation 
distance. This assumption was only introduced to give a more immediate 
comparison with Henry’s rule as it stands. 

Let wtf (i,j = 1,2,) be the solid angle subtended by a container of type i at 
the position of another container of type j, i = j implying like containers. Then 
if wii, wzz represent safe values for pairs of like containers, pairs of unlike 
containers will be safe, generalizing (5. lo), provided 

w12w21 < WllW22. 

These considerations of course apply only to air-spaced arrays. 

(5.11) 

6. GENERAL CONCLUSIONS 
For assessing, criticality-wise, arrays of metal spheres, bare or reflected, use 

should be made of either the Los Alamos experimental data (Section 2) or of 
the interaction parameter method via measured or calculated values of surface 
multiplications. The former is the more direct method and should be used where 
possible, although further investigations along the lines suggested by Ketzlach 
are necessary before any rules of thumb can be laid down. The latter method 
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is the more tedious to apply but has the advantage that once the necessary 
interaction parameters have been estimated the degree of criticality in any 
geometry can be assessed. The use of Fig. 1 for very large arrays (say, greater 
than 100 units) is not advised until further corroboratory evidence is available. 

For arrays consisting of well-moderated units of general assay the ORGDP 
method is applicable provided that the Iz-factors for the individual units are 
evaluated as prescribed in Section 3. In view of the fact that little is stated about 
the experiments performed with dissimilar interacting units it would be advisible 
to treat with caution the simple rule given in Section 3.4 when the k-values for 
the individual containers are widely different, pending a check using relation 
(5.11). In fact it would be of great utility to have relation (5.11) checked experi- 
mentally over as wide a range of dissimilar containers as possible, for in the case 
where reasonably large separations are involved the geometric mean of the safe 
separations for the pair of like containers involved can be considerably less than 
the arithmetric mean, and consequently a large amount of storage space may be 
saved. 

The interaction parameter method has general application to arrays for 
which reasonably accurate or conservative estimates of the parameters can be 
found. The chief drawbacks which arise in practice are : 

(i) the measurement of q-values for systems completely immersed in 
reflecting material, and in particular water and other hydrogenous 
materials ; 

(ii) the difficulty of obtaining accurate calculations in these cases, although 
these are to some extent being overcome by Monte Carlo methods on 
fast computers ; 

(iii) the translation of measurements or calculations made with point sources 
into data for two-body systems when separation distances are small; 
usually some conservative device has to be adopted. 

Cases of awkward geometry can give rise to difficulties but no more so than 
those presented by other methods. 

As a general rule the interaction parameter method should be used when it is 
either not possible or not convenient to use the other methods described. 
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