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A simple technique is described for computing the interaction in groupings of fissionable 
units. The units may be slabs, cylinders, or spheres and may be surrounded by a reflector. The 
validity of the approximations employed is discussed. The technique is illustrated by applying 
it to the specific example of calculating the interaction in a reflected cubic array of eight spheres 
of uranium (93.5% W5). Comparisons are made with experiment and with other methods of 
calculation. 

I. INTRODUCTION 

In ascertaining whether a proposed assemblage of 
fissionable units will be subcritical by a big enough 
margin to be considered safe, one of the more diffi- 
cult and important problems is that of calculating 
the interaction within the assemblage. Although 
each unit, when isolated, may be subcritical by a 
substantial margin, the assemblage may be critical 
if the number of units is sufficiently large and if the 
units are sufficiently close to each other and to 
neutron-reflecting materials. Since nearly any ma- 
terial reflects substantial quantities of neutrons, it 
is necessary to include existing and possible addi- 
tional reflection in any calcul&ons of t,he actual 
interaction that may occur. 

Because exact calculations for even the most 
idealized arrangements are extremeiy complicated, 
it is desirable to develop simple approximating pro- 
cedures that are sufficiently accurate to permit safe 
arrangements to be calculated without requiring an 
excessively large margin of safety. The approach 
employed here focuses attention on the neutrons 
emitted by each unit and by the reflectors. Both an 
angular distribution of the neutrons emitted from 
an element of surface and a surface distribution of 
these sources are assumed, and the numbers of neu- 
trons entering the units and the reflectors are corn 
puted. Dimensions, spacings, or compositions of the 
units are adjusted until the total neutron currents 

* The information contained in this article was developed 
during the course of work under contract AT(07-2)-l with 
the U. S Atomic Energy Commission. 

(integrated over the surfaces) entering the units 
have the values (relative to the total currents 
emitted) that are required to make keff unity for 
each unit and hence for the assemblage. 

A brief description of the application of this 
approach to interactions between a single unit and a 
reflector and to interactions within an unreflected 
array is given in ref. 1. A fuller description is given in 
ref. d in which extensive comparisons with experi- 
ments are made. The agreement with experiment is 
generally good, and the method has the desirable 
feature of usually predicting slightly more interac- 
tion than is found experimentally. For the sake of 
completeness some of these comparisons are included 
in the present paper. A brief description of the ex- 
t’ension of the technique to reflected arrays is given 
in ref. 3. A fairly complete description of the tech- 
nique is given in ref. 4 in which the emphasis is on 1 
applications. The present paper sets forth and ex- 
tends work that was summarized in ref. S. 

A recent paper by Miraldi and Clark (5) employs 
a similar approach but has some features that make 
the calculations more complicated while actually 
resulting in a poorer approximat.ion for the small, 
highly reactive units usually encountered in inter- 
action problems. These authors include the 
transverse flux dependence while apparently dis- 
regarding the resulting outward bias in the angular 
distribution of emitted neutrons. They also include 
a term proportional to the square of the cosine of 
the angle that emitted neutrons make with respect 
to the normal to the emitting surface, in addition to 
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the term proportional to the first power. For fission- 
able units in which 1 B2/Z2 / < 1, the latter part of 
their approach is valid, but for highly reactive units 
in which this is not so, it results in greater errors 
than the simpler approach employed in the present 
paper, in which only the first-power term is retained. 
A comparison of experiments with results calculated 
by means of the approximations in the present paper 
and with results calculated from the work of Miraldi 
and Clark is given in Table IV. 

II. THEORY 

A. APPROXIMATIONS 

The flux (@) of monoenergetic neutrons in a 
uniform infinite medium in which scattering is iso- 
tropic satisfies (6) the wave equation 

v”@ + B2@ = 0 (1) 

in which B2 (the material buckling) satisfies 

B B - = c tan-’ _ 
c c (2) 

where c is the average number of secondary neutrons 
resulting from a neutron interaction with a nucleus, 
and 2 is the total cross section (or the transport 
cross section if the transport approximation is em- 
ployed when scattering is anisotropic in the labora- 
tory system). The above equations also hold exactly 
for polyenergetic neutrons in a hypothetical medium 
in which c and I: are energy independent. The be- 
havior of neutrons in an actual medium can be 
approximated closely by (1) and (2) with suitable 
average values for c and Z. 

The amplitude of the differential neutron current 
per unit solid angle passing through an element of 
area relative to the total current passing through the 
element is a function F (+, 0, $J; x, y, z) of the angle 
4 that the differential current vector makes with the 
normal to the element, of the polar or azimuthal 
angle 6, of the angle $ that the normal to the element 
makes with a reference direction, and of the co- 

TABLE I 
RATIO OF APPROXIMATE EXTRAPOLATION DISTANCES TO 

EXACT VALUE (6) 

Ratio by (4) Ratio by (5) 

0 5i 0 915 0 888 
0 0.938 0.938 
05 0.955 0 975 
1.0 0 992 1.053 
15 1 029 1 122 
2.0 1.060 1.173 

ordinates of the element. If there is plane symmetry 
so that the only variation in @ is in the z direction, 
if the positive IL direction is taken to be the reference 
direction, and if $ = 0, F is a function of only 4 and 
x and can be shown (Appendix A) to be 

cos c#J a+ 
@(xl - T & 

F(4, x) = q 1 + (B/C cos 4)” 

- log (1 + (B/Ix)~) 
(B/V2 
-- g (I - Z/B tan-l B/Z) ~1 

: 

(3) 

where @ = A, cos BX + A2 sin Bx. At this same 
element the total neutron currents in the positive 
and negative x directions can be shown to be, re- 
spectively 

3 I+- 
3 

= log (1 + (Blz)2) (a(x) 
4B/X tan-l B/E 

I _ tan-’ B/Z (4) 
B/C da 

F 2B tail-l B/C dx 

In a finite medium, making the approximation that 
(1) and (2) are satisfied everywhere and that the 

current leaving the medium at a boundary (j’ or j-) 
is given by (4) requires that the current entering the 
region (j- or j+) must also be equated to (4). The 
effect of these boundary conditions on reactivity is 
equivalent to requiring continuity of neutron flux 
(a) and continuity of 

B/B - tan-’ B/Z d@ 
B log (1 + (B/IQ2) dx 

For a wide range of B/Z, (l/32) (d%/d.c) is a good 
approximation for this expression. The currents can 
therefore be represented by 

(5) 

Some indication of the validity of these approxima- 
tions can be obtained by comparing the extrapolation 
distances (i.e., the extrapolated end points) ob- 
tained by setting J- equal to zero with the exact 
values (6) (see Table I). 

In the finite media with which we are concerned 
here, the assumptions will be made that (1) and (2) 
are satisfied everywhere and that (5) adequately 
represents the currents at boundaries. It will further 
be assumed that F is adequately represented by (3) 
for which a reasonable first order approximation is 
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simply 

F(+, x) zz F (6) 

In Fig. 1, F (4, x) as given by (3) is plotted against 
solid angle for extreme values of x to indicate t.he 
extent of the approximation made by (6) when 
B/B = 0 and when B/Z = 1. The distribution func- 
tion employed by Miraldi and Clark (5) is 

F(c#I, 0; z, y, x) = + 

@(x, y, x) - $ cos + g 
II (7) 

a* - sin 4 cos 19 - - sin #I cos 0 g 
%I 1 e-? Y, 2) - ; g : 

and is obtained by retaining only the first two terms 
in a Taylor expansion of the flux. At the center of 
symmetry of the (y, x) plane where d+/dy = 
da/ax = 0, this function is identical with that ob- 
tained from (3) in the limit as B/Z -+ 0. For the 
small, highly reactive units usually encountered 
where interaction is important, however, B/Z is not 
close to zero. For example, for the aqueous solution 

F(+, x) ‘for -E = o and x such that 
i- = 0 inC4 F 
F(+, x) for + = o and x such that 

i- = j+ in(41 
F(+, x) for 9 = I and Y such that 
.- 1 = 0 in (4) 

F(+,x) for $ = I and x such that 
j- = j+ in(4) 

Curve 2 corresponds to F = =$ 

Solid Angle 

FIG 1. Angular distribution function F($, z) from (3) vs. 
solid angle [2~(1 - cos $)I. 

of U23’ studied experimentally (7) with which they 
compare their calculations, B,/Z g 0.5 for small 
separations. Since their distribution function is repre- 
sented by curves 1 and 2 of Fig. 1 regardless of the 
value of B/Z, it is increasingly in error as B/Z 
increases. 

In employing (6) as the angular distribution func- 
tion the dependence of F in e, y, and z is ignored. The 
consistent approximation is to ignore the dependence 
of @ on y and x in computing the fraction of the total 
current emitted from one surface that reaches 
another and, hence, to assume a uniform source 
strength per unit area on the emitting y, x surface. 
Miraldi and Clark include the y and x variation of 
the flux in their integrals, but they assert that, ex- 
cept for very small spacings, the contributions of the 
integrals containing &@/ay and d@/dx are small com- 
pared to those containing da/& and apparently 
ignore them since they report values only for the 
integrals containing d@/dx. This assertion is no 
doubt true, but these contributions must be of the 
same order as the small differences between the 
integrals containing the y and x dependence of @ and 
the much simpler integrals employed in the present 
paper. 

Although the y and x variations in the flux are 
ignored in calculations involving F, geometric 
bucklings in the y and x directions are subtracted 
from the material buckling to obtain the buckling in 
the n: direction. To avoid complicating the problem, 
boundary conditions are applied only in one di- 
mension, i.e., to the y, z surfaces. If the arrangement 
of units is such that neutrons emitted from one slab 
can enter the x, y or x, x surfaces of another slab as 
well as the y, z surface, they are counted as entering 
the appropriate y, x surface. Boundary conditions are 
applied to the total currents obtained by integrating 
j+ and j- as given by (5) over the entire y, x surface. 
Where the surfaces are congruent the y and x vari- 
ations of the flux cancel. Where the surfaces are not 
congruent and the y and x flux variations on one 
surface do not appreciably influence those on the 
other, the total currents are proportional to results 
given by (5) multiplied by the surface area. If the y 
and z variations on the two surfaces are not inde- 
pendent, as is the case when a large slab is close to a 
parallel small slab, the large slab should be con- 
sidered to consist of a number of small slabs in edge- 
to-edge contact. 

B. CALCULATION OF NEUTRON INTERCHANGE 

One of the chief advantages in approximating (3) 
by (6) is that, since F as given by (6) has no de- 
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nendence on @ and dCD/dx, the interaction problem is 
readily divided into the geometrical problem of com- 
puting the fraction of the neutrons emitted from a 
given unit reaching another unit and the problem of 
calculating the critical thickness or buckling of a slab 
from boundary conditions expressed in terms of such 
fractions. Attention will be given first to the geo- 
metrical problem. The fraction pjk of the total 
neutron current emitted from a surface Ak that enters 
another surface Aj is given by 

ss 
COS +i COS 4k dAi dA, 

pjk = aR2A~ (8) 

where R is the distance between the elements of 
surface dAj and dAk and where 4j and & are the 
angles R makes with the normals to the elements. 
This integral is readily evaluated only in a few cases. 
For two parallel congruent planes having only one 
finite dimension and so arranged in space that a 
common normal joins equivalent points, the result is 

p=~1+a2-a (9) 

where QI is the ratio of the distance between the planes 
to the finite dimension. For two parallel discs 
similarly arranged but not necessarily congruent 

1 + Y2 + ct2 
P= 

- &l - y2 - &2)2 + 4a2 (1O) 
2 

where O( is the ratio of the distance between the discs 
to the radius of the transmitter and y is the ratio of 
the radius of the receiver to the radius of the trans- 
mitter. If two rectangular surfaces (2~ X 2h and 
2d X 29) are oriented in perpendicular planes so that 
edges 2h and 2g are parallel (Fig. 2)) the fraction (p) 
of the current emitted from 2a X 2h that reaches 
2d X 2g is 

p = kh c G(x, x’)H(z, y’) tan 
n- [ 

-I Gb, 2’) 
H(z 

> * 

+ E(x, x’>12 log KG, dl” + Wh, !/‘)I2 
4 K% ~‘11~ 

(11) 

_ W(x, Y’N2 log [G(z, ~‘11~ + VJh, $)I2 
4 [H(x, ~‘11~ 1 

where G (x, z’) = x + f - z’ and [H(x, y’)12 = 
(z + e) 2 + (y’ + a + b) 2 and where b is the distance 

from the plane of the 2d X 2g rectangle to the closer 
2h edge of the other rectangle, d + e is the distance 
from the projection of the 2h edge on the plane of the 
2d X 2g rectangle to the further 2g edge, f is the 
distance between planes perpendicular to the 2g and 
2h edges at their midpoints. The summation (with 
proper regard to sign) is over the 16 terms resulting 

FIG 2. Interaction between perpendicular rectangles. 
(The 2g and 2h edges are parallel ) 

from setting y’ equal to --a and a, x equal to -e (or 
-d if e > d) and d: z equal to -g and g, and z’ equal 
to -hand h. 

By noting that the numerator of (8) is the same 
whichever surface is the emitter and that the sum of 
all the fractions emitted from a surface equals unity, 
other interactions can be calculated. The fraction of 
the current emitted from the inner surface of an 
annulus that re-enters the annulus can be obtained 
from (10) as 

p=l+; 
y’ 

1+; (12) 

where a! is the ratio of the height of the annulus to its 
inner radius. In refs. d and 4, p for parallel rectangles 
is similarly obtained from (11) and is plotted against 
o( (0 5 01 5 1.4) and against l/a (1 5 o( 5 a) for 
(T = 0, 0.2, 0.4, 0.6, 0.8, and 1.0 where (Y is the ratio 
of the separation to the shorter edge and (r is the 
ratio of shorter edge to the longer. The integrals given 
by Miraldi and Clark can be presented in this same 
convenient manner by multiplying (their notation) 
I, by 7r$/16 and IO by 31&~/32. 

C. EXTENSION TO CURVED SURFACES 

It has been tacitly assumed so far that the inter- 
acting surfaces are planes. Extension to curved sur- 
faces can readily be made although the approxima- 
tions are probably poorer than for planes. Equation 
(5) is replaced with its equivalent in spherical or 
cylindrical coordinates. l?or finite cylinders the 
material buckling is reduced by subtracting the axial 
buckling. The assumption of a uniform source 
strength per unit area might appear to be poor, but 
even for the extreme case of assuming the same 
source strength on both surfaces of each of a pair of 
interacting slabs, the assumption is not bad (see 
Section IV) provided the separation is not too small. 
(For slabs the assumption is not necessary to make 
the problem one-dimensional.) 
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Evaluation of (8) for curved surfaces is difficult. 
For a pair of infinite cylinders the result is identical 
with the Dancoff (8) correction when Z = 0 in the 
medium surrounding the cylinder, and this calcula- 
tion is available (9). On the basis of symmetry the 
fraction of the current from one cylinder reaching 
another must be at least as great as the fraction of 
2n radians subtended at the axis of the emitter and 
for a pair of spheres at least as great as the fraction 
of 4s steradians subtended at the center of the 
emitter. The fraction is actually greater for a single 
closely spaced pair because in an array with the same 
spacing there is partial shielding. (Consider, for ex- 
ample, a cylinder surrounded by six others in contact 
with it.) On physical grounds, one would not expect 
the interaction in a group of circular cylinders to be 
altered appreciably by replacing each circular 
cylinder by a square cylinder of equal volume. 
Similarly it seems reasonable to replace spheres by 
cubes of equal volume. Such replacements maintain 
the same average density of material in an array 
without greatly altering the reactivity that an indi- 
vidual isolated unit would have. If, for any inter- 
action between pairs, the square cylinders or cubes 
are assumed to rotate so that the interaction is only 
between a single pair of parallel rectangles, then the 
fraction of the current from one that reaches the 
other can be obtained by dividing the result for the 
parallel rectangles obtained from (11) by 4 for a 
cylinder or by 6 for spheres, since the orientation is 
such that only one face is involved. Results obtained 
in this way from (9) for infinite cylinders are com- 
pared in Table II with the Dancoff correction (9) 
and with the fraction of 2?r radians subtended at the 
axis; results for spheres are compared in Table III 
with the fraction of 4s steradians subtended at the 
center. It is seen that the square cylinder and cube 
approximations give results on the high side for close 
spacings. These approximations, however, tend to 

TABLE II 
FRACTION OF THE CURRENT FROM TEE SURFACE OF AN 

INFINITE CYLINDER REACHING THE SURFACE OF A 
PARALLEL, IDENTICAL CYLINDER 

(Radius)/ Fraction of 2a 
(Axis-to-axis subtended at Dancoff Square cylinder 
separation) axis correction (9) approximation 

0 0 0 0 
01 0 0319 0 0319 0 0266 
02 0.0641 0.0646 0.0641 
0.3 0.0970 0.0987 0.1130 
0.4 0 1310 0.1360 0.1676 
05 0.1667 0 1817 0.2199 

,. 
TABLE III 

FRACTION OF THE CURRENT FROM THE SURFACE OF A SPHERE 
REACHING THE SURFACE OF AN IDENTICAL SPHERE 

(Radius)/(Center- Fraction of k Cube 
to-center separation) subtended at center approximation 

0 0 0 
01 0.0025 0.0020 
02 0 0101 0.0103 
03 0 0230 0 0305 
0.4 0.0417 0.0641 I 

05 0 0670 0 1072 

compensate for assuming a constant source strength, 
whereas actually it is higher on facing surfaces; they 
give fairly good results when combined with other 
features of the present technique in making com- 
parison with experiment (9). 

D. SHIELDING 

In any array of units there will be some shielding 
of more distant units by the closer units. Where the 
more distant units are completely blocked, pjk = 0. 
Where the shielding is only partial, estimates are re- 
quired. It is helpful to make use of the symmetry of 
the array, and in the case of finite cylinders it is 
helpful to extend them to infinity and to make use of 
the fact that the sum of the fractions emitted cannot 
exceed unity in determining the most distant cylin- 
ders that can be “seen.” Where a unit in an array 
can “see” past surrounding units to a reflector sur- 
rounding the array, the fraction of the emitted cur- 
rent that reaches the reflector is easily obtained by 
subtracting from unity the fractions reaching other 
units. The fraction emitted by the reflector that 
reaches the unit can be obtained from the relation 

derived from (8), which holds provided a uniform 
source distribution over both surfaces may justifiably 
be assumed. 

’ 

E. ARRAYS OF UNITS 

Attention is now directed toward the second phase 
of the interaction problem. Consider a reflected array 
of fissionable units. Let the coordinates within each 
unit and within each reflector be chosen so that J+ 
represents the total current emitted and J- repre- 
sents the total current received’ where J+ and J- are 

1 This notation is slight.Iy different from that used in 
refs. l-4 where the emitted current for units is termed Ji, 
and that for reflectors Jout . 
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equal to jf and I- as given by (5) at the surface 
multiplied by the surface area under consideration 
(both y, z planes for slabs; curved surface for cylin- 

ders and spheres). Then for an assemblage of n units 
and reflectors 

JI- = PII JI+ + PIZ Jz+ + . . . + p~nJn+ 

Jz- = pzJl+ + pzzJz+ + . . . + p~nJn+ (14) 

Jn- = P~IJI+ + ~122 Jz+ + . . . + ~nnJn+ 

Each unit and reflector is numbered. Unless a surface 
is concave (e.g., the surface of reflector surrounding 
an array), pij = 0. When two units j and lc are identi- 
cal, Jj+ differs from Jk+ only in the constant factors 
appearing in the neutron current, but the number of 
equations is not reduced unless the units occupy 
symmetrically equivalent positions so that 
Jj+ = Jk+. If, for example, units 1 through 172 are 
symmetrically equivalent, (14) may be collapsed to 

JI- = 2 PRJI+ + Pl, WI+1 J + m+1 
k=l 

+ . . . + p~nJn+ 

J -= m+l I)ZP,+I ,IJI+ + pm+~,m+~ Jm+? 
+ . . . + ~m+~,nJn+ (15) 

J,- = mpn~J~+ + pn,n+~Jn+~+ 
+ . . . + ~nnJn+ 

If more than one energy group of neutrons is em- 
ployed, as may be desirable when a reflector causes 
appreciable changes in the neutron spectrum, the 
J’s are vectors and the pjk’s are scaler matrices. The 
symmetry conditions at the center of each unit or an 
outer boundary condition in a surrounding reflector 
make it possible to obtain expressions for @ and V@ 
at the interacting surface that contain one undeter- 
mined constant per neutron group regardless of the 
number of concentric regions within a unit. Equation 
(14) can therefore be expressed as a matrix equation 

of the form 
QC = PC (16) 

where C is a vector containing gn undetermined con- 
stants where g is the number of energy groups. A 
solution to (16) exists if and only if the determinant 
of Q - P equals zero. 

Although a solution can be obtained by adjusting 
spacings and dimensions of units to make the de- 
terminant zero (care being taken to get the physically 
meaningful root), it may be desirable to express the 
undetermined constants for the less reactive units 
and for the reflectors in terms of the constants for the 

most reactive unit and hence to reduce (16) to an 
equation involving only the constants of this unit. 
The determinant to be solved is thereby reduced to 
gr order where r is the number of classes into which 
symmetrically equivalent units may be grouped 
(e.g., in a 3 X 3 X 3 cubic array r = 4: body center, 

face center, edge center, and corner). If this reduction 
is made, it may also be desirable to express J- as 
pJ+ where P is a g X g matrix so that in (16) Q is a 
function only of the dimensions and properties of the 
most reactive units and P is a function only of the 
other units and the pjk’s. 

In the above treatment as applied to slabs the flux 
within a unit is assumed to be symmetrical. For a 
pair of parallel slabs having congruent surfaces, the 
fraction (pi?) of the neutrons emitted from one slab 
reaching the other, then, is one-half the fraction 
emitted from the facing surface. If one does not wish 
to make this assumption, (15) still has the same 
form, but the subscripts refer to the different slab 
surfaces. For surfaces that do not see reflectors or 
other surfaces, the incoming current is zero. When 
the flux is asymmetrical there are two undetermined 
constants per neutron energy group in the expres- 
sions for @J and V@, but the same constants are in- 
volved in the equations for the two faces so that an 
equat,ion of the form of (16) is still obtained. 

F. ONE GROUP 

For many purposes one energy group is sufficient 
(I-4). The reduction of the determinant to rth order 

is desirable here. The critical size of the most reactive 
unit can then be calculated by equating @ as obtained 
from (5)) or its equivalent in cylindrical or spherical 
coordinates, to the physically meaningful character- 
istic value of a matrix involving only the pjk’s and 
the properties of the less reactive units and re- 
flectors. Since @ is the ratio of the current entering a 
unit to the current leaving a unit, its reciprocal is 
equal to the albedo of the unit and fl itself is the 
albedo that must be provided by the surroundings in 
order to make the unit critical.* 

When only one group of neutrons is employed, it is 
difficult to arrive at properly weighted average 
values of Z. There may also be some difficulty in the 
choice of B for a unit and K = iB for a reflector. 
These difficulties can be obviated to a great extent if 
data on the critical sizes of bare and reflected units 
exist. From (5) /3 can be expressed as 

1 + (2/3Z)(V@/@) 
’ = 1 - (2/3Z)(V9/@) (17) 

2 In ref. 1-4 @ for a reflector is so defined that J+ = pJ-; 0 
for fissionable units is defined as above. 
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When /3 = 0, IC = (r/2B) - SO for a slab, or 
r = (2.405/B) - SO for a cylinder or (r/B) - So for 
a sphere, where So is the bare extrapolation distance. 
So can be determined from a bare critical experiment 
by equating the geometric buckling to a reasonable 
estimate of the material buckling; hence 2 can be 
expressed in terms of B and So. Since the albedo 
(/3k1) of a reflector (Ic) in contact with a unit (j) 
equals pi, ,&l can be expressed in terms of B and S 
where S is the extrapolation distance when the re- 
flector is present (reflector saving). 

Although the reflector saving is not greatly de- 
pendent on the radius of curvature of the reflector, 
the same is not true of the albedo; hence it must be 
adjusted if the radius of curvature to be employed 
differs from that used in the experiment. This adjust,- 
ment can readily be made in terms of albedos for a 
flat surface (reflector in contact with a slab) and for 
the curved surface in the experiment. The result can- 
not be put in closed form for cylinders, but for spheres 
it is 

P(R) = P-l + (RolR)(Po - &)l(l + PO) 
1 - @o/R) (PO - PwJlU + PO) (18) 

where pm1 is the albedo of the reflector when R ---f 00 
and p;’ is the albedo at the experimental radius (Ro) . 

III NUMERICAL EXAMPLE 

To illustrate the technique, calculations were made 
for 2 X 2 X 2 cubic arrays of 20 kg U (93.5 % U*““) 
spheres (R = 6.335 cm) having a density of 18.8 
gm/cm3. The arrays were enclosed within reflecting 
cubic shells equivalent to H20 in their properties and 
having various dimensions. All eight spheres are 
symmetrically equivalent; hence by (15) and (16) 
we obtain 

8P19 PSl 
Pl = 3P12 + 3P13 + p17 + ps _ pss (19) 

where unit 9 is the reflector. There are three inter- 
actions with spheres separated by a single lattice 
spacing (s) , three with spheres fi apart, and one 
with a sphere at ds. To obtain the interactions 
between the spheres, the cube approximation was 
made with pjk = pkj interpolated from Table III. The 
fraction of the neutrons emitted by a unit reaching 
the reflector is psl = 1 - 3pzl - 3~~~ - pn . To ob- 
tain p19 use was made of (13). The fraction of the 
neutrons emitted by the reflector returning to it is 
PSS = 1 - 8~19 . 

Multigroup calculations made with the cross sec- 
tions in Reference (10) give Ic = 2.30 and B* = 0.0837 
cmP2. The experimentally determined bare critical 

mass of uranium of the density and enrichment being 
considered is 52.0 kg (10, 11) ; hence the bare critical 
radius is 8.71 cm and with B* = 0.0837 cm-*, 
So = 2.15 cm in agreement with the value calculated 
in Reference (10). In a similar manner S for a water- 
reflected sphere is found to be 4.1 cm for a sphere 
having a critical radius of 6.76 cm, derived from the 
experimentally determined water-reflected critical 
mass (11). The same values of S were assumed for a 
slab. For a slab (17) becomes 

sin B(S - So) 
’ = sin B(S + So) (20) 

and for a sphere it becomes 

r----S ?r-BSo 

P= 
1 + (?r - BS) cot BS 1 + (T - BSo) cot BSo 

a- BS 
1 + (?r - BS) cot BS + 

?r--BSo 
l+(a- BSo) cot BSo 

(21) 

where S is the reflector saving that must be provided 
by the surroundings for criticality to occur. With 
S = 4.1 cm, Pm = 1.818, and PO = p(6.76) = 3.093 
where Pm and PO are the reciprocals of the results 
given by (20) and (21) since they are defined in 
terms of Ji and J- of the reflector. The cubic re- 
flector was approximated by a spherical shell of equal 
volume in determining the value of R to be used in 
(18) to obtain ps = p(R) . 

Equating P1 in (19) to’/3 in (21) resulted in a set of 
S as a function of lattice pitch and reflector size. 
Only for the critical conditions are these S values cbn- 
sistent with the actual sphere radius; otherwise they 
correspond to other radii that would be critical if the 
interaction somehow were to remain the same as 
calculated for the actual radius (6.335 cm). The 
effective multiplication constant for a sphere can be 
calculated as 

keff = 
2.30 

' + (6.33;'+ S)* 
(2.30 - 1) 

0.0837 

Values of keff for the array as a function of s and of 
the dimensions of the reflector are plotted in Figure 3. 
Safe spacings correspond to some choice of JC,fr < 1. 

The choice of a maximum safe value of &f for this 
or any other situation is necessarily somewhat 
arbitrary. On the one hand it should allow a suffi- 
cient margin to compensate for possible nonconserva- 
tism in calculations. Such a margin is best deter- 
mined by comparing calculations with experiment. 
In any such comparison allowance must, of course, 

. 
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TABLE IV 
COMPARISON OF~~~AS DETERMINED BY EXPERIMENT AND AS CALCULATED BY VARIOUS 

PROCEDURES FOR A PAIR OF SLABS OF URANIUM SOLUTION 

Height 
(in.) Experimental Eq. (8) 

p1e 

Miraldi and 
Clark (5) Tamor (13) 2 X Avg. solid 

angle (14) 

2 25 10.0 0.693 0.770 0.851 0.711 0 598 
6.25 12 9 0 468 0 569 0 658 0 440 0.393 

15.25 17 7 0.266 0.362 0 442 0.188 0 218 
20 25 19 8 0 212 0.304 0.362 0 124 0.179 
30.25 23 5 0.141 0.216 0 259 0 055 0 121 
48 25 28 8 0 083 0 134 0.167 0 015 0 073 
66 25 32.3 0.055 0.091 0 112 0 004 0 051 

m 45 6 0 0 0 0 0 

be made for experimental error. On the other hand 
the margin must be sufficient to allow for operational 
factors such as variations in unit size, composition, 
and spacing. The margin required to compensate for 
these factors requires studies of the administrative 
controls existing in the given situation and of the 
rate of change of keff with these factors. 

An experimental result is available for a situation 
similar to the present example. By extrapolation of 
results obtained with up through 21 units a 3 X 3 X 3 
cubic array of spheres with s = 11 in. was found (12) 
to have a reciprocal over-all multiplication of 0.031 
when enclosed in a 3-ft cubic vault with concrete 
walls. Each sphere was equivalent in reactivity when 
isolated to one of the 20 kg uranium spheres being 
considered here. Calculations, reported in detail in 
ref. 4, were made for an identical array of 20 kg 
uranium spheres enclosed in a 3-ft cubic shell of 
water, and Ic,rf was found to be 0.964. If, indeed, JZ,fr 
for the array studied experimentally is 1 - 0.031 = 
0.969, the agreement between calculation and exper- 
ment would appear to be excellent. However, allow- 
ing for the smaller radius of the spheres in the experi- 
ment is estimated to reduce keff by as much as 5 %. 
This reduction may be compensated for if concrete 
is an appreciably better reflector than water, but 
experiments with moderated systems indicate that 
water and ordinary concrete are nearly equivalent. 
In view of the uncertainty, it appears wise to pick 0.9 
as the maximum safe value for Jcefr to compensate for 
errors in the calculation. Additional margins re- 
quired to compensate for variations in lattice pitch 
and in the size of the reflecting shell can be obtained 
from a study of Fig. 3. 

IV. OTHER COMPARISONS WITH EXPERIMENT 

A large number of comparisons (2) have been 
made with experiments performed with aqueous 

1.00 
+ 

KEFF 0.95 

090 
5 6 7 8 9 IO II 12 

LATTICE PITCH, INCHES 

FIG. 3. k,n as a function of lattice pitch 

solutions of U235. The material bucklings were calcu- 
lated from a simple one-group model and are no 
doubt somewhat in error, but the error cannot be ex- 
cessively large since the extrapolation distances for 
bare and the water-reflected units, obtained by 
equating geometric bucklings to these material 
bucklings, are approximately equal to those ob- 
tained by more sophisticated methods (e.g. multi- 
group). For interacting units (So), obtained in this 
manner from data for an isolated bare unit, was 
employed on the noninteracting surfaces. An effective 
reflector saving (S) for the interacting surfaces was 
determined by equating geometric and material 
bucklings. Comparisons with experiment were made 
in terms of these experimental values of S and the 
values calculated by the technique being described 
here. 

In one experiment (7), two 6-m-thick, 47.5-in.- 
long slabs of solution were separated by various 
distances and the common critical height was deter- 
mined. By working backwards from (20) with 
So = 3.0 cm and B,* = 0.02331 cm-*, it is possible to 
obtain the value of p12 for the interaction between the 
two facing surfaces (not the entire units) that ap- 
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parently existed in the experiment.3 In Table IV this 
experimental value of p is compared with values 
calculated from (8)) with values calculated from the 
integrals tabulated by Miraldi and Clark, values 
calculated from formulas given by Tamor (IS), and 
is also compared with twice the average solid angle. 
Tamor employs (7) and extends the integrals over y 
and z to infinity by analytic continuation of the flux. 
The solid angle is employed by others (14) in con- 
nection with a different technique, and twice its 
value is the limit approached by curve 4 of Fig. 1 as 
B/Z+ 00. 

Finally, since a more common criterion for com- 
parison of experiment and theory is in terms of the 
value of lceff that is calculated for the experimental 
dimensions, some comment is in order as to the range 
of values to which the comparisons in ref. d cor- 
respond. A calculated kerf > 1 means that the calcu- 
lations overestimate the interaction and hence are 
conservative. For the two slabs just treated, lceff > 1 
for all cases and has a maximum value of 1.025 at the 
6.25-in. spacing. Assuming that the flux within each 
slab is symmetrical reduces kerr , but keff still exceeds 
unity except for the 2.25.in. spacing where it is 
0.985. The only situations treated in ref. 2 where 
k eff < 1 are large diameter cylinders and closely 
spaced cylinders within a cluster. In the former case 
the effect on i&f of interaction between the curved 
surfaces is small, and the apparent nonconservatism 
in the calculation that gives a keff of 0.99 may 
actually be the result of experimental error. In the 
latter case, the nonconservatism should be expected 
as the result of assuming a uniform source distribu- 
tion. The minimum keff obtained was 0.937 for a 
cluster of seven 6-in.-diameter cylinders in contact 
containing uranium solution where H/U’, = 44.3. In 
all the clusters studied, however, lCeff > 1 for axis-to- 
axis spacings that were 2 in., and in some Casey only 
1 in., greater than the cylinder diameters. 

APPENDIX A 

The neutron current (j’) in the positive x di- 
rection is 

j+ = g 
1 m  

ss 
@(x)e-” dr dp (A.0 

0 0 

3 The results are relatively insensitive to SO and BZ. 
Thus if So = 2.0, B$ = 0.02798 cm-2 to give the same bare 
critical size, and pi2 at separations of 2.25, 6.25, and 30.25 
in. equals, respectively, 0.697,0.486, and 0.155. 

where p = cos 4. Replacing +(x) by the general 
solution to (1)) 

a(x) = Al cos Bz + A, sin BIL. (A. 2) 

setting x = x1 + pr, and performing the integrations 
show jf at x1 to be 

j+ = $+(x1)log (1 + (B/Z)') 
(A.3) r 

Using (2) to eliminate c yields (4). Performing just 
the r integration in (A.l), dividing the result by 
(A.3), eliminating c with (2)) and converting the 

integration over p to an integration over solid angle 
(a) from 0 to 2~ where dO = -2n dp give (3) for the 

integrand, namely the fraction of the neutron cur- 
rent (jf) emitted per unit solid angle in a direction 
making an angle 4 with the x axis. 
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