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A surface density model based on experimental and calculated criticality data is developed
for finite water-reflected arrays and results in semiempirical analytic expressions describing
criticality The relations provide information on the reactivity associated with such perturba-
tions to arrays as changes in unit shapes, cell volumes, array shapes, and array reflectors. Equiva-
lence between different fissile materials in a critical array is defined The surface density and
density qnalog models are shown to be in correspondence when applied to the same data. The
density analog model is expressible as fIN) = g{m)p 2 The functions fIN) and g(m) are explicitly
given, and the constant exponent has general applicability

INTRODUCTION

The body of information on the criticallty of
individually subcritical components of fissile ma-
terials arranged in reflected critical arrays has
grown sufficiently in the past 10 yr to warrant
examination of density techniques and of an under-
standing of concepts employed in nuclear criti-
cality safety. The available experimental data'”®
are limited to small numbers of units in neces-
sarily high fissile material density systems
relative to practical situations encountered in op-
erations. These data have proven to be calculable
by Monte Carlo codes.® As a verified method of
calculation, it is available to extend the data to

'H C. PAXTON, J] T THOMAS, A. D CALLIHAN, and
E. B JOHNSON, “Critical Dimensions of Systems Containing
U-235, Pu-239, and U-233,” TID-7028, US. Atomic Energy
Commission (1964)

2H. F FINN, N L PRUVOST, O C KOLAR, and G A.
PIERCE, “Summary of Experimentally Determined Plutonium
Array Critical Configurations,” UCRL-51041, Lawrence Liver-
more Laboratory (1971).

3]. T. THOMAS, Nuc! Sci Eng , 52,350 (1973).

‘L. M PETRIE and N. F CROSS, “KENO IV—An improved
Monte Carlo Criticality Program,” ORNL-4938, Oak Ridge
National Laboratory (1975)
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regions of interest and to investigate factors af-
fecting the criticality of arrays. The criticality of
single units is also calculable by the Monte Carlo
code. A verified S, transport® code, however, 18
often employed, and satisfactory comparison o
the results from the two codes has been obsex'"d:
While detailed examination of individual cases
is possible by computation, there remains
desire to express criticality information
systematically and comprehensively by means
models. A model should embody the followin§
criteria: :

1. expressible in terms of measurable quanﬂ'
ties, e.g., mass and dimension, yet
consistent with what is known of neud™
behavior

i

2. contain as few auxiliary rules or S“W!t .“
mental restrictions as possible 90“519

with its intended area of applicability  wsss

3. exhibit relatively good agreement with ddl‘
and verifiable calculation and be condi®:
with limiting values of parameters

S

W W ENGLE, Ir, “A User's Manual for ANISN.
Oak Ridge Gaseous Diffusion Plant (1967).




4. display the ability to relate different sys-
~- tems and perturbations to a system.
Elnovelopment of a model begins with simple,
escrxbable gsystems of maximum symmetry and
ogresses to and through added complexities.
kThe simplest three-dimensional array geometry
s the cubic array composed of cubic cells. The
wnit, considered centered in a cell, is fissile
materxal with a spherical shape. These regular
% arrays are ideal data to investigate the density
janalog and surface density models and will make
andent through more complex developments, the
fomplementary information derivable from both
methods when applied to the same data.

In storage or handling uperations, considera-
tion is usually given to possible neutron reflec-
tors. Concern in the following, therefore, is with
the characterization of criticality for closely
reflected arrays, since this will produce more
generally applicable results for practical nuclear
criticality safety. The reflector materials com-
pletely surround the arrays, being located at the
‘boundaries of the peripheral cells.

Let us review the common expression of sur-
face density. The projected surface density, o, is
the mass, m, of a unit multiplied by the number,
#, of units in a column divided by an area defined
by the dimension, d, of a cube:

o=22 (1)

g':e of projection and so is not unique. In this
ase, we consider only the minimum value of o
rresponding to the smailest column. Multiple
; anues of o are also associated with arrays com-
b Prised of noncubic cells. To alleviate this diffi-
rculty and at the same time to establish a unique
Pelation between the average volume density of
fissile material and the surface density, we assign
; !he cell dimension of a cube equal in volume to the
s Boncubic cell to determine the dimension used in
Eq. (1).

% These constraints are not serious. They sup-
3 Port our requirement for consistency and for the
Temoval of ambiguity. Having established a com-

mg: beginning, let us examine the density analog
els,

DENSITY ANALOG MODELS

The density analog representation of array
tlcahty depicts the number of units, or total
the 488, in a critical reflected array as a function of

average fissile material density in the array,
8i¥en by the relations

CRITICALITY OF ARRAYS OF FISSILE MATERIAL
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N =g(R,fp~* (2}

s=21-f) . (3)

p= Em'j » and
The number of units, N, varies inversely with the
average density, p, to a power, s, multiplied by a
coefficient, g(R, f), expressed as a function of the
reflector effect, R, and a quantity, f, related to the
reactivity of the unit. In the model, f is the ratio
of the mass of the unit to the mass of a critical
single unit of the same shape and material. The
density exponent, s, is approximated by a relation
suggested by Paxton.® The expression is appli-
cable to unreflected arrays where the coefficient
2 is the limiting value of s as f approaches zero,
corresponding to the behavior of the critical mass
of an unreflected unit as its density varies. The
influence of a reflector on a bare array is ap-
proximated by a reflection factor, R, reported by
Smith.” Applicable values of R were determined
from S, calculations of reflector effects on single
homogeneous low-density units.

Comparison of the model with some experi-
mental data® for uranium metal cylinders having a
2351 enrichment® of 93 wt% is made in Fig. 1. The
cylinders are of different height-to-diameter ra-
tios, spaced in paraffin-reflected arrays at equal
surface separation and equal numbers of units
along the three edges of arrays. Typical of such
representation is (a) the larger total mass re-
quired for criticality as the unit mass diminishes,
(b) the mild effect of unit shape represented by the
upper two curves for 10.5-kg units, and (c) the
nonlinearity in the high-density region. The two
dashed lines are conservative envelopes of these
data. The line w1th an exponent of 1.2 is the
Smith expression,’ while that with an exponent of
1.8 is the Paxton later extension® guided by Monte
Carlo calculations of arrays at lower densities.

Proper choice of coefficients of Eq. (2) permits
reasonable estimates of criticality for a specific
unit over a limited density range. Outside the
defined parameter range, the model will provide
conservative estimates, i.e., describe systems
known to be subcritical. Because of the linear

8H. C PAXTON, “Correlations of Experimental and Theo-
retical Critical Data,” Proc Symp. Criticality Control in Chemical
and Metallurgical Plant, Karlsruhe, pp 173-205, Organization
for Economic Cooperation and Development, European Nuclear
Energy Agency (1961).

’D. R. SMITH, “Criteria and Evaluation for the Storage of
Fissile Material in a Large and Varied Programme,” Proc Symp
Criticality Control of Fissile Materials, Stockholm, 1965, p. 667,
International Atomic Energy Agency, Vienna (1966).

8The composition of 23U-enriched uranium is denoted, for
example, by U(93).

H C PAXTON, “Density-Analog Techniques,” in Proc
Livermore Array Symposium, CONF-680909, p. 6, U S. Atomic
Energy Commission (1968).
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Fig. 1 Density analog models and measured reflected critical arrays of #3SU-enriched uranium metal cylinders.

approximation in a log-log plot, the model cannot
respond properly to the limiting values of the
parameters, in particular, the maximum average
metal density and the very low densities. A
particular question is what critical mass is rep-
resented by each experimental curve as the aver-
age density achieves the fissile material density,
which may involve integral and fractional parts of
units? The array reflector is always located at
the boundaries of the peripheral cells; thus, when
fissile metal density and average density are
equal, the reflector and metal are in contact. If
we suppose this view to be correct, one would
expect the critical mass at full density -to be
strongly dependent on the unit shape simply from
our experiences with reflected single-unit criti-
cality. Furthermore, is it correct to impute to
single-unit criticality the neutronics of array

criticality? The points, however, are academic,
since the information does not enhance the utility
of the model, which clearly approximates existing
data over a limited density range.

If we depart from cubic array geometry, wé
abandon the guidance afforded by Eq. (3) for the
slope, for example, representations with a slopé
>2 are possible. Reliable estimates of criticality
of arrays of different shape, even maintaining
constant the mass of the units, are difficult in the
density analog model.

SURFACE DENSITY MODELS

The importance of criticality information 08
infinite-slab thicknesses of fissile materials fof
various reflector conditions was recognized early
in nuclear ecriticality safety practices. If the
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physical height of fissile materials being handled
or stored in planar arrangements does not exceed
e slab thickness required for criticality of the
aterial, the result is suberitical. Such a dimen-
¥ ion limitation, although occasionally useful, is
t often practical. Experiments with finite ar-
ays of cylindrical units of aqueous fissile ma-
jals were correlated by Paxton® in 1961 by
mearing the fissile material in an array over the
‘pase area of the array and representing that
sheight’” as a function of the ratio of the ‘‘effec-
tive fissile material height”” to the ‘‘diameter
{ the array.”’ The representation dramatically
'od'emonstrated that criticality was possible with
effective surface densities, Eq. (1), less than
‘those of uniform critical slabs, and indicated that
the reactivity of an individual unit when located in
an array was a significant parameter.
}  Stevenson and Odegaarden'® used Monte Carlo
{calculations to examine several parameters in-
fluencing the neutron multiplication factor of in-
finite, as well as some large, water-reflected
planar arrays of uranium as aqueous solutions, as
' oxides and as metal. Parameters considered were
wranium enrichment and concentration, reflector
location, and the reactivity of units. Variation in
the reactivity of the unit was effect®d by changes
; in the height-to-diameter ratio of cylindrical units
expressed as the fraction critical, f.
Thirty-three calculated critical arrays had
{ neutron multiplication factors ranging from 0.978
i;to 1.033, with an average of 1.005. The surface
¢ density of some of the computed arrays, normal-
: ized to the surface density of calculated reflected
infinite slabs of the same materials, is presented
. in Fig. 2 as a function of the fraction critical, f,
f of a unit in the array. Also shown on the figure
¥ are calculated data for water-reflected infinite
¢ planar arrays of cubes of metal with a water
¢ reflector in contact with the units. The normali-
zation to single-unit criticality is intended to
+ define a region within which criticality is not pos~
sible.

The location of a curve in Fig. 2 is sensitive to
the accuracy with which the critical dimensions of
the normalizing unit is known. The choice of the

& Prameter for the abscissa can lead to the incon-
Sistent treatment of data, as illustrated by the
array data of metal cubes. The parameter f in

——

<y “R. L. STEVENSON and R. H ODEGAARDEN, Trans Am
¢ l‘t‘f.lSoc., 12, 890 (1969).
C J. T. THOMAS, “Uranium Metal Criticality, Monte Carlo
Rl_Culanons, and Nuclear Criticality Safety,” Y-CDC-7, Oak
dge Y-12 Plant (1970); see also, J. T. THOMAS, “The Criti-
::.hty of Cubic Arrays of Fissile Materals,” Y-CDC-10, Oak
idge Y-12 Plant (1971); see also, J. T THOMAS, “Generic
> 6Y Criticality,” in Nuclear Criticality Safety, TID-26286,
-66, U.S Atomic Energy Commission (1974).

the present model requires arrays with a receding
reflector as f increases to achieve a value of
f = 1, This behavior is not possible whenever
reflector or other materials are continuously
associated with the units in the arrays. Also
excluded is information on conditions affecting
criticality, such as interstitial moderation from
sprinklers or moderation present inherently in
some insulating materials of packages. If, in
application, the surface density and unit size are
to be limited so as to define subcritical planar
arrays based on a demonstrated knowledge of two
critical dimensions of single units for the fissile
materials, then the area of applicability of the
model is limited to air-spaced units in the arrays.
This would provide a valid point of departure for
the exploration of other factors of interest affect-
ing planar array criticality.

The density analog and surface density models
described above serve a purpose in nuclear criti-
cality safety in that they can be made to be con-
servative in their application to plant problems,
i.e., they define systems for which k. is known
to be less than unity. Their reliability, of course,
is established by comparison with calculated and
experimental criticality data.

In the work reported here, there has resulted,
from several thousand calculated reflected arrays
with different forms of fissile materials, a corre-
lation that implicitly contains the above two mod-
els. The analytic representation of the calculated
data is presented in the following section.

s ANALYTIC REPRESENTATION OF
H ARRAY CRITICALITY

The calculated critical array data'! considered
in this work embraced a wide variety of fissile
materials: metals and oxides of ***U, *°U in
uranium enriched from 30 to 100 wt%, and *°Pu
containing from 0 to 20 wt% %*°Pu. Dry and damp
oxides having H/U or H/Pu atomic ratios ranging
from 0 to 20, with the ratio expressed in terms of
total uranium or total plutonium, were also ex-
amined. Critical dimensions of arrays of spheri-
cal units arranged in reflected cubic arrays were
calculated.

The actual surface density, o, and a limiting
surface density, o(m), of critical cubic arrays
having units of mass m are related by the follow-
ing semiempirical equation:

2~ o(m)/(1 - c/VNY , for N= 64

o (m) (—;%”)— (1-c/VN)? (4)
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Fig. 2. Surface density representation of reflected planar arrays of U(93.2) metal and solution The abscissa is the mass of a unit
expressed as the fraction of the unreflected critical mass for the shape. With the exception of the metal cube data, the reflector is

located at the peripheral cell boundaries of the arrays

where a, represents the half-cell dimension, n is
the number of units along each edge of the array

n® = N, m is the mass of unit expressed as total

uranium or plutonium, and ¢ is a constant, inde-
pendent of the array size, equal to 0.55 +0.18 as
determined by a least-squares fit to families of
calculated arrays. The value of o(m) is valid for
all n = 4 for a given mass, m, and in the limit of
arbitrarily large n agrees with the surface density
parameter given by Eq. (1). )

The dependence of o(m) on m is adequately
expressed by the empirical linear relation

o{m) = co(mp - m) (5)

where m, is the critical mass of an unreflected
sphere of the fissile material and c; is a constant
characteristic of the material in water-reflected
arrays. This linearity is illustrated in Fig. 3,
where results typical of the calculations per-
formed are represented in the format of Eq. (4)
for four materials. We note this linearity breaks
down for units of small mass as shown by the
sharp rise in the data for **U. This behavior was
observed for cubic arrays of all materials ex-
amined. As the mass of units in an array becomes
small, we may assume they approach atomic di-

mension in the limit defining a cube of homo-
geneous low-density U(93.2) metal surrounded by
water, which is represented by the point plotted at
zero mass. There is no change in the calculated
kegt of this system, since the size of the cube i8
increased provided that value of surface density is
retained.
Rewriting Eq. (4),

g(m) _ n
m (2a,)

shows o(m)/m to be constant for all critical cubic
arrays of 64 or more units of mass m and effects
separation of material and geometry characteris-
tics of arrays. A straight line through the origin,
therefore, intersects the lines representing dif-
ferent fissile materials at points defining equiva-
lent spheres, as illustrated by the line in Fig. 3.
These spheres of different materials may be sub-
stituted in an array, and criticality is main-
tained without change in array size. Substituting
the expression for ¢(m), Eq. (5), yields an explicit
relation for equivalent masses in the same criti-
cal array, namely,

-1
m' =m) [1 *%’2'(%2 - 1)] , (M
2

(1-¢/VWNY , (6)
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Fig. 3. Surface density representation of critical water-
reflected cubic arrays of fissile materials as spheres centered in
cubic cells.

where primes distinguish different fissile ma-
terials. This relation demonstrates that equiva-
lent masses for array criticality of different
fissile materials do not, in general, have the same
reactivity nor are they the same fraction of a
critical mass.

A line in the m,o(m) plane defining criticality
need not be linear, but Eq. (5) may be applied to a
limited mass range of interest, i.e., criticality
an be linearly approximated. Just as there are
different ¢, values for different fissile materials,
there are different values for the same fissile
material for specific consistent conditions. For
example, concrete-reflected arrays of U(93.2)
letal units would have a value of ¢; distinct from
that for water-reflected arrays. Comparisons of

0 conditions, or perturbations to an array,
become susceptible to analytic expression by

establishing the values of c. characterizing the
conditions. This in itself is useful, but it be-
comes significant when associated with a change
in array reactivity. A general result derived by
Avery'? for coupled reactors provides this associ-
ation. For an array of identical units, the concept
can be expressed by the following: For an array
to experience a change of (Ak/k).g, it is sufficient
that the reactivity of each unit in the array be
changed by the same (Ak/k).st-

The reactivity corresponding to Am/m for
simple geometries is not difficult to determine
and, in many instances, can be adequately esti-
mated for nuclear criticality safety purposes. The
relationship will depend on the energy spectrum of
neutrons producing fission. An approximate lin-
ear relation exists between k. and a dimension of
a unit when a majority of fissions is produced by
neutrons of greater than thermal energy. In the
case of fissile metal spheres, the k.i of a unit is
approximated by the ratio of radii 7/7,, where 7o
is the unreflected critical radius and » the radius
of the unit. The resultant k.g of an array per-
turbed from criticality by a change in unit mass
from mto m’is

Reti = (m,)w . (8)

m

These concepts and relationships are illustrated
in the following sections.

ARRAY PERTURBATIONS

Reflector

The influence of changing from water-reflected
arrays to arrays reflected by different thick-
nesses of concrete is indicated in Fig. 4, where
the units of all arrays are U(93.2) metal spheres.
The evaluated slope, ¢, for each thickness of
reflector may be used in Eqgs. (7) and (8) to define
the change in k.4 associated with the reflector
change. Note that the magnitude of (Ak/k)eg is not
constant but is dependent on the mass of the units
in an array. For example, the reactivity increase
may range from 0 to 18% upon substitution of a
40.6-cm-thick concrete reflector for a water
reflector.

Unit Shape

The influence of unit shape on array criticality
is exemplified by the results depicted in Fig. 5.
These calculated data represent reflected cubic
arrays with cylindrical units of U(93.2) metal

2R AVERY, “Theory of Coupled Reactors,” Proc 2nd UN
Int Conf Peaceful Uses At Energy, Geneva, 12, 182, United
Nations, New York (1958)

‘,
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Fig. 4. Surface density representation of critical cubic arrays
reflected by various thicknesses of concrete and infinite planar
arrays with n 2 4 reflected by 40 64-cm-thick concrete

having three different shapes described by their
height-to-diameter ratios, #/d. Along each line,
the shape of units is maintained (constant #/d) as
mass increases to, at the intercept with the
abscissa, the unreflected critical mass of a single
unit of that shape. There is a range of height-to-
diameter ratios in which the linearity character-
istic of spheres is observed, as shown here by the
h/d values of 1 and 0.3. That range is indicated to
be from 0.3 to 3. OQutside this range, two or more
linear regions may be necessary to define criti-
cality, each range of mass being characterized by
a slope c;. The data for an k/d ratio of 0.2 are
examples of this behavior.

An illustration of the application of Eq. (8)is

THOMAS
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Fig 5. Surface density representation of critical water
reflected cubic arrays of U(93.2) metal cylinders of various
height-to-diameter ratios.

as follows. The masses m,; and m,, indicated in
Fig. 5, are equivalent masses for criticality in
any selected array provided n = 4, as described in
Eq. (6) and represented in Fig. 5 by the line
through the origin. If the mass m,; in a critical
array were reduced to m,, maintaining %/d = 0.2,
then the resulting array would be subcritical w1th
a kg, from Eq. (8), of approximately (m,/m,)*"

If, on the other hand, the mass, m,, were main-
tained but the shape of each unit changed to #/d =
0.3, then the resultant array would be supercrltl-

‘cal and the k. would be estimated by (m./ mz)

As may be suspected, the intercepts with the
abscissa trace the familiar curve of cylindrical
critical mass as the shape changes, approaching
the minimum and receding toward larger values
as the h/d ratio increases through unity. These
arrays may be related to the arrays of spheres or
other shapes for which the ¢, characteristic val-
ues are known.

Array Shape

Application of these concepts to cubic arrays
provides the criticality safety specialist with 3
powerful tool for the evaluation of many situations
involving neutron interacting systems. The num-®
ber of units in a cubic array may be conserva
tively applied to similar units in similar celis
arranged in noncubic arrays, with the degree ©
conservatism dependent on complex factors. In-
sight into the influence of array shape on arraf
criticality may be had by examining the pertul'ba
tion of cubic arrays and interpreting the effect
terms of the characteristic slope, c,. It is knowd

that the rearrangement of cubic cells of a criticah
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P cubic array into an array having an unequal num-

;{' per of units along the three edges of an array,

g i.e., into a cuboidal shape, will result in subcriti-

cality because the neutron leakage increases.

*f Criticality of the resultant subcritical array may
@‘be restored in several ways, for example, by
increasing the unit mass, by reducing the cell
yolume, or by increasing the number of units.
we begin the development of an analytic ex-
pression by assigning a unique numerical value
corresponding to possible array shapes with cubic
cells. The surface-to-volume ratio, s/v, of a
poncubic arrangement of cubic cells is

b 1/1 1 1
A S I

and for a cubic array is

&L

3
nay

(s/v)c =

We eliminate the dependence on cell dimension by
normalizing the s/v ratio for noncubic to that for
cubic arrays of the same N, and define a shape
factor for the noncubic array as

1/3
Rz(i/v_)rt_=1}’_(i+i L)
ny Ny Ny

(9)
Note that N'”* need not be an integer, i.e., Eq. (4)
is a continuous function of N.

To maintain criticality of an array, originally
cubic and comprised of units of mass m, as cells
are rearranged to form a cuboidal array of shape
factor R, the mass of each unit must be increased
to m’'. The mass, m’, necessary to maintain
, + Criticality for all possible rearrangements of the

ning with the @; = 16.454-cm array of 10.4-kg

v U(93.2) metal spheres in a cubic array. The
% resaltant values of m’ satisfy the relation
m’ = 10.4R*°? | (10)

Where the exponent was determined by a least-
Squares fit to the data and has a standard devia-
tion of +0.013. The maximum value of R for the ag
array is 5.34, corresponding to a linear-reflected
array of 512 units. These data for various array
8hapes may be related to cubic array data and,
9‘“5, define the characteristic slope, ¢,, as a con-
tinuwous function of R.

. nA function is determined by assuming that
llected cuboidal arrays, having a shape factor
EL Satisfy Egs. (4) and (5). The n appearing in
gs-' (4) is the number of units in the z direction

is gnated as n, = min (n.,n,,n;). The ¢, of Eq. (5)
Interpreted as the value characteristic of
T2ys with shape factor R. The mass, m’, neces-

Ary for criticality will satisfy

3
cells in a reflected array were calculated'’ begin-

431

1 o(m') _mo _ | =T
- " ci(2a,)?

(1 - ¢/VN)?

(11)

The line through the origin having a slope o (m)/m
for the cubic array of 10.4-kg U(93.2) units will be
related to the line through the origin having slope
o(m')/m' for the cuboidal array by the simple
ratio of the number of units in the z direction for
the two arrays, i.e.,

o(m’) _ . fmo_ 4\ Pz (Mo q) o7 00m)
m 2\m’ n i\m n m °’

(12)

since the cell volume is maintained. Substituting
the expression for m’ from Eq. (10) and solving
for cj, we obtain

4C2

SR 1 (13)

, N
Cax = -1;5

Inserting this expression with ¢, = 1.762 X 107°
cm™? for U(93.2) metal spheres into Eq. (11) and
dropping the prime from m yields the semi-
empirical equation

% 1= [5.962,(221’\1 - c)] GROZ 1) ,  (14)

applicable to reflected U(93.2) metal arrays of any
shape R provided R = 5.34. Arrays with shape
factors >5.34 are correctly evaluated by setting
R =5.34.

Equation (14) is examined in Fig. 6, where the
limiting surface density, o(m), of Eq. (4), is
shown as a function of the mass of the units in an
array. The upper line with the greatest negative
slope represents water-reflected cubic arrays of
metal spheres. Note that each of the three points
represents three different cubic arrays having
N = 1728, 512, and 216 units of equal mass but
different spacing. The three curves emanating
from this cubic array line in a downward direc-
tion, curving to the right, represent rearrange-
ments of those units into noncubic arrays. That
is, units are removed from the z direction of the
array, added to the x and y directions, and the
resulting array of shape R is closely reflected by
water. Changes in the shape of nine arrays,
therefore, are presented. Arrays with the same
shape factor, R, lie on a line having a slope, ¢,
satisfying Eq. (13).

The changes in the number of units in any
dimension of cubic array by a factor of 2 has little
effect on the ks of the array. This is illustrated
in Fig. 6 by the small increase in the mass of the
units required to maintain criticality when the
array of 10-kg U(93.2) units is changed from a
12 X 12 X 12 to an 18 X 16 X 6 arrangement. The
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Fig. 6. Surface density representation of critical, noncubic water-reflected arrays of U(93.2) metal spheres centered in cubic cells.

rearrangement of arrays having units of large
mass obviously will result in only a small change
in the array k.g.

Criticality in reflected cuboidal arrays of fis-
sile materials other than U(93.2) metal spheres is
properly specified by application of the equivalent
mass relation, Eq. (7), to the spherical mass of
U(93.2) satisfying Eq. (14) for the cuboidal array
of shape factor R. This procedure avoids the
necessity of developing for each fissile material a
relation characterizing array shape effects on
criticality. The applicability of Eq. (7) to other
fissile materials was confirmed by Monte Carlo
calculations, and the comparison is given in

Table I. The 512-unit cubic array of 10.4-kg
U(93.2) units (as = 16.454 cm) was subjected to
extreme shape changes. The radius of U(93.2)
spheres necessary for criticality in each case was
specified by Eq. (14). This radius, in turn, was
converted to a radius of a plutonium metal sphere
by Eq. (7). The average of the ratios of radii
predicted by Eq. (7) to those calculated by Monteé
Carlo for the arrays is 0.999 + 0.003.

Infinite Planar Arrays

Let us now return to the characterization of
criticality of reflected infinite planar arrays. The
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T
1;£§_1 TABLE I
T . Comparison of Monte-Carlo-Calculated Critical Water-Reflected Arrays of Various Shapes with Estimates
from Application of Egs. (7), (9), and (14) to Plutonium Metal Spheres
et Unit KENO Calculation®
- Arrangement U(93.2) Radius, Equivalent ***Pu Radius,
— by Eq. (14) by Eq. (7) Converged Radius
e n, n: (cm) (cm) (em) Rett
—
16 16 2 5.635 3.81 3.821 1.000
32 4 4 5.542 3.76 3.757 0.995
32 8 2 5.740 3.86 3.877 1.004
64 8 1 6.488 4.19 4.182 0.998
128 2 2 6.403 4.16 4.180 0.995
YT 128 4 1 6.729 4.29 4,294 0.997
o . | 256 2 1 7.062 4.42 4.405 0.999
*Iteration of radius to give Ry of unity within a standard deviation of +0.005.
TABLE IT

relation applicable to infinite planar arrays is
derived as follows. When dealing with units of
equal mass in different reflected arrays, we noted
in Eq. (6) that the cell dimensions and numbers of
units relate in the manner given by the equation

() - &), 5%w)
as n' 2 \1 - C/m

I (n/n’), is maintained and N is allowed to in-
crease indefinitely (i.e., n.,ny — «), then the cell

dimensions vary directly as the square root of the
ratio of units in the z direction,

(16)

3

n 1/2
1
z 1

Consequently, as with reflected infinite slabs of
miform fissile materials, the surface density
does not change with separation for a given value

(15)

n

an

- of sphere mass.

This behavior is confirmed in Table H. The
radius of the unit in each of six sets of arrays of
different size was determined to test Eq. (16). In
each set, the critical condition n, = 4 was used in
Eq. (16) to estimate the necessary increase in
Spacing for n, = 6, 8, and 10. The predicted cell
dimension of infinite critical arrays was an input
Parameter in Monte Carlo calculations to deter-
Wine the critical radii of spheres to within one
Standard deviation. The variation of radii within
each set is negligible, differing by <1% or about
the statistical precision expected.

The data of Table II appear as the lower
€nvelope in Fig. 6. When normalized to the value
°f_ the surface density for a reflected infinite
Uniform slab of U(93.2) metal (32 gU/cm?), the
data appear as shown in Fig. 2.

Similar results for concrete-reflected infinite
Planar arrays also sustain Eq. (16), and these data

Monte-Carlo-Calculated Critical Water-Reflected
Infinite Planar Arrays of U(93.2) Metal
Spheres Centered in Cubic Cells

KENO Calculation®
Predicted
Half-Dimension | Converged
of Cell, an, Sphere
Ny =Ny = 0 by Eq.(16) Radius,

Ny (cm) (cm) ke
4 7.897 2.718 1.001
6 9.672 2.715 0.996
8 11.169 2.710 0.999

10 12.487 2.700 0.998
4 11.764 3.452 0.996
6 14.408 3.451 1.002
8 16.637 3.448 1.002

10 18.601 3.452 1.002
4 15.364 4.058 1.001
6 18.817 4.045 1.005
8 21.728 4.024 1.002

10 24.293 4.027 1.002
4 19.029 4.592 1.004
6 23.305 4.566 1.001
8 26.911 4.542 1.001

10 30.087 4.591 1.005
4 23.082 5.0567 0.996
6 28.269 5.057 1.001
8 32.643 5.057 0.998

10 36.496 5.057 0.997
4 27.873 5.566 0.996
6 34.138 5.554 1.003
8 39.419 5.550 1.003

10 44.072 5.600 1.004

AJteration of radius to give keff equal to unity within a
standard deviation of +0.005.
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TABLE IiI
Unreflected Spherical Critical Masses and Characteristic Array Constants
for Some Fissile Materials in Water-Reflected Cubic Arrays
Characteristic Constant
for Criticality of
Spherical Unit Water~-Reflected Arrays
Unreflected (1073 cm®
Atomic Ratio,? Critical Mass
Number Material H/U or H/Pu (kg) c2 S
1 Metal, U(100) 0 45.68 1.806 0.036
2 Metal, U(93.2) 0 52.10 1.762 0.017
3 Oxide, U(93.2)02 0.4 90.24 0.854 0.007
4 3.0 63.59 0.758 0.008
5 10.0 31.43 0.778 0.007
6 20.0 17.34 0.805 0.004
i Metal, U(80) 0 69.89 1.359 0.012
8 Oxide, U(80)02 0.4 111.36 0.780 0.006
9 3.0 74.08 0.713 0.006
10 10.0 36.16 0.725 0.006
11 20.0 18.67 0.779 0.005
12 Metal, U(70) 0 89.16 1.192 0.018
13 Oxide, U(70)0z 0.4 133.39 0.723 0.006
14 3.0 83.44 0.686 0.006
15 10.0 36.89 0.735 0.004
16 s 20.0 19.30 0.793 0.004
17 Metal, U(50) 0 159.60 0.901 0.008
18 Oxide, U(50)02 0.4 207.73 0.589 0.005
19 3.0 112.82 0.594 0.004
20 10.0 55.14 0.520 0.006
21 20.0 21.48 0.777 0.005
22 Metal, U(40) 0 228.06 0.787 0.016
23 Metal, U(30) 0 379.70 0.589 0.007
24 Oxide, U(30)O2 0.4 409.60 0.450 0.003
25 3.0’ 150.01 0.603 0.005
26 10.0 54.01 0.636 0.004
27 20.0 25.15 0.744 0.005
28 Metal, Pu(100) 0 9.95 4.346 0.112
29 Oxide, Pu(100)0z 0.4 26.66 1.542 0.015
30 3.0 28.65 1.113 0.010
31 10.0 20.21 0.965 0.007
32 20.0 14.05 0.885 0.008
33 Metal, Pu(94.8) 0 10.34 4.138 0.091
34 Oxide, Pu(94.8)0z 0.4 27.93 1.561 0.013
35 3.0 32.78 1.097 0.011
36 10.0 28.74 0.817 0.007
37 Metal, Pu(80) 0 11.69 4.261 0.099
38 Oxide, Pu(80)0O2 0.4 32.14 1.529 0.023
39 3.0 42.43 1.022 0.013
40 10.0 47.81 0.679 0.005
41 Metal, 2% 0 15.75 2.751 0.022
42 Oxide, U0, 0.4 34.46 1.199 0.008
43 3.0 31.69 0.939 0.008
44 10.0 17.64 0.907 0.010
45 20.0 10.28 0.947 0.009
46 Metal U(93.2)-10 wt%h Mo 0 73.06 1.305 0.009
R

2Total uranium or total plutonium.
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are shown in the lower portion of Fig. 4. Cal-
culated critical surface densities for a concrete-
reflected uniform slab of U(93.2) metal range
from 12 to 20.6 gU/cm?® (Refs. 13 and 14, respec-
tively) depending on cross sections, concrete
composition, and code options. Were the con-
crete-reflected planar array data normalized to a
surface density in the range given, the line depict-
ing criticality would appear in Fig. 2 above the
water-reflected data.

Application of the equivalent mass relation,
Eq. (7), to the data for infinite planar arrays of
U{93.2) metal spheres will, in general, lead to
conservative estimates of criticality of other
fissile materials. Presented in Table III is a
summary of characteristic constants for spherical
units of some fissile materials. The apparent
general applicability of the U(93.2) spherical data
in Fig. 2 to the variety of fissile materials listed
in Table III strongly supports the concept that a
suitably limited area of the figure can be defined
within which subcriticality will be specified.

COMPARISON OF DENSITY ANALOG AND
SURFACE DENSITY MORELS

Having established some understanding of den-
sity representations of array criticality, let us
now relate the two density models. This is ac-
complished by cubing the surface density equation
for criticality, Eq. (4), and interpreting the quan-
tities in the following manner. The cube of the
edge dimension of a cubic cell squared, (2a,),
becomes the cell volume squared and when divided
into the unit mass squared gives the average
fissile material density in the array, p, to the
Ssecond power. The cubed n becomes the total
number of units in the array, N, and the binomial
factor is raised to the sixth power. Rearranging
terms and substituting Eq. (5) for o(m) gives

N(1 - c/JNy = Leelmo - amn

mp

The result is an explicit form of the coefficient to
b? used in the density analog model and an unam-
b}guous second power for the density exponent.
Similar treatment of the relation for criticality of
arrays with shape R, Eq. (14), gives

(0 - m)” 1 . (18)

N(1 - 5
¢//N) (5R™°%% - 1) (11.824)°mp®

“D. R SMITH, Los Alamos Scientific Laboratory, Personal
”}mUnication.

1 S.J ALTSCHULER and C. SCHUSKE, Nucl Technol ,13,
31(1977),

Co

An illustration of possible interpretation of
Egs. (17) and (18) is given in Fig. 7, where the
lines depict reflected critical arrays of 20-kg
U(93) metal spheres. Beginning with the first
line on the left, it can be seen that the cubic
arrays, represented as the total mass reduced by
the fraction (1 - ¢/VN)®, have a density exponent of
2.0. The line immediately to the right represents
the same data as actual total mass in the arrays,
revealing the variable density exponent behavior
typically reported. The line tangent to the cubic
arrays at 160-kg U(93.2) exhibits the result of
maintaining only two cells in the z direction as N
increases, i.e., arrays of variable shape. The
slope of this line has already achieved a value
>2, and the line would, if continued, ultimately
approach a limiting average density below which
criticality would not be possible. The arrays
represented by the upper curve, to the right, are
for arrays of constant shape, R, whose dimensions
are in the ratio of those of a critical reflected
slab of metal, 63.5 X 63.5 X 1.8 cm. Of signifi-
cance here is the critical mass predicted as the
average uranium density achieves the metal den-
sity. The curve underpredicts the experimental
mass for this shape by ~8%, as shown by the open
triangle, one of a series reported by Mihalczo and
Lynn'® and by Paxton.'® Other data from that
series are compared in Fig. 8 with the results
obtained from the application of Eq. (18). The
agreement of experimental and estimated masses
is well within 10%. These results show that the
shape of the critical assembly as the average
arrays density approaches the metal density is that
of the array and not that of the units in the array.
Similarly, consideration of cubic arrays leads to
the conclusion that the geometry of the limiting
assembly is cubic, independent of the shape of the
units in the array.

It is informative to apply Eq. (17) to the ex-
perimental arrays of Fig. 1 considering the cylin-
drical masses as spherical. The points plotted in
Fig. 9 represent experimental data® obtained with
units of different shape in noncubic cells arranged
in reflected cuboidal arrays. The lines represent
calculations of arrays comprised of spherical
units in cubic cells and, in accord with Eq. (17),
have a slope of minus 2. The ordinate is the
corrected number of units [left side of Eq. (17)] in
the arrays. It is observed that the experimental
data do not vary as the inverse square of the
average density law.

15J T. MIHALCZO and J. J. LYNN, “Neutron Multiplication
Experiments with Enriched Uranium Metal in Slab Geometry,”
ORNL CF-61-4-33, Oak Ridge National Laboratory (1961).

YH C PAXTON, “Los Alamos Critical-Mass Data,” LA-
3067, rev, p 39, Los Alamos Scientific Laboratory (1975).
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Fig. 7. Density analog representation of reflected array criticality for U(93.2) metal units as spheres.

The observed difference can be understood if
we consider the results of Monte Carlo calcula-
tions of reflected arrays by the matrix method,
which yield the effective unit self-multiplication
within arrays. As computed by the code, the self-
multiplication of a unit is the ratio of fission neu-
trons produced in a unit to fission neutrons born
in the unit independent of their history and ex-
cludes fission neutrons from other units in the
array. Calculations of 8- to 1000-unit arrays of
26-kg U(93.2) metal cylinders show that, for the
8-, 27-, and 64-unit arrays, the unit self-multipli-
cation is, respectively, 0.74, 0.67, and 0.66,
changing little from 0.66 as N increases further.
The relative constancy of the effective unit self-
multiplication for arrays with 64 or more units is

general. It can be concluded from these observa-

tions that there is valid reason not to expect L

experiments in the high-density range to follow an
inverse square density relation, since the self-
multiplication of otherwise identical units in vari-
ous critical arrays is not constant but depends 0B
the characteristics of the array.

CONCLUSIONS

The Paxton and the Smith density analog mod-
els are suitable for their intended purposeé
specifying criteria that easily separate problefns
requiring no further evaluation from those needing
further detailed investigation.
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Fig. 8. Critical mass of U(93.2) metal as a function of cuboi-
dal geometry for Plexigias (methyl methacrylate)-reflected slabs.

The surface density representation of reflected
infinite planar arrays is in need of additional
definitive interpretation to clearly establish a
universal safe region expressed as a fraction of
the surface density and as a fraction of the
unreflected critical mass for the unit shape.

The limiting surface density model and its
translation to the density analog model, together
present a comprehensive representation of re-
flected, critical arrays of air-spaced units. Hav-
ing been developed from the same bases as the
American National Standards Institute standard,
“‘Guide to Nuclear Criticality Safety in the Storage
of Fissile Materials,”’ N16.5(1975), the concepts
are applicable to arrays described therein.
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