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A surface density model based on experimental and calculated criticality data is developed 
for finite water-reflected arrays and results in semiempirical analytic expressions describing 
criticahty The relations provide information on the reactivity associated with such perfurba- 
tions to arrays as changes in unit shapes, ceil volumes, array shapes, and array reflectors. Equiva- 
lence between different fissile materials in a critical array is defined The surface density and 
density ?¶nalog models are shown to be in correspondence when applied to the same data. The 
density analog model is expressible as f(N) = g(rn)p=? The functions f(N) and g(m) ore explicitly 
given, and fhe constant exponent has general applicability 

INTRODUCTION 

The body of information on the critical&y of 
individually subcritical components of fissile ma- 
terials arranged in reflected critical arrays has 
grown sufficiently in the past 10 yr to warrant 
examination of density techniques and of an under- 
standing of concepts employed in nuclear criti- 
cality safety. The available experimental datalm3 
are limited to small numbers of units in neces- 
sarily high fissile material den s i ty systems 
relative to practical situations encountered in op- 
erations. These data have proven to be calculable 
by Monte Carlo codes.4 As a verified method of 
calculation, it is available to extend the data to 

‘H C. PAXTON, J T THOMAS, A. D CALLIHAN, and 
E. B JOHNSON, “Critical Dimensions of Systems Containing 
U-235, Pu-239, and U-233,” TID-7028, US. Atomic Energy 
Commission (1964) 

*H. F FINN, N L PRUVOST, 0 C KOLAR, and G  A. 
PIERCE, “Summary of Experimentally Determined Plutonium 
Array Critical Configurations,” UCRL-5 1041, Lawrence Liver- 
more Laboratory (1971). 

‘J. T. THOMAS, Nzrcl Sci Eng ,52, 350 (1973). 
“L. M PETRIE and N. F CROSS, “KEN0 IV-An improved 

Monte Carlo Criticality Program,” ORNL-4938, Oak Ridge 
National Laboratory (1975) 

regions of interest and to investigate factors I& 
fecting the criticality of arrays. The criticalitgd 
single Units is also calculable by the Monte Carl0 
code. A verified S,, transport5 code, however,b 
often employed, and satisfactory comparison of 
the results from the two codes has been observe+ 

While detailed examination of individual CUJ88 
is possible by computation, there remains UN 
desire to express critica)ity information h& 
systematically and comprehensively by means d 
models. A model should embody the fOl)owy 
criteria: 

1. expressible in terms of measurable qumB* 
ties, e.g., mass and dimension, Yet b8 
consistent with what is known of ne”y 
behavior 1 

2. contain as few auxiliary rules or SUFP 
mental restrictions as possible Consietd 
with its intended area of applicability ,<$T$g 

3. exhibit relatively good agreement W ith@  
and verifiable calculation and be con8 @ f&f- 
with limiting values of parameters 

‘W W ENGLE, Jr, “A User’s Manual for ANISN* 
Oak Ridge Gaseous Diffusion Plant (1967). 

424 
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4. display the ability to relate different sys- 
l^is. terns and perturbations to a system. 

hveiopment of a model begins with simple, 
lscribable systems of maximum symmetry and 

i’ogresses to and through added complexities. 
e 

!F 
simplest three-dimensional array geometry 

’ the cubic array composed of cubic cells. The 
‘unit, considered centered in a cell, is fissile 
material with a spherical shape. These regular 
arrays are ideal data to investigate the density 
lanalog and surface density models and will make 
‘evident, through more complex developments, the 
bmplementary information derivable from both 
methods when anplied to the ~ZWI~ data. _._ 

In storage or handling operations, considera- 
tion is usually given to possible neutron reflec- 

s. Concern in the following, therefore, is with 
characterization of criticality for closely 

arrays, since this will produce more 
applicable results for practical nuclear 
safety. The reflector materials com- 

surround the arrays, being located at the 
es of the peripheral cells. 
s review the common expression of sur- 
sity. The projected surface density, u, is 

mass, m , of a unit multiplied by the number, 
of units in a column divided by an area defined 
the dimension, d, of a cube: 

(T = E? 
d2 ’ (1) 

rane of projection and so is not unique. In this 
W?, we consider only the m inimum value of (J 
Frespondlng to the smafEest column. Multiple 
[alues of cr are also associated with arrays com- 
raised of noncubic cells. To alleviate this diffi- 

ty and at the same time to establish a unique 
‘elation between the average volume density of 
Wile material and the surface density, we assign 

kfg$e Cell dimension of a cube equal in v&me to the 
tincubic tincubic cell to determine the dimension used in cell to determine the dimension used in 
84. (11. 

These constraints are not serious. They sup- are not serious. They sup- 
requirement for consistency and for the for consistency and for the 

Having established a com- Having established a com- 
examine the density analog examine the density analog 

-’ 

-V-U uy me relations 

DENSITY ANALOG MODELS 
‘Z 

! The density analog 
nYtiQlity 

representation of array 
depicts the number of UnitS, Or total 

(pa% in a critical reflected array as a function of 
tbe average fissile material density in the array, 
Rivnmr-.. . . . 

iv =g(R,fb-S (21 

p=$ , and s=2(1-f) . (3) 
,! 

The number of units, N, varies inversely with the 
average density, p, to a power, s, multiplied by a 
coefficient, g(R,f), expressed as a function of the 
reflector effect, R, and a quantity, f, related to the 
reactivity of the unit. In the model, f is the ratio 
of the mass of the unit to the mass of a critical 
single unit of the same shape and material. The 
density exponent, s, is approximated by a relation 
suggested by Paxton.’ The expression is appli- 
cable to unreflected arrays where the coefficient 
2 is the lim iting value of s as f approaches zero, 
corresponding to the behavior of the critical mass 
of an unreflected unit as its density varies. The 
influence of a reflector on a bare array is ap- 
proximated by a reflection factor, R, reported by 
Smith.7 Applicable values of R were determined 
from S, calculations of reflector effects on single 
homogeneous low-density units. 

Comparison of the model with some experi- 
mental data3 for uranium metal cylinders having a 
235U enrichment8 of 93 wt% is made in Fig. 1. The 
cylinders are of different height-to-diameter ra- 
tios, spaced in paraffin-reflected arrays at equal 
surface separation and equal numbers of units 
along the three edges of arrays. Typical of such 
representation is (a) the larger total mass re- 
quired for criticality as the unit mass diminishes, 
(b) the m ild effect of unit shape represented by the 
upper two curves for 10.5-kg units, and (c) the 
vnlinearity in the high-density region. The two 
sashed lines are conservative envelopes of these 
data. The line with an exponent of 1.2 is the 
Smith expression,7 while that with an exponent of 
1.8 is the Paxton later extension9 guided by Monte 
Carlo calculations of arrays at lower densities. 

Proper choice of coefficients of Eq. (2) permits 
reasonable estimates of criticality for a specific 
unit over a lim ited density range. Outside the 
defined parameter range, the model will provide 
conservative estimates, i.e., describe systems 
known to be subcritical. Because of the linear 

6H. C PAXTON, “Correlations of Experimental and Theo- 
retical Critical Data,” Proc Symp. Criticality Control in Chemical 
and Metallurgical Plant, Karlsruhe, pp 173-205, Organization 
for Economic Cooperation and Development, European Nuclear 
Energy Agency (196 I). 

7D. R. SMITH, “Criteria and Evaluation for the Storage of 
Fissile Material in a Large and Varied Programme,” Proc Symp 
Criticality Control of Fissile Materials, Stockholm, 1965, p. 667, 
International Atomic Energy Agency, Vienna (196.6). 

aThe composition of 23SU-enriched uranium is denoted, for 
example, by U(93). 

9H C PAXTON, “Density-Analog Techniques,” in Proc 
Livermore Array Symposium, CONF-680909, p. 6, U S. Atomic 
Energy Commission (1968). 
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p, AVERAGED URANIUM DENSITY IN ARRAY (g/cm3) 

Fig. 1 Density analog models and measured reflected critical arrays of ‘3’U-enriched uranium metal cylinders. 

approximation in a log-log plot, the model cannot 
respond properly to the lim iting values of the 
parameters, in particular, the maximum average 
metal density and the very low densities. A 
particular question is what critical mass is rep- 
resented by each experimental curve as the aver- 
age density achieves the fissile material density, 
which may involve integral and fractional parts of 
units? The array reflector is always located at 
the boundaries of the peripheral cells; thus, when 
fissile metal density and average density are 
equal, the reflector and metal are in contact. If 
we suppose this view to be correct, one would 
expect the critical mass at full density -to be 
strongly dependent on the unit shape simply from 
our experiences with reflected single-unit criti- 
cality. Furthermore, is it correct to impute to 
single-unit criticality the neutronics of array 

criticality? The points, however, are academic, 
since the information does not enhance the utility 
of the model, which clearly approximates existing 
data over a lim ited density range. 

If we depart from cubic array geometry, We 
abandon the guidance afforded by Eq. (3) for the 
slope, for example, representations with a slope 
>2 are possible. Reliable estimates of criticality 
of arrays of different shape, even maintaining 
constant the mass of the units, are difficult in the 
density analog model. 

SURFACE DENSITY MODELS 

The importance of criticality information en 
infinite-slab thicknesses of fissile materials for 
various reflector conditions was recognized early 
in nuclear criticality safety practices. If fie 

I: 
C 
i 
i 
i 
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; 
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, 
( 
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physical height of fissile materials being handled 
. stored in planar arrangements does not exceed 

slab thickness required for criticality of the 
aterial, the result is subcritical. Such a dimen- 

lim itation, although occasionally useful, is 
n practical. Experiments with finite ar- 

cylindrical units of aqueous fissile ma- 
were correlated by Paxton’ in 1961 by 

ing the fissile material in an array over the 
area of the array and representing that 

ght” as a function of the ratio of the “effec- 
,bve fissile material height” to the “diameter 
t f the array. ” 
c 

The representation dramatically 
‘emonstrated that criticality was possible with 

D 
effective surface densities, Eq. (I), less than 

,those of uniform critical slabs, and indicated that 
!the reactivity of an individual unit when located in 

I 

an array was a significant parameter. 
Stevenson and Odegaarden” used Monte Carlo 

:calculations to examine several parameters in- 
{flnencing the neutron multiplication factor of in- 

I 
‘finite, as well as some large, water-reflected 
t planar arrays of uranium as aqueous solutions, as 
‘oxides and as metal, Parameters considered were 

i 

uranium enrichment and concentration, reflector 
location, and the reactivity of units. Variation in 

{the reactivity of the unit was effectzd by changes 
i in the height-to-diameter ratio of cylindrical units 
: expressed as the fraction critical, f. 

Thirty-three calculated critical arrays had 
; neutron multiplication factors ranging from 0.978 
$ t0 1.033, with an average of 1.005. The surface 

density of some of the computed arrays, normal- 
ized to the surface density of calculated reflected 
infinite slabs of the same materials, is presented 
in Fig. 2 as a function of the fraction critical, f, 
Of a unit in the array. Also shown on the figure 
art? calculated data for water-reflected infinite 

! Planar arrays of cubes of metal with a water 
i reflector in contact with the units. The normali- 

zation to single-unit criticality is intended to 
define a region within which criticality is not pos- 
sible. 

The location of a curve in Fig. 2 is sensitive to 
the accuracy with which the critical dimensions of 
the normalizing unit is known. The choice of the 

@ %  mameter for the abscissa can lead to the incon- 

f 

Q: 

sistent treatment of data, as illustrated by the 
array data of metal cubes. The parameter f in 

‘OR. L. STEVENSON and R. H ODEGAARDEN, Tram A m  
ivucf. soc.,12, 890(1969). 

“J. T. THOMAS, “Uranium Metal Criticality, Monte Carlo 
Q It. cu a Ions, and Nuclear Criticality Safety,” Y-CDC-7, Oak 
Ridge y-12 plan t (1970); see also, J. T. THOMAS, “The Criti- 
caJitY of Cubic Arrays of FissiIe Materials,” Y-CDC-IO, Oak 
Ridge Y-12 PLant (1971); see aJso, J. T THOMAS, “Generic 
ha Y Criticality,” in Nuclear Criticality Safety, TID26286, 
’ 66, U.S Atomic Energy Commission (1974). 

the present model requires arrays with a receding 
reflector as f increases to achieve a value of 
f = 1. This behavior is not possible whenever 
reflector or other materials are continuously 
associated with the units in the arrays. Also 
excluded is information on conditions affecting 
criticality, such as interstitial moderation from 
sprinklers or moderation present inherently in 
some insulating materials of packages. If, in 
application, the surface density and unit size are 
to be lim ited so as to define subcritical planar 
arrays based on a demonstrated knowledge of two 
critical dimensions of single units for the fissile 
materials, then the area of applicability of the 
model is lim ited to air-spaced units in the arrays. 
This would provide a valid point of departure for 
the exploration of other factors of interest affect- 
ing planar array criticality. 

The density analog and surface density models 
described above serve a purpose in nuclear criti- 
cality safety in that they can be made to be con- 
servative in their application to plant problems, 
i.e., they define systems for which ken is known 
to be less than unity. Their reliability, of course, 
is established by comparison with calculated and 
experimental criticality data. 

3 I 

j ,/ 

! I I 

!’ 

In the work reported here, there has resulted, 
from several thousand calculated reflected arrays 
with different forms of fissile materials, a corre- 
lation that implicitly contains the above two mod- 
els. The analytic representation of the calculated 
data is presented in the following section. 

, ANALYTIC REPRESENTATION OF 
; ARRAY CRITICALITY 

The calculated critical array data” considered 
in this work embraced a wide variety of fissile 
materials: metals and oxides of 233U, 235U in 
uranium enriched from 30 to 100 wt%, and 23gPu 
containing from 0 to 20 wt% 240Pu. Dry and damp 
oxides having H/U or H/Pu atomic ratios ranging 
from 0 to 20, with the ratio expressed in terms of 
total uranium or total plutonium, were also ex- 
amined. Critical dimensions of arrays of spheri- 
cal units arranged in reflected cubic arrays were 
calculated. 

The actual surface density, u, and a lim iting 
surface density, u(m), of critical cubic arrays 
having units of mass m are related by the follow- 
ing semiempirical equation: 

o(m)/(l - c/&)2 , for N 2 64 

or 

u(m) =$f$ (1 - c/m)” , (4) 
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ARRAYS REFLECTED BY WATER (Ref. 10) 

a;: ._ 
LLZ 
0 - 0.6 
g& 

5; 
LJJ z 0.4 
n5 
$0 
ei 0.2 
52 
ma 

2 
0 

0 0.t 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 t.0 
MASS OF UNIT AS FRACTION OF UNREFLECTED CRITICAL MASS 

Fig. 2. Surface density representation of reflected planar arrays of U(93.2) metal and solution The abscissa is the mass of a unit 
expressed as the fraction of the unreflected critical mass for the shape. With the exception of the metal cube data, the reflector is 
located at the peripheral cell boundaries of the arrays 

where a,, represents the half-cell dimension, n is mension in the limit defining a cube of homo- 
the number of units along each edge of the array geneous low-density U(93.2) metal surrounded by 
n3 = N. m is the mass of unit expressed as total : water, which is represented by the point plotted at 
uranium or plutonium, and c is a constant, inde- 
pendent of the array size, equal to 0.55 f 0.18 as 
determined by a least-squares fit to families of 
calculated arrays. The value of u(m) is valid for 
all n 1. 4 for a given mass, m, and in the limit of 
arbitrarily large n agrees with the surface density 
parameter given by Eq. (1). 

The dependence of a(m) on m is adequately 
expressed by the empirical linear relation 

u(m) = c2(mo - m) , (5) 
where m. is the critical mass of an unreflected 
sphere of the fissile material and cz is a constant 
characteristic of the material in water-reflected 
arrays. This linearity is illustrated in Fig. 3, 
where results typical of the calculations per- 
formed are represented in the format of Eq. (4) 
for four materials. We note this linearity breaks 
down for units of small mass as shown by the 
sharp rise in the data for 235U. This behavior was 
observed for cubic arrays of all materials ex- 
amined. As the mass of units in an array becomes 
small, we may assume they approach atomic di- 

zero mass. There is no change in the calculated 
k eff of this system, since the size of the cube is 
increased provided that value of surface density is 
retained. 

Rewriting Eq. (4), 

+4 -=----7y -c/m)2 , m (zan, (l n 
shows a(m)/m to be constant for all critical cubic 
arrays of 64 or more units of mass m and effects 
separation of material and geometry characteris- 
tics of arrays. A straight line through the origin, 
therefore, intersects the lines representing dif- 
ferent fissile materials at points defining equiva- 
lent spheres, as illustrated by the line in Fig. 3. 
These spheres of different materials may be sub- 
stituted in an array, and criticality is mafn- 
tained without change in array size. Substituting 
the expression for a(m), Eq. (5), yields an explicit 
relation for equivalent masses in the same criti- 
cal array, namely, 

m’ =mI, b +$-e- I)]-’ , (7) 
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Fig. 3. Surface density representation of critical water- 
reflected cubic arrays of Missile materials as spheres centered in 
cubic ceRs 

where primes distinguish different fissile ma- 
terials. This relation demonstrates that equiva- 
lent masses for array criticality of different 
fissile materials do not, in general, have the same 
reactivity nor are they the same fraction of a 
critical mass. 

A line in the m, o(m) plane defining criticality 
need not be linear, but Eq. (5) may be applied to a 
limited mass range of interest, i.e., criticality 
can be linearly approximated. Just as there are 
different c2 values for different fissile materials, 
there are different values for the same fissile 
material for specific consistent conditions. For 
example, concrete-reflected arrays of U(93.2) 
metal units would have a value of c2 distinct from 
that for water-reflected arrays. Comparisons of 
h o conditions, or perturbations to an array, 
become susceptible to analytic expression by 

establishing tne values of c2 characterizing the 
conditions. This in itself is useful, but it be- ~ ” 
comes significant when associated with a change 
in array reactivity. A general result derived by 
Avery” for coupled reactors provides this associ- 
ation. For an array of identical units, the concept i 

can be expressed by the following: For an array 
to experience a change of (Ak/k),ff, it is sufficient 
that the reactivity of each unit in the array be 
changed by the same (Ak/k),ff . 

The reactivity corresponding to Am/m for 
simple geometries is not difficult to determine 
and, in many instances, can be adequately esti- 
mated for nuclear criticality safety purposes. The 
relationship will depend on the energy spectrum of 
neutrons producing fission. An approximate lin- 
ear relation exists between ken and a dimension of 
a unit when a majority of fissions is produced by 
neutrons of greater than thermal energy. In the 
case of fissile metal spheres, the keff of a unit is 
approximated by the ratio of radii r/rO, where r. 
is the unreflected critical radius and r the radius 
of the unit. The resultant k,a of an array per- 
turbed from criticality by a change in unit mass 
from m to m’ is 

k 

These concepts and relationships are illustrated 
in the following sections. 

ARRAY PERTURBATIONS 

The influence of changing from water-reflected 
arrays to arrays reflected by different thick- 
nesses of concrete is indicated in Fig. 4, where 
the units of all arrays are U(93.2) metal spheres. 
The evaluated slope, c2, for each thickness of 
reflector may be used in Eqs. (7) and (8) to define 
the change in k,ff associated with the reflector 
change. Note that the magnitude of (Ak/k),ff is not 
constant but is dependent on the mass of the units 
in an array. For example, the reactivity increase 
may range from 0 to 18% upon substitution of a 
40.6-cm-thick concrete reflector for a water 
reflector. 

Unit Shape 

The influence of unit shape on array criticality 
is exemplified by the results depicted in Fig. 5. 
These calculated data represent reflected cubic 
arrays with cylindrical units of U(93.2) metal 

i*R AVERY, “Theory of Coupled Reactors,” Proc 2nd UN 
Int Conf Peaceful Uses AI Energy, Geneva, 12, 182, United 
Nations, New York (I 958) 
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CUBIC ARRAY 
REFLECTOR CONDITIOI 

e 20 cm H,O 
4 10.16 cm CONCRETI 
0 12.70 cm CONCRETI 
+ 15.24 cm CONCRETI 
A 20.32 cm CONCRETI 
l 25.40 cm CONCR ETI 
n 30.48 cm CONCRETI 
v 40.64 cm CONCRETI 

60 

Fig. 4. Surface density representation of critical cubic arrays 
reflected by various thicknesses of concrete and infinite planar 
arrays with n > 4 reflected by 40 64-cm-thick concrete 

having three different shapes described by their 
height-to-diameter ratios, h/d. Along each line, 
the shape of units is maintained (constant h/d) as 
mass increases to, at the intercept with the 
abscissa, the unreflected critical mass of a single 
unit of that shape. There is a range of height-to- 
diameter ratios in which the linearity character- 
istic of spheres is observed, as shown here by the 
h/d values of 1 and 0.3. That range is indicated to 
be from 0.3 to 3. Outside this range, two or more 
linear regions may be necessary to define criti- 
cality, each range of mass being characterized by 
a slope c2. The data for an h/d ratio of 0.2 are 
examples of this behavior. 

An illustration of the application of Eq. (8) is 

01’ ,\ , ‘II.. 
0 

MASS OF5&LINDRICi? “RANI”P.i5:NIT 
[kg U(93.211 

Fig 5. Surface density representation of critical water- 
reflected cubic arrays of U(93.2) metal cylinders of various 
height-to-diameter ratios. 

as follows. The masses ml and m2, indicated in 
Fig. 5, are equivalent masses for criticality in 
any selected array provided n Z 4, as described in 
Eq. (6) and represented in Fig. 5 by the line 
through the origin. If the mass ml in a critical 
array were reduced to m2, maintaining h/d = 0.2, 
then the resulting array would be subcritical with 
a k,ff, from Eq. (8), of approximately (m2/m1)“. 
If, on the other hand, the mass, ml, were main- 
tained but the shape of each unit changed to h/d= 
0.3, then the resultant array would be supercriti- 

‘cal ; and the keff would be estimated by (ml/m2)“. 
As may be suspected, the intercepts with the 

abscissa trace the familiar curve of cylindrical 
critical mass as the shape changes, approaching 
the minimum and receding toward larger values 
as the h/d ratio increases through unity. These 
arrays may be related to the arrays of spheres or 
other shapes for which the c2 characteristic d- 
ues are known. 

A way Shape 

Application of these concepts to cubic arrays 
provides the criticality safety specialist with a 
powerful tool for the evaluation of many situations 
involving neutron interacting systems. The num- 
ber of units in a cubic array may be conserva’ 
tively applied to similar units in similar Cells 
arranged in noncubic arrays, with the degree Cf 
conservatism dependent on complex factors. fP 
sight into the influence of array shape on array 
criticality may be had by examining the perturba’ 
tion of cubic arrays and interpreting the effect iC 
terms of the characteristic slope, c2. It is knoti 
that the rearrangement of cubic cells of a critiCal% 
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pcubic array into an array having an unequal num- 
her of units along the three edges of an array, 

Lo(m’)=~-l- nz 
c2 m m -- (1 - CALW . (11) cWnP 

& i.e., into a cuboidal shape, will result in subcriti- 
cality because the neutron leakage increases. The line through the origin having a slope o(m)/m 

* Criticality of the resultant subcritical array may for the cubic array of 10.4-kg U(93.2) units will be 
@be restored in several ways, for example, by related to the line through the origin having slope 

increasing the unit mass, by reducing the cell o(m’)/m ’ for the cuboidal array by the simple 
volume, or by increasing the number of units. ratio of the number of units in the z direction for 

We begin the development of an analytic ex- the two arrays, i.e., 
pression by assigning a unique numerical value 
corresponding to possible array shapes with cubic 
cells. The surface-to-volume ratio, s/t), of a _--~ 
noncubic arrangement of cubic cells is 23 (s/4,4 = a (& + $ + &) , 

II 
and for a cubic array is 

(12) 

since *he cell volume is maintained. Substituting 
the expression for m’ from Eq. (10) and solving 
for c,l, we obtain 

CL ,!!z ~CZ 
n 5R-0-m2 _ 1 ’ (13) 

We eliminate the dependence on cell dimension by 
normalizing the S/V ratio for noncubic to that for Inserting this expression with c2 = 1.762 X 10e3 

cubic arrays of the same N, and define a shape 
cm-2 for U(93.2) metal spheres into Eq. (11) and 

factor for the noncubic array as dropping the prime from m yields the semi- 
empirical equation 

(9) 2 _ 1 = 5.962 (Jis - C) ’ (5R-0.672 _ 1) , 1 (141 m fuI?l 
Note that N’* need not be an integer, i.e., Eq. (4) 
is a continuous function of N. applicable to reflected U(93.2) metal arrays of any 

To maintain criticality of an array, originally 
shape R provided R 5 5.34. Arrays with shape 

-2 
” cubic and comprised of units of mass m, as cells 

factors >5.34 are correctly evaluated by setting 

are rearranged to form a cuboidal array of shape 
R = 5.34. 

factor R, the mass of each unit must be increased 
Equation (14) is examined in Fig. 6, where the 

to m’. The mass, m’, necessary to maintain 
limiting surface density, u(m), of Eq. (4), is 
shown as a function of the mass of the units in an 

*V Criticality for all possible rearrangements of the .r array 
Cells in a reflected array were calculated” begin- ’ 

. The upper line with the greatest negative 

ning with the as = 16.454-cm array of 10.4-kg 
U(93.2) metal spheres in a cubic array. The 

S resultant values of m’ satisfy the relation 

m’ = 10.4R0’m2 , (10) 

Where the exponent was determined by a least- 
Wares fit to the data and has a standard devia- 
tion of M.013. The maximum value of R for the a, 
*my is 5.34, corresponding to a linear-reflected 
arW of 512 units. These data for various array 
aha;>es may be related to cubic array data and, 
thu% define the characteristic slope, c2, as a con- 
tinuous function of R. 

A function is determined by assuming that 
’ reflected cuboidal arrays, having a shape factor 

Rs satisfy Eqs. (4) and (5). The n appearing in 
Eq. (4) is the number of units in the 2 direction 
designated as n, = min(n n n ). The c2 of Eq. (5) 
Is interpreted as the “‘va’;ue” characteristic of 
-%‘s with shape factor R. The mass, m’, neces- 
a* for criticality will satisfy 

slope represents water-reflected cubic arrays of 
metal spheres. Note that each of the three points 
represents three different cubic arrays having 
N = 1728, 512, and 216 units of equal mass but 
different spacing. The three curves emanating 
from this cubic array line in a downward direc- 
tion, curving to the right, represent rearrange- 
ments of those units into noncubic arrays. That 
is, units are removed from the z direction of the 
array, added to the x and y directions, and the 
resulting array of shape R is closely reflected by 
water. Changes in the shape of nine arrays, 
therefore, are presented. Arrays with the same 
shape factor, R, lie on a line having a slope, c& 
satisfying Eq. (13). 

The changes in the number of units in any 
dimension of cubic array by a factor of 2 has little 
effect on the keff of the array. This is illustrated 
in Fig. 6 by the small increase in the mass of the 
units required to maintain criticality when the 
array of lo-kg U(93.2) units is changed from a 
12 x 12 x 12 to an 18 x 16 X 6 arrangement. The 



432 

90 

5 80 

E 

-F z 70 
- 

E 
g 60 
W 
cl 

W 

2 50 
IL 
5 
g 40 
z 
Fz 
r i 30 

20 

IO 

0 
0 

THOMAS 

ARRAY SHAPE UNIT ARRANGEMENTS 

5 40 15 20 25 30 35 40 45 50 55 
MASS OF SPHERICAL UNIT IN REFLECTED ARRAY, m [kgU(93.2)1 

Fig. 6. Surface density representation of critical, noncubic water-reflected arrays of U(93.2) metal spheres centered in cubic cells. 

rearrangement of arrays having units of large 
mass obviously will result in only a small change 
in the array k,n. 

Criticality in reflected cuboidal arrays of fis- 
sile materials other than U(93.2) metal spheres is 
properly specified by application of the equivalent 
mass relation, Eq. (7), to the spherical mass of 
U(93.2) satisfying Eq. (14) for the cuboidal array 
of shape factor R. This procedure avoids the 
necessity of developing for each fissile material a 
relation characterizing array shape effects on 
criticality. The applicability of Eq. (7) to other 
fissile materials was confirmed by Monte Carlo 
calculations, and the comparison is given in 

Table I. The 512-unit cubic array of ld.4-kg 
U(93.2) units (a8 = 16.454 cm) was subjected to 
extreme shape changes. The radius of U(93.2) 
spheres necessary for criticality in each case was 
specified by Eq. (14). This radius, in turn, was 
converted to a radius of a plutonium metal sphere 
by Eq. (7). The average of the ratios of radii 
predicted by Eq. (7) to those calculated by Monte 
Carlo for the arrays is 0.999 f 0.003. 

Infinite Planar Arrays 

Let US now return to the characterization of 
criticality of reflected infinite planar arrays. The 
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q: 1 
TABLE I 

Comparison of Monte-Carlo-Calculated Critical Water-Reflected Arrays of Various Shapes with Estimates 
from Application of Eqs. (71, (9), and (14) to Plutonium Metal Spheres 

unit KEN0 Calculation’ 
Arrangement U(93.2) Radius, Equivalent 23gPu Radius, 

by Eq. (14) by Eq. (7) Converged Radius 
nr “r n+ (cm) (cm) km) R l ff 

16 16 2 5.635 3.81 3.821 1.000 
32 4 4 5.542 3.76 3.757 0.995 
32 8 2 5.740 3.86 3.877 1.004 
64 8 1 6.488 4.19 4.182 0.998 

128 2 2 6.403 4.16 4.180 0.995 
128 4 1 6.729 4.29 4.294 0.997 
256 2 1 k 7.062 4.42 4.405 

0.999 
- -- 

8Iteration of radius to give ke<f of unity within a standard deviation of iO.005. 

relation applicable to infinite planar arrays is 
derived as follows. When dealing with units of 
equal mass in different reflected arrays, we noted 
in Eq. (6) that the cell dimensions and numbers of 
units relate in the manner given by the equation 

TABLE II 

Monte-Carlo-Calculated Critical Water-Reflected 
Infinite Planar Arrays of U(93.2) Metal 

Spheres Centered in Cl 

T (15) 

If (n/n’), is maintained and N is allowed to in- 
crease indefinitely (i.e., nx,nY -+ m), then the cell 
dimensions vary directly as the square root of the 
ratio of units in the .? direction, 

(‘6) 

Consequently, as with reflected infinite slabs of 
hform fissile materials, the surface density 
does not change with separation for a given value 
of sphere mass. 

This behavior is confirmed in Table II. The 
radius of the unit in each of six sets of arrays of 
different size was determined to test Eq. (16). In 
each set, the critical condition n, = 4 was used in 
Eq. (16) to estimate the necessary increase in 
Qacing for n, = 6, 8, and 10. The predicted cell 
dimension of infinite critical arrays was an input 
Parameter in Monte Carlo calculations to deter- 
mine the critical radii of spheres to within one 
*dard deviation. The variation of radii within 
each set is negligible, differing by <l% or about 
the statistical precision expected. 

The data of Table II appear as the lower 
envelope in Fig. 6. When normalized to the Value 
Of the surface density for a reflected infinite 
n%rm slab of U(93.2) metal (32 gU/cm’), the 
dak appear as shown in Fig. 2. 

Similar results for concrete-reflected infinite 

n, = ny = 00 
nz 

Predicted 
Half -Dimens ion 

of Cell, %  
by Eq. (16) 

(cm) 

Converged 
Sphere 

Radius, r 
(cm) &ff 

4 7.897 2.718 1.001 
6 9.672 2.715 0.996 
8 11.169 2.710 0.999 

10 12.487 2.700 0.998 

4 11.764 3.452 0.996 
6 14.408 3.451 1.002 
8 16.637 3.448 1.002 

10 18.601 3.452 1.002 

4 15.364 4.058 1.001 
6 18.817 4.045 1.005 
8 21.728 4.024 1.002 

10 24.293 4.027 1.002 

4 19.029 4.592 1.004 
6 23.305 4.566 1.001 
8 26.911 4.542 1.001 

10 30.087 4.591 1.005 

4 23.082 5.057 0.996 
6 28.269 5.057 1.001 
8 32.643 5.057 0.998 

10 36.496 5.057 0.997 

4 27.873 5.566 0.996 
6 34.138 5.554 1.003 
8 39.419 5.550 1.003 

10 44.072 5.600 1.004 

lbic Cells 

KEN0 Calculationa 1 

aIteration of radius to give k,ff equal to unity within a 
Planar arrays also sustain Eq. (16), and these data standard deviation of iO.005. 
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TABLE III 

Unreflected Spherical Critical Masses and Characteristic Array Constants 
for Some Fissile Materials in Water-RefIected Cubic Arrays 

Number Material 
Atomic Ratio,* 
H/U or H/Pu 

Characteristic Constant 
for Criticality of 

Spherical Unit Water-Reflected Arrays 
Unreflected (lo-’ cm’) 

Critical Mass* _ 
(kg) c2 f 

1 Metal, U(100) 
2 Metal. U(93.2) 
3 Oxide, U(93.2)& 
4 
5 

6 
7 Metal, U(80) 
8 Oxide, U(80)01 
9 

10 

11 
12 Metal, U(70) 
13 Oxide, U(7O)oL 
14 
15 

. 
16 
17 Metal, U(50) 
18 Oxide, U(50)02 
19 
20 

21 
22 MetaI, U(40) 
23 Metal. U(30) 
24 Oxide, U(3O)Oz 
25 

26 
27 
28 Metal, Pu(100) 
29 Oxide, Pu(lOO)Ck 
30 

31 
32 
33 Metal. Pu(94.8) 
34 Oxide, Pu(94.8)02 
35 

36 
37 Metal, Pu(80) 
38 Oxide, Pu(8O)Oz 
39 
40 

41 Metal. “3”v 
42 Oxide, -02 
43 
44 
45 

46 Metal U(93.2)-10 WI% MO 

“Total uranium or total plutonium. 

0 45.68 1.806 0.036 
0 52.10 1.762 0.017 
0.4 90.24 0.854 0.007 
3.0 63.59 0.758 0.008 

10.0 31.43 0.778 0.007 

20.0 17.34 0.805 0.004 
0 69.89 1.359 0.012 
0.4 111.36 0.780 0.006 
3.0 74.08 0.713 0.006 

10.0 36.16 0.725 0.006 

20.0 18.67 0.779 0.005 
0 89.16 1.192 0.018 
0.4 133.39 0.723 0.006 
3.0 83.44 0.686 0.006 

10.0 36.89 0.735 0.004 

20.0 19.30 0.793 0.004 
0 159.60 0.901 0.008 
0.4 207.73 0.589 0.005 
3.0 112.82 0.594 0.004 

10.0 55.14 0.520 0.006 

20.0 21.48 0.777 0.005 
0 228.06 0.787 0.016 
0 379.70 0.589 0.007 
0.4 .* 409.60 0.450 0.003 
3.0 ’ 150.01 0.603 0.005 

10.0 54.01 0.636 0.004 
20.0 25.15 0.744 0.005 

0 9.95 4.346 0.112 
0.4 26.66 1.542 0.015 
3.0 28.65 1.113 0.010 

10.0 20.21 0.965 0.007 
20.0 14.05 0.885 0.008 

0 10.34 4.138 0.091 
0.4 27.93 1.561 0.013 
3.0 32.78 1.097 0.011 

10.0 28.74 0.817 0.007 
0 11.69 4.261 0.099 
0.4 32.14 1.529 0.023 
3.0 42.43 1.022 0.013 

10.0 47.81 0.679 0.005 

0 15.75 2.751 0.022 
0.4 34.46 1.199 0.008 
3.0 31.69 0.939 0.008 

10.0 17.64 0.907 0.010 
20.0 10.28 0.947 0.009 

0 73.06 1.305 0.009 
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are shown in the lower portion of Fig. 4. Cal- 
culated critical surface densities for a concrete- 
reflected uniform slab of U(93.2) metal range 
from 12 to 20.6 gU/cm2 (Refs. 13 and 14, respec- 
tively) depending on cross sections, concrete 
composition, and code options. Were the con- 
crete-reflected planar array data normalized to a 
surface density in the range given, the line depict- 
ing criticality would appear in Fig. 2 above the 
water-reflected data. 

Application of the equivalent mass relation, 
Eq. (7), to the data for infinite planar arrays of 
U(93.2) metal spheres will, in general, lead to 
conservative estimates of criticality of other 
fissile materials. Presented in Table III is a 
summary of characteristic constants for spherical 
units of some fissile materials. The apparent 
general applicability of the U(93.2) spherical data 
in Fig. 2 to the variety of fissile materials listed 
in Table III strongly supports the concept that a 
suitably lim ited area of the figure can be defined 
within which subcriticality will be specified. 

CObIPARISON OF DENSITY ANALOG AND 
SURFACE DENSITY MORELS 

Having established some understanding of den- 
sity representations of array criticality, let us 
now relate the two density models. This is ac- 
complished by cubing the surface density equation 
for criticality, Eq. (4), and interpreting the quan- 
tities in the following manner. The cube of the 
edge dimension of a cubic cell squared, (2a,J2, 
becomes the cell volume squared and when divided 
into the unit mass squared gives the average 
fissile material density in the array, p, to the 
Second power. The cubed n becomes the total 
number of units in the array, N, and the binomial 
factor is raised to the sixth power. Rearranging 
terms and substituting Eq. (5) for a(m) gives 

N( 1 - c/fi)‘j = jc.(m;;2m)]3 . (17) 

The result is an explicit form of the coefficient to 
he used in the density analog model and an unam- 
biguous second power for the density exponent. 
Similar treatment of the relation for criticality of 
arrays with shape R, Eq. (14), gives 

N(1 - c/&y = (mo - m )” 1 
(5R-0*672 - 1) (11.924)%p2 . (18) 

- 

13D. R SWTH, Los Alamos Scientific Laboratory, Personal 
Communicati02. 

‘3. J ALTSCHULER and C. SCHUSKE, ,Vrrcl Technol, 13, 
I31 (1972). 

An illustration of possible interpretation of 
Eqs. (17) and (18) is given in Fig. 7, where the 
lines depict reflected critical arrays of 20-kg 
U(93) metal spheres. Beginning with the first 
line on the left, it can be seen that the cubic 
arrays, represented as the total mass reduced by 
the fraction (1 - c/c%‘, have a density exponent of 
2.0. The line immediately to the right represents 
the same data as actual total mass in the arrays, 
revealing the variable density exponent behavior 
typically reported. The line tangent to the cubic 
arrays at 160-kg U(93.2) exhibits the result of 
maintaining only two cells in the z direction as N 
increases, i.e., arrays of variable shape. The 
slope of this line has already achieved a value 
>2, and the line would, if continued, ultimately 
approach a lim iting average density below which 
criticality would not be possible. The arrays 
represented by the upper curve, to the right, are 
for arrays of constant shape, R, whose dimensions 
are in the ratio of those of a critical reflected 
slab of metal, 63.5 X 63.5 X 1.8 cm. Of signifi- 
cance here is the critical mass predicted as the 
average uranium density achieves the metal den- 
sity. The curve underpredicts the experimental 
mass for this shape by -8%, as shown by the open 
triangle, one of a series reported by M ihalczo and 
LyIm5 and by Paxton.” Other data from that 
series are compared in Fig. 8 with the results 
obtained from the application of Eq. (18). The 
agreement of experimental and estimated masses 
is well within 10%. These results show that the 
shape of the critical assembly as the average 
array?density approaches the metal density is that 
of the array and not that of the units in the array. 
Similarly, consideration of cubic arrays leads to 
the conclusion that the geometry of the lim iting 
assembly is cubic, independent of the shape of the 
units in the array. 

It is informative to apply Eq. (17) to the ex- 
perimental arrays of Fig. 1 considering the cylin- 
drical masses as spherical. The points plotted in 
Fig. 9 represent experimental data3 obtained with 
units of different shape in noncubic cells arranged 
in reflected cuboidal arrays. The lines represent 
calculations of arrays comprised of spherical 
units in cubic cells and, in accord with Eq. (17), 
have a slope of m inus 2. The ordinate is the 
corrected number of units [left side of Eq. (17)] in 
the arrays. It is observed that the experimental 
data do not vary as the inverse square of the 
average density law. 

lsJ T. MIHALCZO and J. J. LYNN, “Neutron Multiplication 
Experiments with Enriched Uranium Metal in Slab Geometry,” 
ORNLCF-61433, Oak Ridge National Laboratory (1961). 

16H C PAXTON. “Los Alamos Critical-Mass Data.” LA- 
3067, rev , p 39, Los Alamos Scientific Laboratory (1975);. 
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Fig. 7. Density analog representation of reflected array criticality for U(93.2) metal units as spheres. 

The observed difference can be understood if 
we consider the results of Monte Carlo calcula- 
tions of reflected arrays by the matrix method, 
which yield the effective unit self-multiplication 
within arrays. As computed by the code, the self- 
multiplication of a unit is the ratio of fission neu- 
trons produced in a unit to fission neutrons born 
in the unit independent of their history and ex- 
cludes fission neutrons from other units in the 
array. Calculations of 8- to lOOO-unit arrays of 
26-kg U(93.2) metal cylinders show that, for the 
8-, 27-, and 64-unit arrays, the unit self-multipli- 
cation is, respectively, 0.74, 0.67, and 0.66, 
changing little from 0.66 as N increases further. 
The relative constancy of the effective unit self- 
multiplication for arrays with 64 or more units is 

general. It can be concluded from these obseiva- 
tions that there is valid reason not to expect 
experiments in the high-density range to follow m 
inverse square density relation, since the Self- 
multiplication of otherwise identical units in vari- 
ous critical arrays is not constant but depends oa 
the characteristics of the array. 

CONCLUSIONS 

The Paxton and the Smith density analog mod- 
els are suitable for their intended purpose of 
specifying criteria that easily separate problems 
requiring no further evaluation from those needing 
further detailed investigation. 
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Fig. 8. Critical mass of U(93.2) metal as a function of cuboi- 
dal geometry for Plexiglas (methyl methacrylate>retlected slabs. 

The surface density representation of reflected 
infinite planar arrays is in need of additional 
definitive interpretation to clearly establish a 
universal safe region expressed as a fraction of 
the surface density and as a fraction of the 
unreflected critical mass for the unit shape. 

AVERAGED URANIUM DENSITY IN ARRAY, 
P (g/cm3) 

Fig 9. Comparison of experimental data for metal cylinders 
with calculated metal spheres in reflected arrays. 

The lim iting surface density model and its 
translation to the density analog model, together 
present a comprehensive representation of re- 
flected, critical arrays of air-spaced units. Hav- 
ing been developed from the same bases as the 
American National Standards Institute standard, 
“Guide to Nuclear Criticality Safety in the Storage 
Of Fissile Materials,” N16.5(1975), the concepts 
are applicable to arrays described therein. 

ACKNOWLEDGMENTS 
it is a pleasure to recognize the interest of and the many 

helpful discussions with H. C. Paxton and D. R. Smith of the 
Los Alamos Scientific Laboratory and, in particular, those with 
A. D. Callihan of Oak Ridge, Tennessee. 

This research was sponsored by the U.S. Energy Research and 
Development Administration under contract with the Union Car- 
bide Corporation. 

‘c” I , ,,L DESCRIPTIONYI: 


