
d, of cubic cells, and the mass, m, of the fissile material 
centered in a cell. The mass necessary for criticality of 
such‘systems satisfies the equations 

:i 
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t&roof method to prevent this from occurring can be 

w for the general case, the user can minimize the 
3 b recognize the problem by observing activities, 
c* m fission densities, in localized sections of the 

m. Significant differences in the fission density o(m) = cZ (m, 
regions of the system, particularly large regions 

- m) = y (1 - c/m)’ . 

b bw fission densities in a system with a small region 
$ a high fission density, should be examined carefully 

-_) UIequate sampling. Limiting the problem description 
b w at only a portion of the system often can provide 
,pable information. 

In these relations, o(m) is a limiting surface density 
(g - cm-*); m. is the unreflected critical mass in the 
geometry of the unit; n 3 is N; c is a constant character- 

hn unresolved difficulty with Monte Carlo calculations 
.A& continues to cause concern is the liability to com- 
ruts accurately the error estimates for the differential 
plpntities (such as flux, fission densities, etc.) as a 

B.&action of region and energy group.6 While there is no 
lcation of error in computing the differential quantities 

,_ ~mselves, the standard assumption when computing the 
$ntotlstlcal error that the “sample estimates” are inde- 
: pendent is often not valid. To be correct, the statistical 
’ error calculation must take into account the correlation 

between “sample estimates.” There is currently no 
general method to do this. While research on this 
problem continues, error estimates computed by standard 
techniques should be used with caution. 

izing the geometry of center spaced units and equals 
0.55; c2 is a constant dependent on the type of fissile 
material and is influenced by the unit shape, by the array 
shape, and by the array reflector material. 

For cuboidal arrays of cubic cells, the mass m re- 
quired for criticality satisfies the equation 

(2 - 1) = [ 11.924(J~ - c) * nd ] (5R-0*672 - 1) , (2) 

where the array shape is represented by the parameter 

R=&&l 
3 1 “i 

and nl is the number of units along the 

The Monte Carlo method provides the criticality safety 
fpeeialist a rigorous, easy-to-use technique for evalu- 

Ig many problems. A good understanding of the 
method and its limitations is essential if the user is to 

three directions of the reflected cuboidal array The 
value of R should not exceed 5.34. The definition of 
criticality by these equations has been determined as 
conservative below m = 0.1 m. and as very good for 
greater values of m representing criticality to within 1% 
in k,ff. 

escape the pitfalls, which can lead to erroneous results. 
Undetected, these erroneous results could lead to 
erroneous safety recommendations. 

1. G. E. WHITESIDES and N. F. CROSS, “KEN0-A 
Multigroup Monte Carlo Criticality Program,” CTC-5, 
Union Carbide Corp. (Sep. 1969). 

2. G. E. WHITESIDES, “Adjoint Biasing in Monte Carlo 
Criticality Calculations,” Trans. Am. Nucl. Sot., 11, 
160 (1968). 

3. G. E. WHITESIDES and J. T. THOMAS, “The Use of 
Differential Current Albedos in Monte Carlo Cri- 
ticality Calculations,” Trans Am. Nucl. SOC., 12, 889 
(1969). 

4. J. K. LONG, “Shortcomings of the Albedo Approxima- 
tion in KEN0 Calculations,” Trans. Am. Nucl tic.. 
17, 26’7 (1973). 

5. G. E. WHITESIDES, “A Difficulty in Computing the 
k of the World,” 
dh), 

Trans. Am. Nucl. SOC., 14, 680 

6. R. C. GAST and N. R. CANDELORE, “Monte Carlo 
Eigenfunction Strategies and Uncertainties,” Trans. 
Am. Nucl. SOC., 14, 219 (1971). 

4. Remarks on Surface Density and Density 
Analog Representation of Array Criticality, J. T. 
Thornas(~~~~) 

The body of information on the criticality of sub- 
critical components of fissile materials arranged in 
reflected critical arrays has grown sufficiently in the 
past ten years to warrant examination of density tech- 
niques and understanding of concepts employed in nuclear 
criticality safety. Monte Carlo calculations of experi- 
mental data have permitted valid extensions of these 
limited data. Correlations’ of the data have been effected 
and have resulted in an analytic expression relating the 
total number of units, N, in an array, the edge dimension, 

The density analog2p3 representation of reflected 
array criticality is usually expressed in the form 
M = const x pTs. The power s is dependent on the size of 
the array approaching the value 2 as a limit and has been 
related to the mass of the unit. The above relations also 
may be expressed in this form. Cubing Eqs. (1) and (2) 
and rearranging the terms to yield 

N(l - c/m)' = ‘cZ(mo - m)13 4 (cubic) m P 
(3) 

1; 1 iiI!Hi 

Fig. 1. Density analog representation of reflected array 
criticality for 20 kg U(93.2) metal spherical units. 
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NC1 - c/m)” = ,,l,&4,‘,(5:.k:$ $ (cuboidal). (4) 

Application of Eqs. (3) and (4) to 20 kg U(93.2) metal 
spheres at a density of p. = 18 76 g-cmM3 for which c2 
has been evaluated as 1.762 X lo-” cm-‘, results in 
the relations shown in Fig. 1. The shape of the cubic 
arrays is typical of that obtained from experimental 
and calculated data displaying the total mass (M = Nm) 
as varying inyersely with density to a variable power. 
The data are equally well displayed as the total mass 
[M’ = M(1 - c/>@)“] varying inversely as the square of 
the density. The departure from cubic arrays is illus- 
trated for arrays having variible shape, R, maintaining 
2 cells in the vertical directidn, beginning with an 8-unit 
array. For the same numbers of units in arrays, changing 
from cubic shape requires higher average densities. The 
arrays with constant noncubic shape were chosen to 
correspond to the shape of a reflected critical slab of 
U(93.2) metaL The latter example forcefully illustrates 
that as the average density approaches and achieves the 
fissile material density, the defined critical configuration 
is determined by the array shape and not the shape of the 
units in the array. 

It may be said that the density methods can give com- 
plementary interpretations of criticality. The two con- 
stants, one for geometry and the other for fissile 
material as spherical units in arrays, are sufficient to 
represent criticality as 

1. a continuous function of N 

2. more properly depicting the total mass, or N, as 
varying inversely as the square of the density 

3. not being limited to cubic arrays 

4. capable of approximating reflected and unreflected 
single-unit criticality for cuboidal shapes. 
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5. Special Criticality Considerations for Low- 
Enrichment Fuel Processing, Robert L Sea/e, 
Charles Verdon (U of Ariz) 

The criticality limits for a large dissolver tank 
containing nitric acid as used in the reprocessing of LWR 
fuel have been examined over a wide range of dissolved 
Uranium concentrations. Some potentially autocatalytic 
criticality situations have been identified in processing 
low-enrichment fuel. 

The chemistry of UOz In nt(rh 
total uranium dissolved; the enrlc 
determines the criticality character 
For 5% enriched UOZ in a loo-cm- 
height is plotted in Fig. 1 as a fuac.,, 
tion. At a typical dissolved uraa& 
-3 M, the *% concentration is 
diam tank, this corresponds 
infinite length critical concent 
solution inventory (1000 liters), 

As fuel dissolves, heat is liberated Lsa 
follows: 

. -75,000 Cal/MT due to UOZ dissolvi 

-17,500 Cal/MT due to fission hea{ 

For 5% enriched fuel at 15 gZ3’U/liter c 
heat release is -28 Cal/liter. Thus 
operated at 80 to 85”C, cooling must be & 
prevent boiling. : 

>. 
Mechanisms have been identified by whlcb 1 

could be “forced” into an autocatalytic crttlcal 1 

These mechanisms include: 

1. Overbatching of the UOz inventory by 1 
increase the ‘?J concentration to -21 
critical condition when 1000 liters are C 
the vessel. 

2. Failure of cooling and solution boiling (0 
solution height while increasing ?J COW 
to reach criticality. 3 7‘ 

Either mechanism will result in reaching the c 
condition at a concentration-height combination dt 
the energy released due to fissions will hoI1 df q 
solution ’ in .ease the _^_^^I ,-n,‘na aa 

further. 

Both situations are shown by 
Each results in a supercritical 
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Fig 1. Critical height vs ?J solution concentration for 
a 100-cm-diam dissolver tank. Boiloff paths for 
constant inventory (a) and 40% fuel overload (b) 
incidents are shown 





error calculation must take into account ‘the correlation 
between “sample estimates.” There is currently no 
general method to do this. While research on this 

9:. 
E 

problem continues, error estimates computed by standard 
techniques should be used with caution. 

i The Monte Carlo method provides the criticality safety 
g specialist a rigorous, easy-to-use technique for evalu- 
!: rting many problems. A good understanding of the 6:; 

method and its limitations is essential if the user is to 
escape the pitfalls, which can lead to erroneous results. 
Undetected, these erroneous results could lead to 
erroneous safety recommendations. 
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Eigenfunction Strategies and Uncertainties,” Trans 
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4. Remarks on Surface Density and Density 
Analog Representation of Array Criticality, J. T. 
Thomas (ORNL) 

The body of information on the criticality of sub- 
critical components of fissile materials arranged in 
reflected critical arrays has grown sufficiently in the 
Past ten years to warrant examination of density tech- 
niques and understanding of concepts employed in nuclear 
criticality safety. Monte Carlo calculations of experi- 
mental data have permitted valid extensions of these 
limited data. Correlations‘ of the data have been effected 
and have resulted in an analytic expression relating the 
total number of units, N, in an array, the edge dimension, 

d, of cubic cells, and the mass, m, of the fissile material 
centered in a cell. The mass necessary for criticality of 
such-systems satisfies the equations 

ethod to prevent this from occurring can be 
the general case, the user can minimize the 

nize the problem by observing activities, 
densities, in localized sections of the 

cant differences in the fission density 
system, particularly large regions 

ies in a system with a small region 
nsity, should be examined carefully 

Limiting the problem description 
ion of the system often can provide 

h-4 = cz Cm, - m) = F (1 - c//H)’ , 

In these relations, a(m) is a limiting surface density 
(g - cm-‘); m. is the unreflected critical mass in the 
geometry of the unit; n3 IS N; c is a constant character- 
izing the geometry of center spaced units and equals 
0.55; cz is a constant dependent on the type of fissile 
material and is influenced by the unit shape, by the array 
shape, and by the array reflector material. 
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An unresolved difficulty with Monte Carlo calculations 
ch continues to cause concern is the liability to com- 

accurately the error estimates for the differential 
uanttties (such as flux, fission densities, etc.) as a 
nction of region and energy group.6 While there is no 

&&cation of error in computing the differential quantities 
‘, themselves, the standard assumption when computing the 

statistical error that the “sample estimates” are inde- 
pendent is often not valid. To be correct, the statistical 

For cuboidal arrays of cubic cells, the mass m re- 
quired for criticality satisfies the equation 

(2 _ I) ; [11.92-y - cl]’ (5R-0.672 _ 1) ) (2) 

where the array shape is represented by the parameter 

N+ 3 
R = 3 c L and ni is the number of units along the 

1 “i 
three directions of the reflected cuboidal array The 
value of R should not exceed 5.34. The definition of 
criticality by these equations has been determined as 
conservative below m = 0.1 m. and as very good for 
greater values of m representing criticality to within 1% 
in k,ff. 

The de n s it y ana1og2*3 representation of reflected 
array criticality is usually expressed in the form 
M = const x p-s. The power s is dependent on the size of 
the array approaching the value 2 as a limit and has been 
related to the mass of the unit. The above relations also 
may be expressed in this form. Cubing Eqs. (1) and (2) 
and rearranging the terms to yield 

N(l - c/m’ = ‘cz(mo - m’l” -$ (cubic) 
m P 

(3) 

Fig. 1. Density analog representation of reflected array 
criticality for 20 kg U(93.2) metal spherical units. 
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N(1 - c/d’%)” = (11.~24)J~(5~.~z~ j $- (cuboidal). (4) 

Application of Eqs. (3) and (4) to 20 kg U(93.2) metal 
spheres at a density of p. = 18.76 g-cms3 for which cz 
has been evaluated as 1.762 X IO-’ cm-‘, results in 
the relations shown in Fig. 1. The shape of the cubic 
arrays is typical of that obtained from experimental 
and calculated data displaying the total mass (M = Nm) 
as varying inpersely with density to a variable power. 
The data are equally well displayed as the total mass 
[M’ = M(1 - c/ a)‘] varying inversely as the square of 
the density. The departure from cubic arrays is illus- 
trated for arrays having variable shape, R. maintaining 
2 cells in the vertical directidn. beginning with an 8-unit 
array. For the same numbers of units in arrays, changing 
from cubic shape requires higher average densities. The 
arrays with constant noncubic shape were chosen to 
correspond to the shape of a reflected critical slab of 
U(93.2) metal 4 The latter example forcefully illustrates 
that as the average density approaches and achieves the 
fissile material density. the defined critical configuration 
is determined by the array shape and not the shape of the 
units in the array. 

It may be said that the density methods can give com- 
plementary interpretations of criticality. The two con- 
stants, one for geometry and the other for fissile 
material as spherical units in arrays, are sufficient to 
represent criticality as 

I. a continuous function of N 

2. more properly depicting the total mass, or N, as 
varying inversely as the square of the density 

3. not being limited to cubic arrays 

4. capable of approximating reflected and unreflected 
single-unit criticality for cuboidal shapes. 
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Special Criticality Considerations for Low- 
Enrichment Fuel Processing, Robert L &ale, 
Charles Verdorz (U of Ark) 

Criticality Safety, TID-26286 (1974). 

The criticality limits for a large dissolver tank 
containing nitric acid as used in the reprocessing of LWR 
fuel have been examined over a wide range of dissolved 
uranium concentrations. Some potentially autocatalytic 
criticality situations have been identified in processing 
low-enrichment fuel. 

The chemistry of UOZ in nitric a@ 
total uranium dissolved; the enrlcbw 
determines the criticality characterigt&._ 
For 5% enriched UOZ in a lOO-cm-dha) j 
height is plotted in Fig. 1 as a functla #I 
tion. At a typical dissolved uranium , 
-3 M, the *?J concentration is -15 g/we, 
diam tank, this corresponds closely t(r.j 
infinite length critical concentration. F0r.j 
solution inventory (1000 liters), the syste~.~~~ 

As fuel dissolves, heat is liberated La?$ 
follows: $$ 

‘, 
-75,000 Cal/MT due to UOz di6solq 

-17,500 Cal/MT due to fission hrrt di 

For 5% enriched fuel at 15 g 235U/liter cm 
heat release is -28 Cal/liter. Thug, &#$s 
operated at 80 to 85”C, cooling must l@w~ 
prevent boiling. 

Mechanisms have been identified by whl 
could be “forced” into an autocatalytic criti# 

These mechanisms include: 
$ 

1. Overbatching of the UOz inventory wz: 
increase the ‘%  concen 
critical condition when 1000 liters aI 
the vessel. 

2. Failure of cooling and solution boul 
solution height while increasing “‘U ( 
to reach criticality. 

Either mechanism will result in reachlw 4 
condition at a concentration-height combintiie*j 
the energy released due to fissions will b 
solution and increase the uranium COncatfl 
further. 

“I 2 
.$2 

Both situations are shown by the dotted kbfl@ 
Each results in a supercritical solution which q 
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