C. L. SCHUSKE, "TWO EXPERIMENTAL SUBCRITICAL ARRAYS OF PU(NO $\left.\mathbf{N}_{3}\right)_{4}$ SOLUTION," DOW CHEMICAL CO., ROCKY FLATS PLANT REPORT RFP-325 (JULY 1963).

THE DOW CHEMICAL COMPANY ROCKY FLATS DIVISION GOLDEN, COLORADO
 U. S. Atomic Energy Commission Contract AT(29-1)-1106

TWO EXPERIMENTAL SUB CRITICAL ARRAYS OF $\mathrm{Pu}\left(\mathrm{NO}_{3}\right)_{A}$ SOLUTION

by

C. L. Schuske

J. G. Epp - Technical Services Manager

I. Shielded Array of 5 in. Diameter Tanks

1. Test Vessels: 5 in. Schedule 40 stainless steel pipe (5.563" O.D., 5.047" I.D.) spaced on 2 foot centers in an in-line array. A total of 5 vertical tanks.
2. Shielding: 4 in. thick Benelex is on the top and sides of the array with a concrete floor at the base. The side shields are ~ 6 in. from the tanks, the top shield ~ 12 in. from the tanks, and the concrete floor ~ 2 in. below the tanks. There is no intervening shielding between tanks. (Benelex has a density of $1.44 \mathrm{~g} / \mathrm{cc}$.)
3. Fuel: $\mathrm{Pu}\left(\mathrm{NO}_{3}\right)_{4}$ solution at 5 N excess $\mathrm{HNO}_{3}, 400 \mathrm{~g}$ Pu/liter.
4. Conclusion: An extrapolation of the inverse multiplication curve (Figure I) indicates that these 5 tanks coinld have been of infinite length and remained subcritical.

II. 30 in. Diameter Raschig Ring Filled Tank

1. Test Vessel: 30 in. diameter stainless steel tank. The Pyrex Raschig rings occupy ~ 25 v/o of the tank and contain $\sim 6 \mathrm{w} / \mathrm{o}$ natural boron. The Pyrex rings have the following nominal specifications:
O.D. - 1-1/2"
wall - 5/32".
height - 1-3/4"
$19 \% \mathrm{~B}_{2} \mathrm{O}_{3}$
2. Reflector: An "L shaped" concrete wall, 8 in. thick, bounds the tank on two sides (Figure IV) the concrete floor below the tank can be assumed infinite. The test vessel is in a room containing other tanks of solution.
3. Fuel: $\mathrm{Pu}\left(\mathrm{NO}_{3}\right)_{4}$ solution at 9 N excess $\mathrm{HNO}_{3}, 350 \mathrm{~g}$ Pu/liter.
4. Conclusion: Extrapolation of the inverse multiplication curve (Figure III) indicates the test vessel would not be critical at any height.

Fig 2

TANK5: 5 " DIA., SCMED. 40, S. 5.
Benelex: 1.44 g/ce density

$$
\begin{gathered}
\text { EXPERIMENTAL TANK } \\
\text { RASCHIG RING FILLED } \\
\text { FIG. } 4
\end{gathered}
$$

