REFERENCE 96

R. C. LLOYD, R. A. LIBBY, AND E. D. CLAYTON, "THE MEASUREMENT OF ETA AND THE LIMITING CRITICAL CONCENTRATION OF ²³⁹Pu IN CRITICAL AQUEOUS SOLUTIONS," NUCL. SCI. ENG. 82: 325-331 (1982).

NUCLEAR SCIENCE AND ENGINEERING" (ISN: 0020-5639)

THE RESEARCH JOURNAL OF THE AMERICAN NUCLEAR SOCIETY

ANS OFFICERS

L. Manning Muntzing president

Milton Levenson vice president/president elect

John Graham treasurer

Raymond D. Maxon assistant treasure

Octave J. Du Temple executive director

ANS PUBLICATIONS STAFF

W. Michael Diekman publications manager

Joann Hollensteiner administrative assistant

Margaret A. Clemmons copy editor

Susan Kuehl editorial assistant

Siegfried H. Krapp production manager

COMPOSITION

Beljan, Dexter, Michigan 48130

Indexed in "Engineering Index" and Abstracted in "INIS Atom Index"

DIXON CALLIHAN, Editor

MELVIN L. TOBIAS, Associate Editor

MARGE WILLIAMS, Administrative Assistant

Union Carbide Corporation Nuclear Division Oak Ridge, Tennessee 37830

KARL WIRTZ, Associate Editor, Europe

ANTON BAYER, Editorial Assistant

Kernforschungszentrum Karlsruhe D-7500 Karlsruhe Postfach 3640 Germany

Editorial Advisory Committee

 Manson Benedict
 Frank G. Dawson

 E. Richard Cohen
 D. H. Gurinsky

 E. C. Creutz
 A. F. Henry

 E. Critoph
 Hugh C. Paxton

 Fred W. Thalgott
 Fred W. Thalgott

VOLUME 82, NUMBER 3, NOVEMBER 1982 NSENAO 82 (3) 235-372 (1982) ISSN: 0029-5639

NUCLEAR SCIENCE AND ENGINEERING (ISSN: 0029-5639) is published monthly by the American Nuclear Society, Inc., with business offices at 555 N. Kensington Ave., La Grange Park, Illinois 60525; telephone 312/352-6611. The subscription rate is \$102 per volume or \$265 for three volumes per calendar year; overseas subscribers add \$80 per year for postage and handling. Single copy price is \$36 for current and back issues. Microfiche subscriptions are also available at the same rates. Inquiries about the distribution and delivery of NUCLEAR SCIENCE AND ENGINEERING and requests for changes of address should be directed to the American Nuclear Society. Allow 6 weeks for a change to become effective. POSTMASTER: Send change of address orders to the American Nuclear Society. NUCLEAR SCIENCE AND ENGINEERING is printed in Danville, Illinois 61832, by Interstate Printers and Publishers, Inc. Second-class postage is paid at La Grange, Illinois, and at additional mailing offices. Copyright © 1982 by the American Nuclear Society, Inc. Trademark registered in Canada.

Findings reported and opinions expressed in this publication by the authors are their own and do not necessarily reflect the opinions of the editors, the American Nuclear Society, or the organizations with which the authors are affliated, nor should publication of author viewpoints or identification of materials or products be construed as endorsement by this publication or the Society. Address all manuscript and editorial communications to the editorial offices, NUCLEAR SCIENCE AND ENGINEERING, Building 9204-1, P. O. Box Y, Oak Ridge, Tennessee 37830. European authors may send communications to Karl Wirtz, Karlsruhe, Germany.

PHOTOCOPYING: The code on the first page of an article in this journal indicates the copyright owner's consent to limited copying of articles for personal or internal use, or for use of specific clients. Consent is given on the condition that the copier pay the stated per-copy fee through the Copyright Clearance Center, 21 Congress St., Salem, Massachusetts 01970, for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. Consent is not given for other copying, such as for general distribution, advertising or promotional, creating new collective works, or resale.

The Measurement of Eta and the Limiting Concentration of ²³⁹Pu in Critical Aqueous Solutions

R. C. Lloyd, R. A. Libby, and E. D. Clayton

Pacific Northwest Laboratory P.O. Box 999, Richland, Washington 99352

> Received March 15, 1982 Accepted June 4, 1982

Experiments were performed with a 122-cm-diam sphere to determine criticality of aqueous solutions of plutonium in a system having low-neutron leakage. The plutonium in the chemical form of $Pu(NO_3)_4$ had a ^{240}Pu content of 2.52 wt%. The critical-sphere concentration obtained in this experiment was analyzed along with data from eight additional critical experiments to evaluate the minimum critical concentration for plutonium. The limiting critical concentration was determined to be 7.62 g Pu/R for $Pu(NO_3)_4$ without excess acid and 7.59 g Pu/R for a ^{239}Pu -water mixture. From these data, the Maxwellian-averaged thermal value of the number of fission neutrons emitted per neutron absorbed by ^{239}Pu , eta, was determined to be 2.056 ± 0.037. The value at 2200 m/s is 2.100 ± 0.041.

I. INTRODUCTION

Experiments have been performed to provide data for determining the thermal value of the number of fission neutrons emitted per neutron absorbed by ²³⁹Pu, eta, and the limiting critical concentration of ²³⁹Pu in an aqueous solution. The limiting critical concentration is that concentration of the fissile nuclide in solution at which the infinite reproduction factor (k_{∞}) is unity. At lower concentrations, the reproduction factor would be less than unity for systems of any size or shape. This value will be useful as a benchmark for testing calculation methods and cross-section sets in well-thermalized systems.

In previous work, the limiting critical concentration was determined indirectly from "null reactivity" measurements on a relatively small volume of solution, wherein several corrections and extrapolations were required to determine the concentration.¹ Analysis of the data gave a value of 7.8 to 8.0 g Pu/ ℓ . A later evaluation of these data produced a value of 7.2 g/ ℓ (Ref. 2).

Criticality experiments have been performed previously on small spheres with high-plutonium concentration.³ The present experiments were performed using a very large (4-ft-diam) sphere to obtain a low-leakage plutonium system suitable for determining the thermal value of eta.

¹R. H. MASTERSON, J. D. WHITE, and T. J. POWELL, "The Limiting Critical Concentrations for ²³⁹Pu and ²³⁵U in Aqueous Solutions," HW-77089, Hanford Atomic Products Operation (1963).

²C. R. RICHEY, Trans. Am. Nucl. Soc., 17, 279 (1973).

³R. C. LLOYD, C. R. RICHEY, E. D. CLAYTON, and D. R. SKEEN, *Nucl. Sci. Eng.*, **25**, 165 (1966).

A discussion of these experiments was presented⁴ previously, and a copy of that presentation was distributed. This paper gives a more detailed analysis of the experimental data using better estimates of the plutonium concentration of the experimental solutions.

Also, the data from this experiment were used as the basis for the subcritical limit on concentration⁵ being proposed in a revision of the American National Standard for Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors.⁶

II. EXPERIMENTAL METHOD

The 4-ft-diam aluminum sphere is shown in Fig. 1. This sphere was previously used in critical experiments at the Oak Ridge National Laboratory (ORNL) in the measurement of eta for uranium in critical aqueous solutions.⁷ The plutonium in the current experiments was selected for its low ²⁴⁰Pu content of 2.52 wt%. The sphere volume was 949.1 &. For low-plutonium concentrations in aqueous solutions, the neutron leakage from a sphere of this size will be no more than a few percent. A series of measurements was made with Pu(NO₃)₄ solutions with plutonium concentrations ranging from 11 to <9.5 g Pu/& with nitric acid molarity near unity.

III. THEORETICAL BASIS

The critical equation for an aqueous homogeneous thermal system can be written as

$$k_{eff} = k_{\infty} P(B) = 1 \quad , \tag{1}$$

in which P(B) is the nonleakage probability and the infinite reproduction factor $k_{\infty} = \bar{\eta} f F$. The factor F accounts for epithermal fission and absorption of neutrons while slowing down; f denotes the common thermal utilization. As the system is increased in size, the neutron leakage becomes small, and P(B) will approach unity. Under these circumstances, $\bar{\eta}$ (apart from small corrections for epithermal fissions) will become equal to 1/f (the reciprocal of the thermal utilization). The measurement of eta then depends on

Fig. 1. Large aluminum sphere used in eta experiment.

- 1. knowledge of absorption cross sections for the aqueous solutions in question in order to compute f
- 2. the nonleakage probability, which must be either computed or measured.

A dilute homogeneous aqueous solution was used so that the critical size would be large [1 - P(B)small] and the neutrons would be well thermalized. Both conditions are required for an accurate measurement of eta. Small neutron leakage means less dependence on the accuracy of either the measured or calculated values of the critical (geometrical) buckling, the age, and thermal diffusion length; thermal neutron absorption cross sections are relatively well known.

The value of eta from Eq. (1) is given by

$$\bar{\eta} = \frac{k_{eff}}{fFP(B)} \quad . \tag{2}$$

For the critical sphere we obtain

$$\bar{\eta} = \frac{1}{fFP(B)} \quad , \tag{3}$$

⁴R. C. LLOYD, R. A. LIBBY, and E. D. CLAYTON, *Trans. Am. Nucl. Soc.*, **28**, 292 (1978).

⁵H. K. CLARK, Nucl. Sci. Eng., **79**, 65 (1981).

⁶⁴ American National Standard for Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors," N16.1-1975 (ANS-8.1), American Nuclear Society (1975).

⁷R. GWIN and D. W. MAGNUSON, *Nucl. Sci. Eng.*, 12, 364 (1962).

Experiment Number	Extrapolated ^a Critical Volume (l)	Plutonium Concentration ^b (g/l)	HNO3 Molarity	Specific Gravity
3	656.6 ± 0.5	10.02	1.10	1.055
5	906.5 ± 0.1	9.539 ± 0.033	1.10	1.053
7	991.8 ± 0.8	9.374 ± 0.048	1.11	1.053
Interpolated critical	949.1 ± 5.3	9.457 ± 0.029	1.105 ± 0.01	1.053 ± 0.005

TA	BL	Æ	I
----	----	---	---

Experimental Results

^aThe critical volume was determined by extrapolation of the inverse multiplication curves near criticality (vessel contained >95% of the critical mass). ^bThe plutonium concentrations were chosen from two sets of chemical analyses. Although the two sets of values were in good

agreement, one set was discarded because of problems later disclosed with the chemical analysis technique.

where

$$F = \frac{\overline{\Sigma}_{ax}}{\overline{\Sigma}_{at}}$$

in which $\overline{\Sigma}_{ax}$ is the average thermal macroscopic absorption cross section of the fuel, and $\overline{\Sigma}_{at}$ is the average total thermal macroscopic absorption cross section. Furthermore,

 $F = \epsilon p$

in which ϵ is the fast fission factor and p is the resonance escape probability;

$$P(B) = \frac{1}{(1 + L^2 B^2)(1 + \tau B^2)} ,$$

where

L = diffusion length

 B^2 = critical buckling

 τ = Fermi age.

Values for these parameters are calculated from data in Sec. IV.

IV. EXPERIMENTAL RESULTS

The data from the critical approaches on the large sphere, and the chemical analyses for the associated solutions, are given in Table I. The capacity of the aluminum sphere was taken to be 949.1 l, based on the following ORNL description:

"Hemispherical shells die-formed from type 1100 aluminum plate were welded to form the sphere. Flanged tubes 3 in. [7.62 cm] in diameter were welded at the poles. Sonic measurements of the wall thickness ranged from 0.26 to 0.35 in. [0.66 to 0.89 cm]. The average thickness, based on the weight of aluminum in the shells, was 0.303 in. [0.77 cm]. The capacity, 949.1 liters, was measured by weighing the water contained by the sphere. The volumeaveraged diameter was 48.04 in. [122.02 cm]. The outside diameter was measured at 28 places and found to be 48.65 ± 0.09 in. [123.57 ± 0.23 cm]. Maximum and minimum values were 48.87 and 48.50 in. [124.13 and 123.19 cm]. The interior surfaces were coated with a phenolic base baked-on enamel to prevent corrosion.'

The critical concentration for the full sphere was determined by a linear interpolation between experiments 5 and 7. The plutonium concentrations determined by chemical analyses at the critical volumes are also shown in Table I.

Table II gives the plutonium isotopic distribution. The elemental impurities are shown in Table III. All experiments were performed at a temperature of 23 ± 0.5°C.

V. ETA EVALUATION

The atom densities for the critical spherical solution are shown in Table IV. The thermal neutron

TABLE	Π
-------	---

Plutonium Isotopic Distribution

Isotope	wt%
238Pu 239Pu 240Pu 241Pu 242Pu	$\begin{array}{c} 0.004 \pm 0.001 \\ 97.386 \pm 0.003 \\ 2.521 \pm 0.001 \\ 0.075 \pm 0.001 \\ 0.014 \pm 0.001 \end{array}$

TABLE III Chemical Impurities

Element	Concentration by Weight Relative to Plutonium (ppm)
Aluminum	10 000
Barium	10
Beryllium	4
Boron	14
Bromine	10
Cadmium	7
Calcium	300
Chlorine	200
Chromium	1 500
Cobalt	10
Copper	50
Dysprosium	7
Europium	10
Fluorine	1 000
Gadolinium	10
Gallium	5 000
Germanium	3
Iron	7 000
Lead	35
Lithium	6
Magnesium	200
Manganese	150
Molybdenum	15
Nickel	1 000
Phosphorus	1 000
Potassium	100
Samarium	20
Silicon	500
Silver	10
Sodium	300
Sulfur	1 000
Tantalum	50
Tin	15
Titanium	20
Tungsten	68
Uranium-235	300
Vanadium	10
Zinc	50
Zirconium	30

cross sections used in the calculations are from ENDF/B-IV (Ref. 8) and are listed in Table V. The parameters used in the calculation of eta using Eq. (3) are given in Table VI. The fast fission factor and the effect of absorption of neutrons while

TABLE IV

Atom Densities in	i Unitical Sol	lutior
-------------------	----------------	--------

Isotope	Atom Density (atom/b·cm)
²³⁸ թվ	$(1.077 \pm 0.239) \times 10^{-9}$
²³⁹ թվ	$(2.3202 \pm 0.0071) \times 10^{-5}$
240թվ	$(5.9813 \pm 0.0218) \times 10^{-7}$
241թվ	$(1.7720 \pm 0.0242) \times 10^{-8}$
²⁴² Pu	$(3.294 \pm 0.239) \times 10^{-9}$
Hydrogen	(6.4844 ± 0.0280) × 10 ⁻²
Nitrogen	(7.6078 ± 0.0603) × 10 ⁻⁴
Oxygen	(3.4372 ± 0.0141) × 10 ⁻²

slowing down were derived from calculations by the EGGNIT code.¹² Values for the age and L^2 were also obtained from EGGNIT.

The value of eta that results from the critical data is 2.056 ± 0.037 . This corresponds to a 2200 m/s value of 2.100 ± 0.041 , which compares to the presently accepted value of 2.111 ± 0.008 (Ref. 11). A sensitivity analysis was made to determine the major source of uncertainty in the calculated value of eta. The largest single source of error is the uncertainty in the thermal fission cross section for ²³⁹Pu. The value used was 754.84 ± 4.5 b from Leonard and Thompson.¹¹ This uncertainty alone is equivalent to an uncertainty in eta of ±0.029 and of $\eta(2200 \text{ m/s})$ of ± 0.033 . The uncertainty in $\overline{\eta}$ due to uncertainties in atom densities (including uncertainties in the critical concentration, isotopic distribution, nitrate concentration, and plutonium concentration) is ± 0.016 and for $\eta(2200 \text{ m/s})$ is ±0.017. The uncertainty due to variation in extrapolation length for the buckling calculations amounts to ± 0.013 in $\overline{\eta}$ and ± 0.014 for $\eta(2200 \text{ m/s})$.

VI. MINIMUM CRITICAL CONCENTRATION

The minimum critical concentration for plutonium was determined by first calculating k_{eff} for a

⁸D. I. GARBER and C. BREWSTER, "ENDF/B Cross Sections," BNL-17100 (ENDF-200), 2nd ed., Brookhaven National Laboratory (1975).

⁹J. W. BOLDEMAN, "Review of $\bar{\nu}$ for ²⁵²Cf and Thermal Neutron Fission," Neutron Standards and Applications, Proc. Int. Specialists' Symp. Neutron Standards and Applications, Gaithersburg, Maryland, March 28-31, 1977, NBS Special Publication 493, p. 182, U.S. National Bureau of Standards (1977).

¹⁰C. WAGEMANS and A. J. DERUYTTER, Annals of Nuclear Energy, Vol. 2, p. 541, Pergamon Press (1975).

¹¹B. R. LEONARD, Jr. and J. K. THOMPSON, "Evaluation of the Thermal Cross Sections of ²³⁹Pu and ²⁴¹Pu," EPRI NP-1763, Electric Power Research Institute (1981).

¹²C. R. RICHEY, "EGGNIT: A Multigroup Cross Section Code," BNWL-1203, Pacific Northwest Laboratory (1969).

memai reaction closs-section Data mont various sources (Refs. 6 through 11)					
Isotope	Neutrons per Fission, v	Microscopic Fission Cross Section, <i>o_F</i> (b)	Fission Non-1/v Factor, <i>8F</i>	Microscopic Absorption Cross Section, σ_a (b)	Absorption Non-1/v Factor, g _a
²³⁸ Ри ²³⁹ Ри ²⁴⁰ Ри ²⁴¹ Ри	$\begin{array}{c} 2.90 \pm 0.03 \\ 2.863 \pm 0.010 \\ 2.17 \pm 0.01 \\ 2.918 \pm 0.010 \end{array}$	16.3 ± 0.5 754.84 ± 4.5 0.058 ± 0.045 1003.8 ± 8	$\begin{array}{c} 0.95326 \pm 0.01^{a} \\ 1.05353 \pm 0.0015 \\ 1.02511 \pm 0.01^{a} \\ 1.046 \pm 0.006 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{r} 0.95380 \ \pm 0.01^a \\ 1.07620 \ \pm 0.00837 \\ 1.02639 \ \pm 0.01^a \\ 1.037756 \pm 0.006 \end{array}$
²⁴² Pu Hydrogen Nitrogen Oxygen	 	 	 	$18.485 \pm 0.4 \\ 0.332 \pm 0.002 \\ 1.894 \pm 0.05 \\ (2.7 \pm 0.25) \times 10^{-4}$	1.0100 ± 0.01 ^a 1.000 1.000 1.000

TA	BL	Æ	V
----	----	---	---

Thermal Neutron Cross-Section Data from Various Sources (Refs. 8 through 11)

^aEstimated uncertainty.

TABLE VI

Eta Calculation Parameters

Parameter	Value		
Σ_{ax} Σ_{at} f	$\begin{array}{r} 2.56843-2^{a}\pm2.517-4\ \mathrm{cm^{-1}}\\ 4.88332-2\ \pm3.006-4\ \mathrm{cm^{-1}}\\ 0.52596\ \pm0.00609\end{array}$		
F T	$\begin{array}{c} 0.99129 \pm 0.00524 \\ 26.564 \pm 0.230 \text{ cm}^2 \\ 26.564 \pm 0.230 \text{ cm}^2 \end{array}$		
$ \begin{array}{c} L^{2} \\ Bg^{2} \\ P(B) \end{array} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
η η (2200 m/s)	$\begin{array}{ccc} 2.056 & \pm 0.037 \\ 2.100 & \pm 0.041 \end{array}$		

^aRead as 2.56843×10^{-2} .

series of critical spheres containing $Pu(NO_3)_4$. The eigenvalues were plotted versus the hydrogen-toplutonium (H/Pu) atomic ratio, and the curve that best fit the data was extrapolated to the curve for k_{∞} of (²³⁹Pu + H₂O) systems. This technique, attributed to Clark by Richey,² removes the calculational bias with varying H/Pu atomic ratio. This bias may be due to either calculated neutron leakage or plutonium concentration effects.

Eight critical systems in addition to the one reported here were employed in the extrapolation. These are the same eight systems evaluated by Richey¹³ from experiments by Lloyd et al.³ The k_{eff} of the spheres were computed using ENDF/B-IV cross-section data in an 18-group calculation with the HFN code.¹⁴ Epithermal energy groups were obtained via application of the ETOG code¹⁵ and the GAM portion of the EGGNIT code,¹² and the single thermal group data via the FLANGE code¹⁶ followed by the TEMPEST portion of the EGGNIT code.

The calculated eigenvalues for these critical experiments using ENDF/B-IV data are shown in Table VII. Richey indicated the old data are best fitted to a straight line, which extrapolates to a minimum critical concentration between 7.1 and 7.2 g Pu/ ℓ . The calculated curve shape is changed by both the addition of the present experiment and the recalculation of the older experiments using ENDF/B-IV library data. The best fit is obtained with a logarithmic function rather than a straight line. The eigenvalues from Table VII are plotted in Fig. 2, a semilog plot.

Although the eigenvalues in Table VII are functions of many variables, the only variable with a clear trend is the H/Pu atomic ratio. Such other variables as nitrate concentration, reflection, geometry, and ²⁴⁰Pu content may well have associated biases, but

¹³C. R. RICHEY, Nucl. Sci. Eng., 31, 34 (1968).

¹⁴J. R. LILLEY, "Computer Code HFN-Multigroup, Multiregion Neutron Diffusion Theory in One Space Dimension," HW-71545, Hanford Atomic Products Operation (1961).

¹⁵D. E. KUSNER, R. A. DANNELS, and S. KELLMAN, "ETOG-1: A FORTRAN-IV Program to Process Data from the ENDF/B File to the MUFT, GAM and ANISN Formats," WCAP-3845-1 (ENDF-114), Westinghouse Electric Corporation (1969).

¹⁶H. C. HONECK and D. R. FINCH, "FLANGE-II (VERSION 71-1): A Code to Process Thermal Neutron Data from an ENDF/B Tape," DP-1278 (ENDF-152), Savannah River Laboratory (1971).

LLOYD et al.

TABLE VII

H/Pu Sphere		Chemical Concentration (g/l)				
Ratio	(cm)	(cm) Reflector		NO ₃	H ₂ O	^K eff (Diffusion theory)
	4.6 wt% ²⁴⁰ Pu					
754	35.6	Full water	33.0	162	924.9	1.0304
466	35.6	Full water	47.9	465	774.4	1.0382
354	29.2	Full water	73.0	86	970.9	1.0459
87	29.2	Full water	268.7	346	868.0	1.0531
1068	38.6	Full water	24.4	58	976.9	1.0251
553	38.6	Full water	38.7	517	736.6	1.0355
668	38.6	(0.12 - cm-thick)	39.0	64	977.8	1.0375
125	38.6	(stainless steel ∫	172.8	483	765.8	1.0495
	2.5 wt% ²⁴⁰ Pu					
2722.0	123.6	0.77-cm-thick aluminum	9.457	78.3	959.9	1.0196

Computed Eigenvalues for Critical Assemblies of Aqueous Solutions of Pu(NO₃)₄

Fig. 2. Experimental eigenvalues and calculated ²³⁹Pu-water data.

the limited data do not yield a significant bias function. Thus, the minimum critical concentration is determined using the assumption that all bias is a result of the H/Pu bias. Calculations were made to determine the infinite multiplication factor of plutonium-water mixtures and $Pu(NO_3)_4$ -water systems. These results are shown in Table VIII. Figure 2 shows the calculated values of k_{∞} plotted on the right side of the graph. The line through the experimental critical values is extrapolated until it intersects the k_{∞} curve. This line was determined by a least-squares regression to fit an equation of the form

The point of intersection yields the critical concentration with the calculational bias in k_{eff} as a function

TABLE VIII Calculated k_{∞} for ²³⁹Pu-Water and ²³⁹Pu(NO₃)₄-Water

	Plutonium-Water		Pu(NO	3)4-Water
g Pu/l	H/Pu	k _∞	H/Pu	k _∞
7.0 7.2 7.4 7.6 7.8 8.0	3789 3683 3584 3489 3400 3315	0.9754 0.9899 1.0041 1.0178 1.0313 1.0444	3782 3676 3577 3482 3393 3308	0.9733 0.9877 1.0018 1.0155 1.0289 1.0419

of the H/Pu atomic ratio eliminated. For plutoniumwater mixtures, the minimum critical concentration is 7.59 g Pu/l or H/Pu equal to 3495. The minimum critical concentration for Pu(NO₃)₄-water systems (Fig. 3) is 7.62 g Pu/l or H/Pu of 3472.

The uncertainty in the plutonium concentration for the sphere experiment results in an uncertainty of less than ± 0.1 g Pu/l in the minimum critical concentration for aqueous plutonium systems. The impurity levels are so low that the inclusion or exclusion of impurities make <0.001 change in Δk of the sphere, which results in <0.01 g Pu/l uncertainty in the minimum critical concentration.

ACKNOWLEDGMENT

This paper was prepared for the U.S. Department of Energy.

