B. G. CARLSON, C. LEE, AND W. WORLTON, "THE DSN AND TDC NEUTRON TRANSPORT CODES," LOS ALAMOS SCIENTIFIC LABORATORY REPORTS LAMS-2346 AND LAMS-2346, APPENDIX 1 (OCTOBER 1959).

LOS ALAMOS SCIENTIFIC LABORATORY OF THE UNIVERSITY OF CALIFORNIA O LOS ALAMOS NEW MEXICO

THE DSN AND TDC NEUTRON TRANSPORT CODES

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Printed in USA. Price $\$ 1.25$. Available from the
Office of Technical Services U. S. Department of Commerce Washington $25, \mathrm{D} . \mathrm{C}$.

LOS ALAMOS SCIENTIFIC LABORATORY OF THE UNIVERSITY OF CALIFORNIA LOS ALAMOS -NEW MEXICO

REPORT WRITTEN: October 16, 1959

REPORT DISTRIBUTED: February 12, 1960

THE DSN AND TDC NEUTRON TRANSPORT CODES

by

B. Carlson C. Lee
J. Worlton

Contract W-7405-ENG. 36 with the U. S. Atomic Energy Commission

> All LAMS reports are informal documents, usually prepared for a special purpose and primarily prepared for use withln the Laboratory rather than for general distribution. This report has not been edited, reviewed, or verified for accuracy. All LAMS reports express the views of the authors as of the time they were written and do not necessarlly reflect the opinions of the Los Alamos Scientific Laboratory or the final opinion of the authors on the subject.

ABSTRACT

This report describes two reactor codes, one for the one-dimensional geometries (DSN) and the other for the finite cylindrical case (TDC), based on the transport difference equations and calculation methods developed in Numerical Solution of Transient and Steady State Neutron Transport Problems (LA-2260).

Appendices I and II, which contain the actual machine codes, have been separated from the descriptive part of the report to make it easier for the user to study the material and apply it to problems.

CONTENTS

Page
Abstract iii
I. Introduction 1
II. The DSN Parameters 4
III. The TDC Parameters 13
IV. The Formula Codes in DSN 16
V. The Formula Codes in TDC 25
VI. Arrangement of the DSN and TDC Decks 29

I. INTRODUCTION

By means of the reactor codes presented here, the DSN and TDC codes, a variety of neutron transport problems may be solved. These codes are written in the language of Floco $I I^{l}$ for use on the IBM Type 704 calculator, and are based on a modified S_{n}-approach to the numerical solution of the transport equation. ${ }^{2}$ The DSN code applies to systems described by one space variable, i.e., to systems with infinite plane (slab), infinite cylindrical (rod), or spherical symmetry. In essence it replaces the SNG code, ${ }^{3}$ but also expands upon that code, since a number of new features have been added in DSN.

The S_{n} method was reexamined about six months ago, and it was then found that the method could be simplified and generalized, to make it practical to consider multi-dimensional transport calculations. The TDC code represents the first code, based on the new approach, capable of handling more than one variable. It pertains to a two-dimensional

1. The Floco II Manual, LAMS-2339
2. Numerical Solution of Transient and Steady-State Neutron Transport Problems, LA-2260
3. The S_{n} Method and the SNG Code, LAMS-2201 (T-1-159).
system, the finite cylinder. To date, TDC calculations have shown every sign of being stable, accurate, and reasonably rapid, competing well in speed - in contrast to SNG and DSN - with the corresponding diffusion calculations. With success in the case of the finite cylinder, it should be a routine matter to write other multi-dimensional transport codes.

With the new S_{n} difference equations one obtains physically reasonable results even with relatively few intervals, for no restrictions are placed on interval sizes. One can, in fact, use the DSN code to solve infinite medium problems, by using just one very large interval. Normally, we feel, it should be sufficient to use half as many intervals in each variable as one is accustomed to use in diffusion calculations, and fewer than this - for example in parameter studies - if the geometry of the reactor permits it. High-precision calculations will however, as always, require high order S_{n} calculations with a large number of space intervals. To save time, such calculations should of course be started from results obtained by cruder intervals and a lower n.

The Floco II system is a considerably improved symbolic "load-andgo" coding system, particularly with regard to symbolism, input-output features, and programming control. The DSN and TDC codes handle very extensive problem complexes. It would be impractical to code such problems in either FORTRAN or SAP-type coding systems, unless, of course, one is satisfied with dividing the complexes in many separate codes with fixed limits on the number of materials, space points,
velocity groups, etc.
Since the Floco II language is simple, brief, and precise, it is not necessary to describe every detail of a code verbally. With respect to DSN and TDC, the user should first familiarize himself with the reports LA-2260 and LAMS-2339 and, second, with the actual codes, Appendix I (of this report) for $D S N$ and Appendix II for $T D C$, and then examine these codes for details when questions arise. Brief definitive descriptions of the two codes will be given below. In general, a particular problem is defined by a set of input parameters plus a set of functions, some of which require input, and the solution results from executing a collection of coded formulae under control of a master code (the Flow Code, here formula \#803).

The DSN code contains about 1800 instructions, the TDC about 2000, and Floco II itself occupies about 2500 memory locations. The codes can therefore be used on 704's with memory capacities of 8192 or more words. Although both codes are by now fairly well checked out, other difficulties may arise in some applications. A few of the numerical methods involved are new and not yet fully understood; in some instances they could possibly fail. The code admits physically questionable input data, e.g., negative scattering cross sections; in such cases no guarantees can be made. For some problems single precision 704 arithmetic is not adequate for the accuracy required, etc. To date, however, we have not encountered, in our own applications, any impossible situations.

II. THE DSN PARAMETERS

To prepare a DSN calculation, 28 parameters must be specified as follows (for example, see Appendix I):

AO1 The regular $(A O 1=0)$ or adjoint $(A O 1=1)$ solution of the transport equation may be specified.

A02 The problem type may be either inhomogeneous ($A 02=0$), or homogeneous ($A 02 \neq 0$) with an "eigenvalue" to be determined. If A02 $\neq 0$ the reactor must contain fissionable material. \quad A02 $=1$ implies a reactivity (k) calculation, i.e., DSN is to vary k (which divides the fission density FO) until criticality is achieved. $A 02=2$ specifies a type of time-dependent (α) calculation. The neutron flux is assumed separable with respect to the time t and the time variation given by a factor $\exp (\alpha, t)$. The quantity α enters into the collision term only, σ is replaced by $\sigma+\alpha / v$, where v is the neutron velocity. $A 02=3$ implies that the concentration (c) of specified isotopes is to be varied. The vector PO is furnished with basic concentrations, P 4 with modifiers, and DSN computes the effective concentrations from $P O+c \cdot P 4($ see further $p \cdot 10) \cdot A 02=4$ specifies that the thick nesses of certain material zones are to be varied (δ-calculations). The interval lengths (D6) given implicity by the input radial points, and the δ-modifiers ($D 4$) listed by zones (numbered 1,2,3,..., and given by interval \# in R7), are used to calculate
the effective intervals ($D 1$): $D 1=D 6(1+\delta D 4)$. If $A O 2=5$, the whole reactor is to be uniformly expanded or contracted (a-calculations) until criticality is achieved.

A03

The geometry may be either slab $(A 03=0)$, $\operatorname{rod}(A O 3=1)$, or sphere ($A 03=2$) .

A04 The central ($r=0$) boundary condition is specified by A04. For rods and spheres it is assumed always perfectly reflective ($A 04=1$). For slabs there are two other options, $A 04=0$ signals a free boundary (vacuum to the left) and is used when the slab system is not symmetric about a central plane. $A 04=2$, which implies $A 05=2$, specifies a periodic condition, i.e., the flow at the center (for each angular direction into the reactor) equals the flow at the outer boundary (for the corresponding outward directions).

A05 The outer ($r=a$) boundary condition is specified by A05. It may call for zero inward flow ($A 05=0$), perfect reflection ($A 05=1$), or slab periodicity as defined under A04 (AO5 = AO4 = 2), now involving those S_{n} angular rays directed to the left.

A06

 The outer (power) iteration count is produced in A06. Initially A06 is set to 0,1 , or 2 , to start the count and at the same time specify the input neutron flux. If $A 06=0$ or 1 , the coder provides a flux as a function of r for $N 4$. If $A 06=0$, DSN places $N 4$ inblock NO - where the flux as a function of r (radius) and g (velocity group) is to be located - for $g=$ the base group (GO2) with zeroes in all other NO locations. If $A 06=1$, then K7 •N4 is placed in NO, where $K 7$ is the relative fission spectrum as a function of g. Exceptions: if $\mathrm{AOI}=1$ or $\mathrm{AO2}=0$, then $\mathrm{AOK}=1$ is assumed equivalent to $A 06=0$. If $A 06=2$, then a dump (result from a previous calculation) or other complete input for NO is provided by the coder. This input must have IO4 (no. of intervals) and GOl (no. of velocity groups) as required by the problem being prepared. If $A 06=-2$, then the complete input for NO has IO4 $=1 / 2$ of the IO4 for the problem.

A07 The order of the desired S_{n} approximation ($2,4,6, \ldots$) is given in A07. The coder supplies a set of S_{n} constants (Appendix I) for input into blocks M5, M6, M7. One set is used if AO3 = 0 or 2, another if $\mathrm{AO} 3=1$, and the latter is expanded (with input for M4 also) for the TDC code.

IOI

IO1 is the problem identification number, a fixed or floating point number.

I02 gives the number of material zones in the reactor, a zone being a more or less arbitrary grouping of contiguous intervals. One usually takes a zone to mean a reactor region with uniform material composition, involving a fixed density and isotope
combination.

103
Multi-group transport theory with either isotropic (IO3 =0) or a form of linear anisotropic (IO3 $=1$) scattering may be specified. TDC handles the first of these cases only.

IO4
The total number of space (r) intervals in the system, $i=1,2, \ldots, I O 4$.

I05 IO5 gives the first guess for the eigenvalue (k, α, c, δ, or a). Enter zero here and in IO6 if $A 02=0$. If IO5 specifies a, this quantity need not equal the last radial point given; the code adjusts the radii (RI) by the appropriate factor.

I06 The second eigenvalue guess is given here.

IO7 This parameter specifies $\epsilon(\lambda)$, the precision wanted of the calculation. The precise meaning of ϵ can only be ascertained from experience with many calculations. Here λ is the total neutron population decay factor. If $\lambda<1$ the system is super-critical, if $\lambda>1$ the system is sub-critical. A λ is computed for each power iteration (during which the fission density is held fixed) and four successive λ 's are saved. Convergence for a particular eigenvalue (p) is defined by $\left|\lambda_{k}-\lambda_{k-1}\right|<\epsilon(\lambda)$ for all three values of $\lambda_{k}-\lambda_{k-1}$. Final convergence is defined by $\left|1-\lambda_{k}\right|<2 \epsilon(\lambda)$ for the four values of $1-\lambda_{k}$ available. After

DSN has determined λ (IO5) and λ (IO6), it proceeds to use an interpolated value (corresponding to $\lambda \approx 1$) saving the quantity $d p / d \lambda$ for the further modification of p which may be required before the final convergence criterion is satisfied. where $g=1$ represents the neutrons of highest energy (lowest lethargy), and $g=G O 1$ the lowest energy group. If $A O 1=1$ the cross section matrices in block CO are internally rearranged so that the a regular solution procedure is imitated. In the process the ordering of the groups is reversed by the code.

The base group GO2 is normally taken to be the group of highest energy with non-zero neutron flux (initially and throughout the calculation), thus if $A O 1=0, G O 2=1$, and if $A O 1=1, G O 2=G O 1$. Other choices may be made if these particular groups are vacuous or contain but few neutrons. The point of the base group is that the code computes a "distance" (ϵ_{k}) between successive fluxes ($\mathrm{NO}^{\mathrm{k}}, \mathrm{NO}^{\mathrm{k}-1}$) for that group, whereupon calculations (one or more "inner" iterations) are performed on the succeeding groups until the equivalent accuracy, at least, has been achieved for these. The base group should therefore be one with a comparatively long neutron mean free path (on the average over the reactor).

GO3, GO4, GO5 specify the form of the cross section matrices, which
contain one column for each group. Position GO3 in a column contains σ^{t}, the total transport cross section, with position GO3 - 1 occupied by $v \sigma^{f}, v$ times the fission cross section. If GO3 > 2, the positions above GO3 - 1 may be filled by other cross sections of the coder's choice. These are not used by the DSN code except in the preparation of "activities," i.e., cross sections times the final neutron fluxes. The position GO4 contains $\sigma_{g g}^{s}$ (self-scattering). The positions $G 03+1$ to $G 04$ - I, if any, are filled with speed-up cross sections, position GO4 - 1 with scattering cross sections from the group below (in energy), position GO4 - 2 with similar data for moving neutrons up two steps in energy, etc. GO5 specifies the last position in the column. Positions GO4 + 1 to GO5 are filled with slowing-down cross sections, position GO4 +1 with data for slowing down by one step, etc. Positions in the matrix with no physical meaning are filled with zeroes. Note also that DSN assumes that if position $\mathrm{g}^{\prime}, \mathrm{g} \mathrm{g}^{\prime}>\mathrm{GO}$, contains a zero, all succeeding entries are zero. Three additional vectors are regarded as part of the cross section input, the relative fission spectrum (K7), the velocities (VI), and v as a function of $g(N 7)$.

MO1 The total number of isotopes for which input cross sections (for CO) are provided is specified in MOL. The isotopes are numbered ($1,2, \ldots, \mathrm{MOL}$) in the order loaded. If a material is described as anisotropic in scattering, two matrices are provided, and the subsidiary one is loaded just after the principal one, and numbered accordingly. The subsidiary table contains only speed-up and slowing-down cross sections. In entering MOl one must then count anisotropic materials twice.

The total number of isotopes and isotope combinations are specified in M02. The latter are numbered $\mathrm{MOL}+1, \mathrm{MOL}+2, \ldots$, MO2, with two successive numbers assigned to anisotropic combinations. The composition of mixtures are specified in IO and PO if MO2 $>$ MOI. Thus, if three materials $(1,2,3)$ are involved (MO1 $=3$) and two mixtures (4,5) are to be formed, \#4 from 1 and 3 with densities ρ_{1}, ρ_{2}, and \#5 from 1, 2, and 3 with $\rho_{3}, \rho_{4}, \rho_{5}$ (MO2 = 5); enter $1,3,-4,1,2,3,-5$ in $I O$ and $\rho_{1}, \rho_{2}, 0, \rho_{3}, \rho_{4}, \rho_{5}, 0$ in PO (MO3 $=7$). The minus sign on material numbers signals mixtures to be formed. If material \#2 in this example is anisotropic the basic materials would be 1, 2, 3, 4 (MO1 $=4$) the mixtures 5 and 6 (MO2 $=7$), and the 10 entries $1,4,-5,1,2,4,-6$. In the latter case one must also fill I4, of length MO2, to mark with l's the anisotropic materials; in this example the I4 entries are $0,1,0$, $0,0,1,0$.

MO3
M03 specifies the number of entries required in IO (or PO) to define the desired isotope combinations. If MOI $=$ MO2, then MO3 $=0$.

MO4 The order of "smear" is specified in MO4. By smear we mean mixtures of isotopes and isotope combinations, by order of smear, the maximum (over all space intervals) of entries required to specify the material composition in any interval. If no smear is required, i.e., if all intervals can be specified in terms of the materials 1,2, .., MO2, then MO4 = 1. Smears may be used in a variety of situations, e.g., when there is differential loading or burn-out within a zone, or variable interpolation between two cross section sets, due for instance to temperature variation in the reactor, etc.

M05 M05 gives the number of entries required in M3 (material \#'s) and R3 (densities) to specify the material composition (smear) in every interval. If MO4 = 1 and the material composition is uniform by zone, then $M 05=102$. The vector R3 contains, of course, sets of specifications. The last entry in a set is signaled by giving it a minus sign. So that DSN can find the material definition for a particular interval, the coder provides in S7, by interval \#, the position of the first entry of the set in R3 which applies.

M06, M07 are used by DSN, but are not input parameters; enter zeroes.

SO1 The absence $(S O 1=0)$ or presence $(S O 1=1)$ of a distributed source $Q O$ is specified here.

SO2, SO3 are not used by DSN; enter zeroes.

SO4 The absence $(S O 4=0)$ or presence $(S O 4 \neq 0)$ of a surface source Q4 at the outer boundary is specified here. If $\mathrm{SO} 4 \neq 0$, which implies $A 05=0$, then $Q 4$ contains either one vector $q_{g}(S O 4=1)$ or two successive vectors $q_{g} q_{g}^{\prime}\left(S O_{4}=2\right)$. In the first case an isotropic source is assumed with q_{g} as input for each negative S_{n} direction (μ), in the second case (linear source), DSN computes $q_{g}+|\mu| q_{g}^{\prime}$ as the boundary input.

S05, S06 If $\mathrm{SO5}=0$, no effect, if $\mathrm{SO5}=1$, the calculation assumes a fixed k given in $S 06$ and $A O 2$ may have any value except 1. If $S 05=2$, the calculation assumes a fixed α given in $S 06$ with any A02 $\neq 2$.

SO7 SO7 is used by DSN, but is not an input parameter; enter zero.

The parameter specifications in TDC, 30 in number, are quite similar to those in DSN.

AO2 See DSN if AO2 $=0$ and for k, α and c calculations. $A O 2=5$ is omitted in TDC; it is a special case of $A O 2=4 \cdot$ If $A O 2=4$, then the thicknesses of zones (either cylindrical shells, slices or both) may be varied until criticality is achieved. The effective r-intervals (D1) are given as in DSN by $D 1=D 6(1+8 D 4)$. Similarly, for intervals in the axial variable z (Z1): $D 2=D 7(1+\delta D 5)$, where $D 5$ are modifiers by axial zone \#'s (Z 7). If no input is provided for R7 and Z7, and if D4 and D5 are constant (one entry for each), then $R 7$ and 27 are set to all l's by the code, and we have effectively an a-calculation. Special cases here are $D 4 \neq 0, D 5=0$, or vice versa.

In TDC AO3 specifies the boundary condition at the bottom of the cylinder. If the cylinder is symmetric about a central plane perpendicular to the axis, that plane is at the bottom. At the boundary we may then call for zero input $(A 03=0)$ or perfect reflection $(A 03=1)$.

The top boundary condition is specified here. It may call for zero flow in $(A O 4=1)$ or for reflection $(A O 4=1, S O 3=1)$, not perfect reflection here, but one correct as far as the current is concerned. In the future, we may substitute a more proper procedure here.

A05 Same as A04 but referring to the free (curved) surface of the cylinder. If $\mathrm{AO}=1, \mathrm{SO}=1=1$ also.

A06, A07 as for DSN, except that, if $A 06=-2$, then the complete input for NO has $I O 3$ and $I O 4=I / 2$ of the $I O 3$ and $I O 4$ for the problem. Note also that TDC performs an S_{2} calculation (the S_{2} constants are always loaded into E4, E5, E6, and E7) during the "discrete" part of the iteration scheme, i.e., up to the point where $d p / d \lambda$ is first calculated, whereupon a switch is made to the precision specified in A07. The object of this procedure is, of course, the saving of computing time.

IO1, IO2 as for DSN, with the comment that the zone \#'s (listed by interval \#) are stored in $F O$, in the last few bits of the words, and are here not to be confused with the r and z zoning ($R 7, Z 7$) defined for δ-calculations. To save space in TDC, two blocks besides FO are double-valued. The quantities labeled S7 in DSN are placed in the lower bits of the words in WO, and the material \#'s labeled M3 in DSN are similarly placed in NO -
initially - then merged with R3 by TDC before NO is loaded with the initial flux.

I03 The total number of intervals in the axial direction, $j=1,2, \ldots$, IO3, starting at the bottom of the cylinder.

104-IO7, GO1-GO7, and MO1-MO7 as in DSN.

SO1 and SO2 specify the distributed source; if none, enter zeroes. SO1 gives the number of the first group with non-zero input for QO, and $\mathrm{SO2}$ gives the total number of consecutive groups with source input. If some groups within this range have no source, enter the appropriate number of zeroes as part of $\mathbf{Q O}$.

S03 The presence of an isotropic boundary source at the top of the cylinder is specified by $\mathrm{SO}=1$ (if none, set $\mathrm{SO}=0$) . If SO3 $=1$, then $A 04=0$.

S04 Same as SO3 for the free boundary. If $S 04=1$, then $A 05=0$. S05-S07 as for DSN.

The DSN code contains 36 formulae numbered from 800 to 847 , where 800 , the Initial Code, and 801 , the Assign Code, are executed as soon as loaded, and 802 is the collective label for the remaining, with the Flow Code (\#803), connecting the formulae in 802, loaded last. The notation follows the Floco II conventions.

800 Initial Code (IC). In this formula a few parameters are computed: M06, MO7, TO1, and S07 (see Appendix I). MO7 is the total number of S_{n} discrete angular directions, $M 07=A 07+1$ for slabs and spheres, and $\left(\frac{1}{2} \mathrm{MO}+1\right)^{2}-1$ for cylinders. Some of these directions (one for slabs and spheres, $\frac{1}{2}$ MO7 for cylinders) do not count as far as the average neutron flux is concerned. The fluxes along these directions are to be regarded as initial values for the integrations in the angular variables. These are then only of consequence in curved geometries. Formula 800 also sets $\epsilon(A 06)$ stored in PO4 to unity, the largest distance possible (see p. 8), and computes a number stored as TO 4 , which is used to produce restart dumps periodically.

801 Assign Code (AC). This code assigns memory space to all functions involved in DSN calculations.

805 Initial Neutron Flux (NF) sets up a starting flux in NO, as specified on p. 5 under A06.

806 Adjoint Cross Sections (AX). The formula is executed only if $A 01=1$ and $A 06 \leqq 2$, and rearranges the cross sections as discussed on p. 8 under GOl, also reversing the order of the elements in K7 $\left(X_{g}\right)$, N7 $\left(v_{g}\right)$, and VI $\left(v_{g}\right)$.

810 Mix Cross Sections (MX). Here the cross sections for materials $\mathrm{MO} 2+1$, MO2 +2 , etc. are generated, using the input cross sections loaded into CO , the quantities $I O$ and $P O$ which define the mixing, also P4 if a c-calculation is called for, and I4 if anisotropic materials are present.

811 Input Print (IP). The quantities listed are printed off-line if A06 $\leqq 2$.

812 Modify Geometry (MG). This formula modifies the radial points $\left(r_{i}\right)$ in δ and a calculations. It also computes $D 1=\Delta_{i}=r_{i}-r_{i-1}$ and the midpoint $r_{i}{ }^{\prime} s, R 2=\bar{r}_{i}=\frac{1}{2}\left(r_{i}+r_{i-1}\right)$, except for spheres (see 813) where $V 4 / R 2$ replaces \bar{r}_{i}.

813 Geometric Functions (GF). The volume elements vo and V4 $=$ VO/Dl are computed, $\mathrm{VO}=\mathrm{Dl}$ (slabs), D1 • R2 (rods), and $\mathrm{VO}=$ $=D 1 \cdot\left(r_{i}^{2}+r_{i} r_{i-1}+r_{i-1}^{2}\right) / 3$ (spheres), thus omitting a factor 2π for rods and 4π for spheres. In addition, two quantities
$G l_{i m}$ and $G 3_{i m}$, terms entering the S_{n} difference equations, are precomputed here:

$$
\begin{aligned}
& \text { Slabs: } \quad G 1=0 \quad G 3=\left|\mu_{m}\right| / \Delta_{i} \\
& \text { Rods: } \quad G 1=\gamma_{m} / R_{i} \quad G 3=\left|\mu_{m}\right| / \Delta_{i} \\
& \text { Spheres: } \quad G 1=\gamma_{m} / R 2_{i} \quad G 3=\left|\mu_{m}\right| / \Delta_{i}^{\prime}
\end{aligned}
$$

where μ_{m} is in M7, γ_{m} in M6, and (for spheres) $\Delta_{i}^{\prime}=\Delta_{i}$ for $m=1$, otherwise $\Delta_{i}^{\prime}=2 \Delta_{i} V 4_{i} /\left(r_{i}^{2}+r_{i-1}^{2}\right)$. For further details regarding the S_{n} difference equations, see LA-2260.

814 Form Weights (WS). In this formula the weight function $w_{i}=$ $=\left|\Sigma_{g} \mathrm{NO}_{i g}\right| \cdot \mathrm{V}_{i}$ is computed and stored in WO. These weights are partially established on experience, having been found to aid in the estimation of the eigenvalue λ. In TO2 is stored $\Sigma_{i} w_{i}\left|\Sigma_{g}{ }^{N} O_{i g}\right|$. At the end of a power iteration the same quantity (TO) is computed using the then revised NO values. The ratio $\mathrm{TO} / \mathrm{TO} 3$ defines λ.

815 Fissions Adjoint (FA). Here, if $A O 1=1$, the adjoint fission density, given by:

$$
\mathrm{FO}_{i}=\Sigma_{g} \chi_{g} \mathrm{NO}_{i g}
$$

is calculated. Division by k (IO5) or k_{o} (S06) is performed if specified (A02 or $S 05=1$).

816 Fissions Regular (FR). Here, if $A 01=0$, the fission density:

$$
\mathrm{FO}_{i}=\Sigma_{\mathrm{g}} \sigma_{\mathrm{g}}^{\mathrm{f}} \mathrm{NO}_{i g}
$$

is computed and division by k or k_{0} performed if indicated. σ_{g}^{f} is first obtained as a function of radius, taking the material specifications by i (including smearing) into account.

817 Monitor Print (MP). Monitor output is obtained at this point, the printed monitor line giving $P O 1=A 06, P O 2=$ the count of all inner iterations, PO 3 (a spare, in the code $=0$), $\mathrm{PO} 4=$ $=\epsilon(\mathrm{AO6}), \mathrm{P} 05=\mathrm{IO5}, \mathrm{P} 06=\mathrm{dp} / \mathrm{d} \lambda, \mathrm{P} 07=$ the neutron balance indicator (PO7 should ideally equal GOl, the number of groups), and finally P1O $=\lambda$. For further details see Appendix I. Switches 1, 2, and 3 come into play in this formula, \#3 selects the card reader, if the operator wishes to change some of the input data and then proceed.

821
Effective Cross Sections (EX). An array of cross section columns (for a particular g) is formed here, one colurm for each i, and stored in H . The material specifications are fully taken into account.

820
Anisotropic Cross Sections (EZ). This formula is executed if IO3 $=1$ and a table of $\sigma^{\prime} s$, as in 821 , is formed in A2 for the anisotropic components.

822 Path Lengths (PL). Three positions of block H2, those containing $\sigma^{t}, \nu \sigma^{f}$ and $\sigma_{g g}^{s}$ are selected, and the data transferred to HI, H4, and H5, respectively. Actually $\frac{1}{2} \sigma^{t}$ is placed in Hl and modified, if $A 02$ or $S O 5=2$, by $\alpha / 2 \mathrm{v}$. A special procedure is used if $\sigma+\alpha / v$ becomes negative (see code).

823 Source Term (ST). The source term of the transport equation is calculated for a particular g :

$$
\begin{aligned}
& S O_{i}=\chi_{g} \mathrm{FO}_{i}+\Sigma_{g i} \sigma_{g^{\prime} g} \mathrm{NO}_{i g}+Q O_{i g} \quad \text { (regular) } \\
& S O_{i}=v \sigma_{g}^{f} \mathrm{FO}_{i}+\Sigma_{g} \prime^{\prime} \sigma_{g^{\prime} g} \mathrm{NO}_{i g} \quad \text { (adjoint) }
\end{aligned}
$$

with summation (for each i) over the scattering cross sections $\sigma_{g^{\prime} g}$ in the H2 columns (see 821).

824 Source, Anisotropic Part (SZ). The source is in the anisotropic case given by $\mathrm{SO}_{i}+\mu_{m} \mathrm{S4}_{\mathrm{i}}$, with

$$
s 4_{i}=3 \Sigma_{g^{\prime}} \sigma_{g^{\prime} g}{ }^{J O_{i g}}
$$

where $\sigma_{g ' g}$ here are the anisotropic components of scattering stored in A2 (see 820).

825 Boundary Conditions (BC). This formula executes the specification in A04, A05, and SO4, for each μ_{m} and each group. Since, in reflective or periodic situations, NO at $\mu=0$ and the outer boundary is given theoretically by SO/2H, the input flux is given, for arbitrary μ_{m}, in terms of $(\mathrm{SO} / 2 \mathrm{HI})\left(1+\mathrm{Bl} \mathrm{mg}_{\mathrm{mg}}\right)$, where
$B I_{m g}$ is reestimated at the end of each iteration on a particular group. $B l_{\mathrm{mg}}$ is, in other words, obtained by an iteration concurrent with the regular one. We do not know as yet whether this procedure always gives proper convergence or not.

826

 Perpendicular Flux (PF). This formula computes for fixed g the angular flux along the initializing μ-directions, of significance in the curved geometries.827 Angular Flux (AF). This formula calculates the angular flux for fixed g along the basic S_{n} directions μ_{m} defined in LA-2260. These fluxes are averaged over m (but not in 827) to obtain the total flux NO, and with weights μ_{m} to obtain the net current JO. If any integration step here or in 826 yields a negative flux, the calculation is repeated using the alternate difference equations as discussed in LA-2260. The integration steps are performed from the outside of the reactor inward, if μ_{m} is negative, otherwise in the direction of increasing r.

831 Current (JC). The current JO is computed in this formula for a particular g.

830 Boundary Values (BV). The quantities $\mathrm{Bl}_{\mathrm{mg}}$, if required by the conditions specified, are revised here (initially $\mathrm{Bl}_{\mathrm{mg}} \equiv 0$):

$$
B I_{\mathrm{mg}}(\mathrm{rev} .)=\left(O_{m}-I_{m}\right) / 3\left(O_{m}+I_{m}\right)+B I_{\mathrm{mg}}
$$

where O_{m} and I_{m} are the appropriate outward and inward angular fluxes along the directions μ_{m} and $-\mu_{m}$, respectively. The above formula is essentially an empirical one, which so far has proved satisfactory.

833 Boundary Flow (BF). Here the currents, inward and outward separately, are computed at both $r=0$ and $r=a$.

834 Neutron Balance (NB). In 834 a summary is performed yielding the NB factor JO3: JO3 = (leakage + collisions)/sources. This factor should ideally be unity in a precise calculation. Care is taken at both $r=0$ and a to count negative leakage as source so that the scaling process in 835 will work.

835 Scaling (SC). The scaling process defined in LA-2260 is performed here, the final result being a scaled average flux NO for a particular g, which is temporarily stored in N4.

836 Inner Iterations (II). In 836 N4 is first transferred to its proper place in NO and the data displaced there moved to N4. The distance ϵ is then computed:

$$
\epsilon=\left(\Sigma_{i}\left|\mathrm{NL}_{i}-\mathrm{NO}_{i}\right| \mathrm{w}_{i}\right) / \mathrm{TOQ}
$$

except for the first inner iteration, in which case NO is
multiplied by λ. If $g=G O 2$, the base group, ϵ is normally sent to PO4, otherwise ϵ is compared with PO4 and if $\epsilon>$ PO4 another iteration on the same group is performed, first modifying SO :

$$
\mathrm{SO}_{i}(\text { rev. })=\mathrm{SO}_{i}+\sigma_{g g}\left(\mathrm{NO}_{i g}-\mathrm{N}_{i}\right)
$$

For various controls on the inner iteration procedure, see code.

837 Group Print (GP). This is a monitor on the results after the completion of a particular group iteration. A line is printed offline if an error indicator has been set, or on-line if Switch \# 1 is down regardless of indicators. The line contains JOl = group \#, $J 02=$ scale factor, $J 03=$ NB factor, $J 04=$ leakage, $J 05=$ collisions, $J 06=$ source, $J 07=$ error indicators (lst set), and $J 10=$ error indicators (2nd set). Both JO7 and JlO may be logical sums of indicator settings. Indicator $J O 7$ is built up by 1 if the inner iteration count is large (set in 836), by 2 if FO is negative, etc. (Appendix, p. 3).

840 Interpolate (IN). In this formula new parameters (eigenvalues) are obtained by interpolation, which, of course, may amount to extrapolation in some cases. Care is taken to prevent unreasonable values, which may come about due, for instance, to poor initial guesses. If the "interpolated" parameter lies outside one of two limits computed using the initial guesses IO5 and IO6, one of these limits becomes the new IO5, and IO6 is taken to be either the previous IO5 or IO6, depending on which one is closest
to the new I05, and the iterative procedure is continued. Once the interpolate value is "in range," $d p / d \lambda$ is computed, and from then on 105 is calculated (in 847) from IOS (new) $=(1-\lambda) d p / d \lambda+I 05$.

841 Weights and Test (WT). This formula performs calculations as in 814 (WS). In addition, it includes the shift of the λ-set, the computation of the new λ, the convergence test for the current eigenvalue, and, if $A O 2 \neq 0$, a scaling of NO to make total fissions sum up to unity.

846 Final Print (FP). At the end of the calculation the quantities listed in 834 are printed. There is also in DSN a "forced convergence" technique, for the purpose of terminating a calculation, for whatever reason, which is brought into play by depressing Switch \#4.

847 New Parameters (NP). This formula is activated if the convergence test in 841 is satisfied, it controls the various procedures for calculating new parameters, and includes the final convergence test.

803 Flow Code (FC). The Flow Code controls the whole DSN calculation, the first action it takes is to print the storage map, using the Floco II subroutine \#976.

845, 842, 843, 844 (SM, SS, SK, SL). Summary Formulae. See Section VI.

The TDC code contains 39 formulae numbered from 800 to 847 , where 800, the Initial Code, and 801, the Assign Code, are executed as loaded, and where 802 is the collective label for the remaining, with the Flow Code (\#803), loaded last, connecting the other formulae in 802. The whole TDC code is organized in a manner quite similar to DSN. The integrations are performed starting with the top slice of the cylinder and each slice is treated as in the DSN cylindrical case, except that there is, of course, neutron flow in at the top surface, and flow out at the bottom (of each slice). When the bottom slice has been reached and the integrations performed here, the bottom boundary conditions are applied, and the process just described is repeated, now going from the bottom of the cylinder to the top, with neutron flow in at the bottom of each slice and flow out at the top. Thus, in total there are twice as many integration directions in TDC as in the DSN cylindrical case, and the TDC time of calculation is then approximately equal to 2 J (2IO3) multiplied by the time for a DSN rod calculation with the same number of r-intervals. For more details regarding the formulae listed below see either Appendix II or Section IV.

800 Initial Code (IC). Similar to 800 in DSN; the masks needed for the double storage in FO, WO, and R3 are computed here.

801 Assign Code (AC).
804 Merging (RN). The material \#'s loaded into NO are placed in R3 merged with the R3 input.

805 Initial Neutron Flux (NF).
806 Adjoint Cross Sections (AX).
810 Mix Cross Sections (MX).
807 Exchange S_{n} Constants (EN). The S_{n} constants are exchanged twice during a calculation: at the beginning of the calculation to place the S_{2} constants in $M 4$, $M 5$, $M 6$, and $M 7$, and after $d p / d \lambda$ has been formed to place the S_{n} constants, $n=A O 7$, in those blocks.

811 Input Print (IP). The quantıties listed are printed if A06 $\leqq 2$.

812 Modify Geometry (MG). This formula handles the modification of r_{i} and z_{j} as needed in δ-calculations, computes $\Delta_{i}(D 1), \Delta_{j}(D 2)$, and $V_{i}(V O), V_{i}=\frac{1}{2} \Delta_{i}\left(r_{i}+r_{i-1}\right)$.

813 Geometric Function (GF). Here the quantities G1, G3, and G5, terms entering the S_{n} difference equations are precomputed:

$$
\mathrm{GI}=\gamma_{\mathrm{m}} / \mathrm{R} 2_{\mathrm{i}}, \quad \mathrm{G} 3=\left|\mu_{\mathrm{m}}\right| / \Delta_{\mathrm{i}}, \quad G 5=\bar{\mu}_{\mathrm{m}} / \Delta_{\dot{j}},
$$

where $\mu_{m}(M 7), \gamma_{m}(M 6)$, and $\bar{\mu}_{m}(M 4)$ are S_{n} constants.
814 Form Weights (WS).

820 Vertical Current (VC). This formula is used when the next current is required at either the top or bottom of the cylinder. The current as a function of r is placed in $J 4$ and the integrated current in FO 4.

816 Fissions Regular (FR).
815 Fissions Adjoint (FA).
817 Monitor Print (MP).
821 Effective Cross Sections (EX). Here as in DSN the table H2 of cross sections is formed for a fixed g; but for a particular j only.

822 Path Lengths (PL).
825 Boundary Condition (BC). This formula handles the conditions at the curved boundary.

823 Source Term (ST).

824 Top Boundary (TB). This formula handles the conditions at the top boundary of the cylinder. Also, a number of blocks are cleared: N4 in which the new neutron flux is to be accumulated, J5 and J6 where the horizontal inward and outward net currents (functions of j) are to be accumulated, and LO, $L 1, L 2$, and L3 where certain sums are formed for the neutron balance and scaling calculations.

830 Horizontal Current (HC). Here the currents at the free boundary are calculated (for fixed j), separately for inward and outward directions.

831 Bottom Boundary (BB). The formula handles the conditions at the bottom boundary of the cylinder.

833 Top Boundary Flow (TF). The boundary values $T 5_{i m}$ are computed in 823 , to be used in setting a reflective condition, at the top, for each i, if $A 04=1$.

832 Free Boundary Flow (FF). The boundary values F_{jm} are computed here, to be used as in 833, but for the free boundary. Also, the quantities needed for the scaling and the final neutron balance, for the current value of g, are computed here and cumulated.

834 Neutron Balance (NB).
835 Scaling (SC).
836 Inner Iterations (II).
837 Group Print (GP).
845, 842, 843, 844 (SM, SS, SK, SL). Summary formulae. See Section VI.
840, 841, 846, 847, 803, (IN, WT, FP, NP, FC). See DSN.

The DSN and TDC decks are arranged in the same manner. The cards are loaded in the order in which they are described.

1. Floco-2 deck. This deck is completely self-contained: it is self-loading and contains its own transition card.
2. Parameter header. This card initializes loading and storage assignment addresses.
3. Parameter cards. AOO is normally loaded first. If a punch dump is to be loaded, the first four cards following the punch ID are loaded after the initial parameters; these four cards must be preceded by a 9* AOO card.
4. IC header. This card reserves storage for formula sets 800 , 801 , and 802 ; it also sets NLA to the proper value to load formula 800.
5. Formula 800.
6. Transition card for formula 800. Formula 800 is executed.
7. AC header. This card sets NLA to load formula 801.
8. Formula 801.
9. Transition card for formula 801. Formula 801 is executed.
10. Remark cards. Formulas 850 to 863 are loaded here. Formula 850 may be changed from problem to problem to provide an identification on the listing.
11. General code header. This card sets NLA to load the 802 formula set.
12. Formulas 804 to 847 .
13. Formula 803. This is the Flow Code.
14. Data. If a punch dump is being loaded, the NO cards must be preceded by a 9^{*} NO card. If Bl cards are dumped, these must be identified (by comparing the loading address with the storage map) and preceded by a $9^{*} \mathrm{Bl}$ card. In TDC, the cards for R 3 and $N O$ must be followed by an I* 4804 card.
15. Transition card for 803. This card starts the problem running.

Use of Switches. Switch \#1 is placed in the down position if additional monitor printing is desired, e.g., the group monitor (see 817 and 837). If Switch \#2 is depressed a restart card dump is obtained (see 817); on pressing "Start," the calculation is resumed. Switch \#4 is used to force convergence, i.e., to terminate the problem arbitrarily with a final print and a restart dump (see 837 and 846).

Summary. At the end of a calculation a summary of "activities," average cross sections times neutron fluxes, is generated by zone, where data for zone \#0 (the whole reactor) are first given. Two tables, A and B, are printed for each zone:

Table A contains columns corresponding to the entries in the cross section tables, up to and including entry \#GO3, followed by two columns, one for entry \#GO4 (self-scattering) and the other for the total scattering cross section, and then by two final colurms, one for the
neutron flux and the other for the source QO, if any. The entries in a particular colum give the activity by velocity group, the last entry being the total for all groups.

Table B is arranged as Table A, except that the last two colums are omitted, and the activity is given by material number rather than by velocity group.

LAMS-2346, Appendix I PHYSICS AND MATHEMATICS TID-4500, 15th Ed.

LOS ALAMOS SCIENTIFIC LABORATORY OF THE UNIVERSITY OF CALIFORNIA LOS ALAMOS NEW MEXICO

REPORT WRITTEN: October 16. 1959
REPORT DISTRIBUTED: February 12, 1960

THE DSN CODE
by
B. Carlson
C. Lee
J. Worlton

All LAMS reports are informal documents, usually prepared for a special purpose and primarily prepared for use within the Laboratory rather than for general distribution. This report has not been edited, reviewed, or verified for accuracy. All LAMS reports express the views of the authors as of the time they were written and do not necessarily reflect the opinions of the Los Alamos Scientific Laboratory or the final opinion of the authors on the subject.

UNIVERSITYOFCALIFORNIA
 los alamos scientific laboratory
 (CONTRACT W-7405-ENG-36)
 P. O. Box 1663
 los alamos, new mexico

nN RBPLY RBPBR TO:

To: Copyholders of LAMS-2346, Appendix I
From: Report Library

Please staple the attached revision pages to the inside front cover of LAMS-2346, Appendix I.

1) The "E-system" in the DSN code has in some instances failed to bring about convergence to a principal eigenvalue. The code changes given under Revision I (attached) defines a different and more satisfactory procedure. The ϵ given in I07 assumes now a different meaning; it specifies the accuracy wanted in the solution of the difference equations for each neutron group, holding the eigenvalue (IO5) fixed. The variable \in (PO4) is set to 10^{2} IO7 whenever iterative calculations begin on a new fixed IO5 and PO4 is then allowed to decrease as the calculation progresses until PO4 < IO7, and the λ (P10) last found is taken as the λ corresponding to IO5. Hote: Until experience in choosing ϵ is available take $\epsilon=10^{-4} / \mathrm{no}$. of groups.
2) The empirical procedure for imposing a reflective (or periodic) condition at the outer boundary has proved to be unsatisfactory as was expected. A proper procedure has now been established. It involves keeping the reflected neutrons fixed (except for a scale factor) during a given cuter iteration. The code changes are given under Revision II (attached).

Fote: The corresponding corrections should be made in TDC if difficulities in these areas are encountered.

FLOCO 704

FLOCO 704

FLOCO 704

77	78	79	80	PROBLEM

FLOCO 704

77	78	79	80
PROBLEM			

FLOCO 704

| 77 | 78 | 79 | 80 | PROBLEM |
| :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| | 0 | | PRROGRAMMER | |
| | | | | |

FLOCO 704
77887980 PROBLEM

FLOCO 704

77	78	79	80	PROBLEM

, mpr mpt 31k m

FLOCO 704

FLOCO 704

77	78	70	B0	PROQLEM
DSSM				
PROGAMMMER				

FLOCO 704

| 77 | 78 | 79 | 80 | PROBLEM |
| :---: | :---: | :---: | :---: | :--- | :--- | :--- |
| | PROGRAMMER | | | |

FLOCO 704

| 77 | 78 | 79 | 80 | Problem |
| :---: | :---: | :---: | :--- | :--- | :--- |
| | 0 | | | |

FLOCO 704
71 To 102001 PRoocem

FLOCO 704

FLOCO 704

FLOCO 704

77787980	PROBLEM	
051	Gogammer	$\text { PAGE } F$

FLOCO 704

FLOCO 704
77787980 PROBLEM

FLOCO 704

77	78	79	80	PROBLEM
D	Pr			

FLOCO 704

FLOCO 704

FLOCO 704

FLOCO 704

FLOCO 704

FLOCO 704

FLOCO 704

FLOCO 704
77787980 PROBLEM

FLOCO 704

77	78	79	80	PROBLEM

FLOCO 704

FLOCO 704

77	78	79	80
Proelem			

FLOCO 704

77787980 PROBLEM

FLOCO 704

FLOCO 704
DSN ${ }^{\text {Procanamer }}$
$4 \rightarrow$ and

FLOCO 704

7778	879	80	PROBLEM		
	25			DATE	$\begin{array}{\|c\|} \hline \text { PAGE } \\ N T \\ \hline \end{array}$

FLOCO 704

FLOCO 704

Cad lare Page

FLOCO 704

77	78	79	80	PROBLEM

FLOCO 704

77	78	79	80	PROBLEM

FLOCO 704

FLOCO 704

77	78	79	80	PROBLEM

