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"BASIC CONCEPTS OF NUCLEAR SAFETY

Pages 5-14 Kriticheskiye Parametry Sistem
S_Delyashchimisya Veshchestvami
I Yadernaya Bezopasnost'

1. The Concept of Criticality

The nuclei of some heavy elements, capturing neutrons, disintegrate
into several nuclei-fragments; during disintegration, two to three secondary
neutrons are released. This process is called fission. The secondary
neutrons can be captured by other nuclei of these elements, with their
subsequent division and the reiease of new secondary neutrons. There thus
appears the possibility of the appearance of & self-cuataining fission
chain reaction of atomic nuclei. The fission process is accompanied by
the release of a great quantity of energy and radicactivity.

Utilized for the realization of a fission chain reaction are the
isotopes U233 anq yed » &3 well as 'Pq_239 , which are called fissionable
isotopes, and the substances containing them exs called fissionable
substances.* The part of a system in which fissionable substances are
located and in which a fission chain reaction is realized forms the fuel
core, and the layer of materials surrounding the core forms the reflectore.

Not all the socondary noutrons appearing during the fission process
are captured by the fissionable isotopes. A number of them are lost as a
result of escaping froa a system (ncuiron escaps); some are captured by the
nuclei of nonfissionable elements which are present in the form of comstruc-
tion zaterials, cdzixtures, etc. Therefore, the appearasnce of a self-sus-
taining chain reaction requires that the escape of neutrons from a system
ard their capfure by non fissionable elements not exceed a certain magnitude

A convenient magnitude employed in analyzing a system with fissionable
* substances = materials




substances is the effective multiplication factor K. pp:, which is the
ratio of the neutrons of tha ﬁrst generation to the nunber of neutrons
of the (i-1) generation. 1, then the number of neutrons in a
system Temains unaltered, i.e.. ®%f.0 balance of neutrons is maintaineds

Formation = escape + capture

The state of u system during Koprr = 1 is called critical, and the
values of the parameters characterizing its composition and dimensiona
wlm wm.cn mB smte are atta.lnea are CBJ..LeCl cnuca.L parametera \‘Gﬂe
critical mass, critical volume, critical dimensions of the fuel core,
critical concentration of the fissionable substance). <1,
a self-sustaining chain reaction is impossible (subcritical atatetjf
Kerg =1, the intensity of the chain reaction exponentially increasea with
the passage of time (supercritical state).

The secondary neutrons released during fission have an average energy
of two million electron volts (kev). A nuclear chain reaction can be caused
by fast, intermediate, and thermal neutrons. Neutrons with an energy of over
100 kiloelectron volts (Kev) are called fast neutrons; those with an energy
ranging from 100 Kev to thermal, intermediate; neutrons whose kinetic energy
is on the oxder of the critical temperature (kT), i.e., about 0.025 electron
volts (Ev), thermal neutrons. In order that a chain reaction occur basically
with thermal or intermediate neutrons, it is esscatial to have in the fuel
core a substantial quantity of a moderator, i.e., elements whose collision
with nuclei cause neutrons to lose a substantial amount of their energy.

The occurrence uf a chain reaction with fast neutrons requires the absence
of neutron moderators in the active zone.

2. Basic Factors A ffect C

A self-sustaining fission chain reasction is possible only if the
quantity of a fissionable substance is equal to the critical mass or
greater than it. This quantity depends on & number of factors which are
examined below.

Forn of the Fuel Core.

The 1orm of the fuel core exerts a great influence on the escape of
neutrons from a system. It is well known that the greater the ratio of the
exterior surface area of the fuel core to its volume, the greater is the
neutron escape. Consequently, a reduction of the linear dimensions of the
fuel core results in an increase of the neutrons escaping from it, since
the surface is reduced proportionally to the square, and the volume, pro-
portionally to the cube of the liner dimensions. Of the correct gecmetric
bodies of uniform volume, the sphere possesses the least ratio of exterior
surface area to volume. Therefore, systems equipped with a fuel core in
the form of a sphere have the least oritical mass and critical volume.

For cylindrical fuel cores, a coro in the form «f an approximately
#* Form = Shape
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equilatoral cylinder has the loast critical mass and critical voluzme,

i.e., a cylinder whose height is equal to the diameter; and for a fuel
core in the form of a parallelepiped in tha form of a cube, for an
equilateral cylinder and cube approximate the form of a sphere. With

a substential deviation of the form of the fuel core from the spherical,
the critical mass eand critical volume sharply incrcase. For example,

for aqueous uranium solutions having cn aqueous reflector, when the ratio
of the height to the diameter of the fuel core becomes O, 2, or 4, the
critical mass increaces by about 1.8 times, compared with a critical mess
of an equilateral cylinder. Vith a corresponding radius of a cylindrical
fuel core or the height of a fuel core in the form of a plane layer, the
escape of neutrons from a system becomcs somevhat greater; with the maxi-
gun reduction of the radius or height, a chein reaction becomes impossible,
the quantity of fissionable substance in the system notwithstanding. The
corresponding radius of the cylindrical fuel core is called the critical
radius of an infinite cylinder, and the height of a fuel core in the fora
of a plane layer is called the critical height of the infinite plene layer.

The Action of Reflectors.

With the availability of a reflector, a part of the neutrons escaping
from the fuel core are returned after colliding with the reflector materiale.
Thus, the availability of a reflector leads to & reduction in the escape of
neutrons from the fuel core and, conscquently, to a reduction in the critical
parczeters of a system. The escape of neutrons from the fuel core is reduced
with an increcse in the thickness of a reflector. Despite this, the first
layer of a reflector is most effective, the firs? reflector layer whose
thickness is o0a the order of the length of a fact ncutron's migration to
the reflector. For an aqueous reflector, this thickness is about 6
centimoters (cm); for a graphite reflector, about 50 cm; and for concrete,
about 30 cm. A further increace in the thickness of a reflector leads to
an insignificant reduction of the critical parameters.

We shall consider two critical systems whose fuel core have the form
of a sphere and whose compositions of the fuel core are uniform. The systems
differ in that one is equipped with a reflector and the other is not.
Because of the presence of a reflector, the critical radius of the fuel
core of the firat system will by »» ca less than that of the second. If the
refloctor 18 a layer of water of over 20-cm thickness and the fuel core
is filled with an enriched uraniun solution, the magaitude ;»is equal to
3.3 cm. In this situation, the significance of j» is slightly dependent
on the concentration of uranium in the solution, provided the change in the
solution renges froa 20 to 300 graus per liter. With a change in the
curvaturo of the fuel core surface, the magnitude ;~ is changed, but with
thoce rodii of the curvature most frequently encountered in practice (from
15 co to in:‘initY). this change can de ignored. With small thicknesses
of reflectors, e.g., with an aqueous or a steel reflectoxr of less than
one-cm thickness, the magnitude 7' is directly proportional to the thickness
of the refleotor.
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The effectiveness of the action of & reflector increases with a
reduction in the dimensions of the fuel core, since with small dimensions
the role played by neutron escape increases. For metallic 1235 and
plutonium, the best materials for reflectors are beryllium, beryllium
oxide, and natural uranium. For example, the critical mass of a system of
metallic uranium of 93.5 percent enrichment is equal to 52 kilograms
without a reflector and 8.9 kilograms when this system is equipped with a
beryllium-oxide reflector. For systems whose fuel core are filled with
aqueous solutions of fissionable substances, the best reflector materials
are beryllium, beryllium oxide, water, heavy water, and graphite. Heavy
water and graphite reflectors are less effective than water reflectors
when the reflectors are of five- to ten-cm thickness, but more effective
with greater reflector thickness.

The effectiveness of steel and water reflectors is about uniform for
systems with solutions of fissionable substances. A reflectcr evidences
mavimum effectiveness when it is in direct contact with the fuel core.

Even a small distance between the fuel core and the reflector substantially
increases the critical dimensions of a system.

At enterprises processing nuclear fuel, the most widely used materials
for reflectors are water, steel, and concrete. It is necessary to note that
systems without reflectors are rarely encountered in plants, since the
technologic apparatuses usually have thick steel walls (0.5-1 cm), all
kinds of colling jackets, etc. In addition, the walls and floors of
structures housing the technologic equipment also play the role of partial
reflectors. Therefore, in prescribing the charge norm for technologic
equipment, almost everybody considers that this equipment has a sound
aqueous reflector. Since the presence of a reflector reduces the critical
dimensions of a system, the task of reducing the effectiveness of reflector
action frequently occurs. This problem can be solved by placing, on the
border between the fuel core and a reflector, layers of materials having
a good capability of capturing neutrons, specifically cadmium or boron.

The Density of a System

The critical parameters of a system are reduced with an increase in
the density of the fuel core and reflector. A reduction of the density
of an entire system to k time also leads to an_increase in the critical
dimensions to k time, the critical volume to el time, and the criticai mass
to k2 time. This is true provided that, with a reduction in the density of
a system, the ratio of the densities of the fuel core and reflector remains
constant.

In changing the density of only one fuel core (with the constant density
of the reflector), the following relationship exists between the critical
nass and density for spheres equipped with aqueous moderators and aqueous
reflectors: critical mass (the density of the fuel core)™0, since the level
n changes from 1.5 to 2, depending on the ratio of the number of hydrogen
atoms to the number of atoms of a fissionable isotop (OH/b or OH/Q )
the fuel core (Figure 1l.1). ~ 5 9
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Figure 1.1

Indicator of the level n for determining the critical mass of
uranium and plutonium in a spherical fuel
core equipped with an aqueous moderator and a reflector
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The Action of the Moderator.

If there are light-eclement nuclei in the fuel core, fissionable
neutrons are slowed down upon cclliding with these nuclei, i.e., they
gradually lose their energy. The energy of neutrons is reduced most
‘rapidly upon their collision with the nuclei of the lightest elements;
consequently, the energy depends on the content of such light elements
as hydrogen, beryllium, and carbon in the fuel core. With a sufficient,
relatively small concentration of a fissionable substance and a small
absorption cross section of neutrons in the moderator, all the neutrons
are practically captured following the attainment of a thermal balance
with the environment. A further reduction in the concentration of the
fissionable substance does not result in a reduction of the average energy
of neutrons, but only in an increase in the relative capture of the neutrons
of fissionable isotopes.

The neutron absorption cross section by the nuclei of a
fissionable isotope and the subsequent process of the fission of this
nucleus are largely dependent on the energy of reutrons. In general,
the less the energy of neutrons, the greater is the fission cross section = -
which leads to a substantial reduction in the critical mass of a system.
For example, for uranium-aqueous systemus the critical mass, depending
on the hydrogen content of the fuel core, is changed from 22 kilograms
(metal) to 0.8 kilograms (solutions), despite the substantial reduction
of the density of the fissionable subatance in the fuel core.

The Action of the Absorbers

For moderator-equipped systems, the introduction of absorbers into
fuel cores increases the critical dimensions. Absorbers can be introduced



both by homogeneous means in the form of solutions and powders and by
heterogeneous means in the form of various kinds of absorbing insertions
(rods, plates, worms, etc.). In almost every fissionable substance fed 238
for processing, there are elements that capture neutrons. For example, U

can be considered to be an absorber of thermal neutrons. For thoroughly
diluted solutions, the capture of neutrons by the hydrogen of the environment
becomes substantial. However, elements possessing a great capability of
capturing neutrons ~ - elements such as cadmium, boron, etc. - — are employed
for substantially increasing critical parameters.

- The action of a homogeneocusly introduced absorber is more effective
than that of the heterogeneously introduced variety, given equal weights.

This is connected with the fact that a so-called blocking effect exists

in a heterogeneous absorber. This phenomenon is the result of the most
effective operation of only the external layers of the absorber, for the
internal layers are partially or completely shielded by the external layers.
With the homogeneous introduction of an absorber, there is no blocking effect.
But in this situation the technologic method of precessing nuclear fuel is
frequently complicated, since in the terminal stages of processing it is
essential to separate the absorbting 2lement from the fissionable substance.

The effectiveness of the action of heterogeneous absorbers in initial
approximatior is proportional to the external surface area of an absorber.
Thus, the effectiveness of a cylindrical absorbing rod grows with an increase
of the radius of the rod in accordarce with the linear law. The effectiveness
of a rod centrally located in a cylindrical system is reduced with an increase
in the radius of the fuel core. For a system without a reflector, the
effectiveness of a single, central rod in initial approximation is inversely
proportional to the square of the radius of the fuel core. When only a
single absorbing rod is in an apparatus, it is advisable to place it in the
center, since this is the location at which it is most effective. In placing

. several rods in an apparatus, it is essential to take into account the fact
that the effectiveness of each of them is less than that of a single, central
rod and that this effectiveness will depend on the number of rods and their
spacing from one another.

It is essential to remember that the effectiveness of an absorber
changes in accordance with the average energy of neutrons in the fuel core
and, consequently, depends on the quaniity of the moderator in the fuel core.
Cadmium, for example, is effective only if the average energy of the neutrons
does not exceed 0.4 Eve With the energy of neutrons exceeding this level,
the effectiveness,of cadmium declines sharply. The effectiveness of boron is
proportional to§=;r ’ wheraEE is the average energy of the neutrons in

()

¥
the fuel core.

Absorbers can be utilized for ensuring nuclear safety only after their
effectiveness has been experimentally verified. Especially advisable is the



introduction of heterogeneous absorbers for the purpose of increasing

the values of minimal critical parameters (minimal volume and radius of an
infinite cylinder). For example, the introduction of a boron rod of 58-
millimeter (mm) diameter increases the minimal critical radius of an
infinite cylinder equipped with an aqueous reflector for nitric-acid
solutions of uranium from 8 to 10 cm.

During the dilution of a fuel core in real systems, there occurs
simultaneously a change in the moderator and absorber and a change in density.
In order to get an idea of the action of these factors in the aggregate, we
will consider how the critical parameters of a spherical fuel core of PuOs
will change with the addition of water to it. In this situation, we will
consider that the system is always homogeneous. When a small quantity of
water is added, both the critical mass and the critical volume are increased.
At this stage, the effect of the change in the density of the plutonium
predominates, and an additional moderator exerts little influence. However,
vhen the ratio of the number of hydrogen atoms to the number of plutonium
atoms exceeds four, the action of the moderator begins to be reflected, and
the critical mass is reduced although the critical volume continues to be
increased. With (“H/PN) = 10 -~ 20, the moderator also causes a reduction

in volume. Another addition of water reduces the critical mass until it
reaches the minimum. Subsequently, an addition of water causes an increase
of the critical mass, for the capture of neutrons by hydrogen then begins
to be reflected; and with (e :>'2.800, the critical mass and critical
volume become infinite, for in §ﬁls situation the proportion of neutrons
captured by the hydrogen is so great that the factor Keff becomes less

than a unit, thereby making the chain reaction impossible.

The Heterogeneity of a System.

The critical masses of systems in which fissionable substances are
found in the form of rods, blocks, etc. (heterogeneous syatems) differ from
the critical masses of homogeneous systems, The critical masses of hetero-
geneous systems with enriched uranium of over five percent exceed the critical
masses of homogeneous systems. Conversely, with enriched uranium of less
than five percent, the critical masses are less in heterogeneous systems than
in the homogeneous variety.

Interaction.

With the presence of a number of containers having fissionable sub-
stances, it is essential to consider the conditions of the criticality of the
entire system of containers as a whole, and not each individual container.
This is connected with the fact that there exists neutron interaction among
the containers, for a part of the neutrons escaping from one container lands
in another and causes fission there. This leads to a situation in which the
value Kopp of the system of containers will be greater than the Keff of the

separate containers which make up the system. The factork eff. of a whole system

grows with an increase in the number of containers and a reduction of the distance
between them.
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3. Some Properties of Fissionable Substances

During the processing of fissionable materials at plants, one encounters
great quantities of various compounds and mixtures, in the composition of
which are fissionable materials (plutonium, uranium variously enriched by
the isotope U235 and 0233). Hoast frequently encountered are fissionable
materials in the form of the following products: metals, chemical compounds

(002, U50g, UC, UF,, UFg, PuO,, etc.), aqueous solutions and hydrogen=-

containing mixtures, and waterless mixty “es with a large quantity of fission=-
able isotopes.

Ve wili briefly discuss some of the characteristics of these products.
Metals.

Metallic compounds have a great density of fissionable material; there-
fore the critical dimensions of such systems are very small. For example, the
critical volume of a sphere of plutonium with the presence of an aqueous
reflector totals 0.3 liter. It is necessary to note that the critical mass
of metallic uranium increases sharply with a reduction of enrichment, and
with .an enrichment below five percent it reverts to infinity.

Table 1.1
Critical Parameters of Fissionable Substances in the Form of Metals

Critical parameters 2 w253 Pu>?
Mass of a sphere, kilograms 22.8 T.5 5.6
Diumeter of an infinite cylinder,

centimeters 7.8 4.8 4.3
Thickness of the infinite plate,

centimeters 1.5 0.7 0.6

Table l.1 presents the basic critical parameters of systems equipped
with the usual aqueous reflectggg The fuel cores of these systems consist
of metallic U235, U233, ang Pu°5 (the density of the ureniun is 1.8 glen’,
of the plutonium 19.6 g/cw’ / 3_/.

Chemical Compounds.

1t is characteristic of these compounds that their density (3-13 g/cmB)
.18 substantially less than that of metallic uranium aund, therefore, all their
critical parameters are greater than the corresponding parameters for metals.
The presence in these compounds of an insignificant quantity of other elements
(oxygen, fluorine, carbon, etc.) does not lead to a moderation of the neutrons
and, consequently, does not reduce the critical mass. But the presence in them
of even small quantities of hydrogen-containing substances (water, HF, paraffin,
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glycerin) can sharply reduce critical parameters. This is especially
true of uranium compounds of small enrichment.

Aqueous Solutions gnd Hydrogen=Contpining Mixtures,

Soluticrus and hydrogen-containing mixtures of fissionable substances
are frequently encountered in chemical plants processing nuclear fuel. There
is the greatest amount of experimental and rating data on solutions and
hydrogen-containing mixtures.

The magnitude of a critical mass largely depends on the concentratiom
of hydrogen in these compounds. The concentration of hydrogen is usually
expressed in the form of the ratio of the number of hydrogen atoms to the
number of the atoms of the fissionable subatance. This magnitude can be
changed, ranging from gero for metals or dry, waterleas, salt to several
thousands for diluted aqueous solutions.

In lowaring the concentration of the fissionable substance, a sharp
reduction of the critical mass initially occurs. The critical mass thean
passes through the minimum (the minimal critical mass), following whick it
begins to increase. With a definite, very low concentration of the fis-
gionable substance (minimal critical concentration), the critical mass
increases to infinity. This means that during such a concentration the
capture of neutrons of the fissionable isotopes is so great that the chain
reaction becomes impossille. The minimal critical concentration for solutions
corresponds to the ratio of the number of hydrogen atoms to the number of
atoms of the fissionable substamégs acounting to 2,800 for plutonium systems
and 2,200 for uranium systems (U<7?).

The oritical volume of the sphere, the radius of the infinite oylinder,
and tho height of the infinite plane layer also largely depend on the con=
centration of hydrogen. Like the minimal critical mass, there exist the
minimal oritical volume of a sphere, the radius of the infinite cylinder,
and the height of the infinite plane layer in definite ratios of the number
of hydrogen atoms to the number of atoms of the fissionable substance. It
is ensential to note that these ratios are substantially less than those
observed during the minimal critical mass of a gphera. For example, the
minimun of a critical mass for solutions of U272 with a fuel core in
the form of a sphere is noted in the ;gtio of the number of atoms of
hydrogen to the number of atoms of Ul » which is 500, and the minimum of
the critical volume in a ratio approrimating 50.

Table 1.2 presents the critical parameters of systems containing
solutions of fissionable substances, with the presence of an infinite
aqueous reflector / 3 /.

With a cylindrical form of fuel core, the criti:al mass and

oritical volume depend not only on the concentration of hydrogen in the
fuel core, but also on the diameter of the fuel core. Each diameter
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has its own values of critical mass and oritical volume, values correspondw
ing to definite concentrations of hydrogea in the .uel core. For example,
for solutions of UO,F, of 93 percent enrichment in a cylindrical fuel

core made of stainless steel of 20.,3=-cm diameter ggd equipped with a complete
aqueous reflector, the minimal critical mass of U 2 18 about 1.4 kilograms,
and for a fuel core of 16.5~-cm diameter it is 3.2 kilograms.

Table 1.2

Critical Parameters of Solutions of Fissionable Substances

Critical parameters (minimal magnitudes) I 23 9
Critical msss, kilograms 0.82 0.59 0.51
Diameter of infinite cylinder, centimeters 13.7 11.2 1244
Thickness of infinite plate, centimeters 4.3 3.0 33

Critical volume, liters . 6.3 33 4.5

The critical parameters of systems containing aqueous solutions of
uranium are increased with a reduction in the enrichment of uranium. In an
aqueous solution of uranium with an enrichment of less than one percent, the
nuclear chain reaction is generally impossible. Similarly, the critical
parameters of aqueous solutions of plutonium increase with the presence of
U238 in the solution. The presence of nitrogen in nitrate solutions, which
are frequently used during chemical processing, increases the critical
parameters of solution systems, especially for solutions of uranium of low
enrichment. The critical parameters of hydrogen-containing systems also
depend on the density of the fissionable substance. An increase in its
density leads to a reduction of the critical parameters.

Waterless Mixtures with a Large Content of Nonfissionable Elements.

The waterless mixtures containing a large quantity of nonfissionable
substances - = mixtures which are encountered in enterprises = -« have a very
diverse chemical compositione Among them are mixtures which contain elements
in large amounts, elements that are good moderators (especially carbon). At
the present time, there are very little experimental and rating data on the
critical paramenters of mixtures containing large quantities of nonfissionable
elements. The critical parameters of such mixtures are usually greater than
those of hydrogen~containing systems, For example, the minimal critical mass
of a U235 mixture with graphite and with a graphite reflector amounts to
about 1.5 kilogrems, and for aqueous solutions of U235 with an aqueous
refleator 0.8 kilogram. '

Since nonfissionable materials are usually contained in mixtures at

« 10 =



enterprisea ~ = materials whose nuclear characteristics (moderation,
capture of neutrons) are worse than those of carbon, the critical para=
metera of such mixtures will be greater than the parameters of mixtures

of nonfissionable substances containing carbon. Therefore, the latter can
frequently serve as the minimal range in evaluating eritical parameters

of waterless mixtures containing large amounts of nonfissionable elements.

4. Genorel Principles for Providing Nuclear Safety

The opportunity for the onset of a fission chain reaction
during the processing of fissionable substances depends, firstly, on
the amount and kind of these substances found in the technologic equip~-
ment and, secondly, on the dimensions and geometric shape ot the equipuent.

As was stated previously, in reducing the dimensions of a fuel
core, the escape of neutrons increases; and given certain values of these
dimensions (minimal critical dimensions), the escape becomes so great that
a chain reaction is impossible. ‘Therefore, if the dimensions of the
technologic apparatuses are less than the minimal critical dimensions,
the chain reaction cannot appear in them, the quality of the fissionable
substances in these apparatuses notwithstanding. Thus, one of the ways
to provide nuclear safety is the use of equipment having safe dimensions.
Since several technologic apparatuses are usually located in a single
structure, thereby presenting conditions for interaction among them, and
since deviations from assigned dimensions in favor of their increase
are possible in manufacturing end operating these apparatuses, the
dimensions of safe equipment must always be leas than the minimal critical
values. 1t is reasonable to assume the following reserve factors in
designing and manufacturing the equipment: the volume of an apparatus
must not exceed the minimal criticel volume by 0.8, and the diameter of
a safe cylinder and the thickness of a safe plate (the height of the layer)
must not exceed 0.92 of the miniz:l critical diameter of the infinite
cylinder or the height of the infinite plane layer. For example, during
the processing of aqueous solutions of highly enriched uranium, safe equip-
ment must be made: volumetric capacity should not oxceed 5 liters, pipes
with a diameter of no more than 12.6 cm should be installed, and the
thickness of the plate should not exceed 4 cme It is mosi advisable to
use equipment having safe dimensions for a continuous technologic process.

It is clear that the best way to provide nuclear safety is the use
of geomotrically safe equipment, but in practice thia is rarely attained.
It frequently appears that it is impossible or very uneconomical to subject
this equipment to technologic surgerye In such circumstances, nuclear
safety is ensured by limiting the quantity of fissionable substance in
each apparatus. For example, if, at a plant processing solutions of highly
enriched uranium, the quantity of fissionable substance in each apparatus
is always less than the minimal critical mass for solutions of U252, the
chain reaction cannot occur (under conditions excluding interaction)c
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It is necessary to note that with this type of limitation opportunities
for the onset of a chain reaction are greater, compared with the use of
equipment having geometrically safe dimensions. This is connecied with the
fact that errors of servicing personnel, the disruption of the technologic
process, and mistakes in the selection and analysis of tests can result in
a situation whereby an amount of fissionable substance adequate to start
a chain reaction is collected in one of the apparatuses.

The limitation of the amount of fissionable substance in conjunction
with a partial limita“ion of the volume or dimensions of apparatuses yields
good results. For example, the minimal critical mass of aquecus solutions
of highly enriched uranium, with the diameters of the apparatuses not
exceeding 17.8 cm, increases by almost two times the minimal critical
mass for spherical apraratuses. Consequently, the employment of apparatuses
of 17.8-cm diameter permits a substantial increase in the charge norm in them,
compared with the charge norms in apparatuces of arbitrarv form.

A modification of the limitations on the quantity of a fissionable
substance, as well as the increase of the dimensions of safe apparatuses,
can be obtained by introducing heterogeneous absorbers into the apparatuses.
In this situation, additional monitoring is required to see that the abasorbers
are always in the equipment and that they do not change their absorbing
properties with the passage of time.

In some cases during the processing of aqueous solutions of fis-
sionable substances, nuclear safety can be ensured by carrying out the
technologic process in such a way that the concentration of a fissionable
substance will not exceed the minimal critical concentration. As was
stated previously, minimal critical concentration is characterized by a
definite ratio of the number of atoms of hydrogen to the number of atoms
of the fissionable substance. Specifically, for plutonium solutions this
ratio must be over 2,800 (C = 9.4 g/1), and for solutions of highly
enriched uranium, 2,200 (C = 12 g/1). With this procedure of providing
nuclear safety, it is essential to have in mind that, when the fissionable
substance separates into a residue during the process, the ratic of the
number of atoms of hydrogen to the number of atoms of the fissionable
substance in the residue must also be less than the above-mentioned
valuese

It is essential to note that nuclear safety cannot be ensured in the
requisite manner without strict administrative control, i.e., the adminis-
tration must see to it that the requirements of nuclear safety are observed.
Appropriate administrative control must also be exercised at enterprises and
over all the equipment having geometrically safe dimensions. It is not
possible to guarantee that thera will be no escaps of neutrons from such
apparatuses; hence, precautionary measures must be taken so that a solution
will not fall into a container with large dimensions and will not cause a
chain reaction in it.



An especially important role is played by administrative control
at enterprises in which nuclear safety is provided by limiting the quantity
or concentration of a fissionable substance. In this situation, all
measures must be taken to avoid a disruption of the technologic process
or mistakes by servicing personnel, mistakes which could cause a chain
reactions Specifically, the limitation of the mass and concentration
must be sych that no less than two simultanecus and unconnected dise
ruptions of the technologic process or mistakes of servicing personnel
could cause a chain reaction. We will consider, for example, a chemical
apparatus in which a fissionable substance is placed in a solution, and the
charge of the apparatus is controlled by measuring the concentration and
volumo of the solution. Despite this, there is the possibility that
mistakes will be made by servicing porsonnel, that analytical errors will
occur, and that the technologic process will be disrupted. All these can
lead to an increase in the concentration and volume of the solution in
the apparatus. Therefore, the charge norm of the given apparatus must be
prescribed in such a manner that only the simmultaneous increase in controlled
magnitudes (volume and concentration) to maximally possible values could
result in an e.ccidento

Proceeding on this basis, the values of the parameters responsive to
the conditicna of nuclear safety are esatablished by dividing the corresponding
critical values of the parameters into a certain reserve factor. The
significance of the reserve factor as applied to various kinds of equipment
and the work conditions of personnel is usually determined on the basis of
the experience gained in designing and operating enterprises of the atomic
-industrye.

- 13 -



METHODS OF DESIGNING HOMOGENEOUS REACTORS

Pages 86~141 Kriticheskiye Parametry Sistem
S Delyashchimisya Veshchestvami
L Yadernaya Beropasnost'

Introduction

Problems connected with the theory and methods of designing nuclear

rasctors have been_illuminated in the works of Soviet and foreign scholars

l, 2 - 28, etcﬂi7. Nuclear reactors are divided into homogeneous and
heterogeneous reactors in accordance with fuel arrangement. This division
also depends on wha* field of energy = «~ fast, intermediate, and thermal = «
accounts for the basic part of fiesion. In designing reactors of dimensional
configuration, the moast effective method is the spherical ha:moniof?%é7_7?.ln com=
putations of the critical mass, it is necessary to be limited in the
pajority of cases by the Pj-approximatiunand only for fast and intermediate
reactors is it essential to solve the problem in the higher approximstions of
the spherical-harmonic methcd , €+g+s in the Py-approximation. For equaticns
of a reactor in the P1~ and Pi~approximations, with the utilization of
modern computer techniques, the method of finite~difference linear or matrix

asctorization is very effective 1557

For obtaining a osatisfactory accuracy in designs of critical mass
reactors, multigroup aspproximation with the subsequent application of high=
speed computers has appeared essential in many cases (fest and intermediate
reactors)e

This article will devote special attention to the methods of designing
hydrogen-containing reactors as the most complex in respect to computation,
for tho model of contimuous moderation (age approximation) that provides a
Aairplo wathcantical algorithm is not applicable to the moderation of hydrogene
In solving the tasks connected with designing uranium~aqueous reactors, two
approaches were basically observed. Tbe firat -~ « the approximation = =



is based on a kncwledge of the basic parameters of the fuel core of a
reactor and the square of the length of the moderation of neutrons. They
are characteristically determined, as a rule, as a result of processing a
large amount of experimental material and then theoretically generalizing
it into a concrete class of tasks. The critical mass or the effective
multiplication factor ’Keff 18 determined by a speciallly formulated
equation of oriticality.

The second approach is based on the application of sequentially
exact hypotheses and mathematical algorithms, which permit the obtaining
of all the requisite informatiou on uranium-aquecus reactors without
draving on additional information, save for elemeatary physical constants.
it is precisely this approach that is taken in this article.

1. Multigroup Methods of Solving Reactor Equations

B) ic Equations of a Reactor

Basic for the physical design of nuclear reactoirs is the problem of
the oritical parameters and the spatial-energy distribution of neutrons.
We will subsequently assume that the reactor is in a stationary state and
that there are no independent sources of neutrons.

We will write Bolt 1s kinetic equation in the field of moderation
in the following manner 2 ZIES

QVp+Sp = S du’ S dQ's, () @ (r's Q, u') X

U-—r

X [y u—t)+ 5 § 4’ Bugo(, Yo, W)+ E2 Q0. @D

Here, ZJ and Z;,‘ are the croass-.sections of elastic and inelastic diffusion,
respectively; ﬁﬁuo, u—u') mlwsu, u!) is the indicatrix of elastic and
ion; i

inelastic dif Mo = (R,%2) 18 the cosine of the angle of diffusion;
u=1n z° 1is the lethargy;re 2.ZatL  is the maximum logarithmic loss of

energy upon the collision of a neutron with a nucleus of the mass M;
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represent the sources of fission; x(u) is the fission spectrum;
00 (7, w)= ot @ ).

The limiting specification is characterigzed by the absence of a

neutron flux from within:
o(r, Q, u)==0

on the surface S with (R n)<

‘The nontrivial solution of the equation (3.1) can be found by the
source iteration method / 27

Mul tigrou uations of a Reactor in Pj-Approximati

In solving a large complex of neutron-physical problems, it is
possible to be limited by the P)-approximation, the essence of which
is that, in separating the neutron flux by spherical functions, the
firat two wembers impose limitas

o(r, Q, u) ={; [go(r, u)-+32q(r, a)],

whare.
%(r, )= { d2%(r, 2, u);

Qur, u)= S dQQe (v, Q, u).

The appropriate limiting specifications the P -approximation are
obtained from Marshak®s ratio / 27, 28 /.

The integral operators describing the diffusion of heavy nuclei
23 1) can be simplified by applying transport age approximations

Bl 6)= S (1 1)~ (@ —u); ot @i |

3.3)
:zsq’l (l‘, ul) = }-:s‘fl (l‘, u). )

We will assume, as previously in [ 27_7, that @o (v, #) and &% (l',u)
is in the form of the product of two functions, one of which takes into
account the basic change in energy; the other, withian the limits of a
group, is onl, siightly dependent on eanergye. The transition to multigroup
equations is effected by integrating the system of equations in Py-
approximation for lethargy within the limits of the group Uj-l = Uj). The
system of multigroup equations in the field of moderaticn assumes the
following forms

J=11=j 7
V(Px'!'z)n?o"z 2. (Po'*'ao Z 50‘?0 - ‘§~'> ‘?o— +x Q(r);
(3.4)
’;‘1;" V‘Po x(px = a’ Z ﬂxq)r
=1



The moderation of hydrogen in the equation (3.4) is taken into account
separately. Group constants are determined in the forn of fractional-
linear functionals [g 27_7:

The presentation of group constants in the form of fractional-
linear functionals perxits, in the capacity of the weight function
?_(Ld anfl7) #(wWthe application of their approximate values (see, @.g.,

27, 29/).

It is essential to supplement the system of equations (3.4) with
a system of multigroup equations in the field of thermalization [ 21/,
However, for the many problems connected with the design of reactors, it
is possible to consider the field of thermalization as a single group
with several effective constants. For the computation of effective one-
group constants of a thermal group, it is possible in some cases to apply
the spectrum of thermal neutrons N (x), which is consonant with Wilkins'
equation 30_7 o*

AN (1) + (2B — )N’ () + (4x—B) N () =0. (3.5)

A 22 [To, = v o
Hee A 52 = 3 Z. is the absorption cross-section, with E =
0.025 Evw; v '{ne velocity of a neutron; T ard Ty are the environmental tem=
perature and the room temperature in absolute uniis; k is Boltzmann's constant.,

The equation (3.5) can also be applied for determining the spectrum
. of thermal neutrons in water, provided that there is assigned to hydrogen the
effective mass (M~%6) : for the purpose of calculating its bond in a
wmolecule of water. [I'_‘,Luﬁly, the system of multigroup equations assumes
the following form / 27_/3 .

j=11-§

. ' el NGt sy )
Vol +2hol=2) 3, e+ gzgu )’ ‘it 4 (r);
=i . )

it
1
5 Vo + ol = of 3\ plos;
t=1 r (3.6)
si {3 (=12 ...m)
P 2 (j=m41);
J__ 2{ (i=ll 2! ceay m);
! 2lr.T (i=m+l).

For calculating resonance absorption and fission, the probability of
averting resonance absorption of individual isotopes is expressed in the

px

* 1 analogous equation was obtained by B. I. Davydov in 1937.
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following mannexs: q,__:e-g;; Togb (D @3.7)
where ¢ 18 the number of atoms of the absorber in a unit of volume;
is the moderating means of the environment; §Z‘ is the effective resonance
integral; it is determined by the equation
_nGEh 3.8
‘,34'0—‘,1/1:]:"1 . ( )
whereJ is the complete resonance integral for the given level of energy;
T is the temperature of the environment; A= EZE-_ where £, is the absorption
. . :

crossssection of maximum resonance; £, 1is the section of potential dif-
fuaion;gg% ,Whers 17 is the half-width of resonance; A=o l/;_%_‘g

The function D(¢,A),which has been tabulated in another work / 31.7, -
takes into account the Doppler enlargement of the resonance lines under the
influence of the thermal motion of the nuclei of the moderator.

Resonance absorption within the limits of the group in asge approximation
to the density of the moderator can be presented in the following form:

2 /a0 (ua)
Av'i &

dg — =

Auj ’
where k 18 the number of the level.

Resonance fission with U235 in age approximetion is expressed as followss

j . l 1‘235
A(VEI)—EZQ_{%‘:&“) ,
x

where

T 1 =~ 18 the probability of fission at the level of k; ay = ‘%
% b4

[}
c) Moments T . The Length of Neutron Moderation

We will find the spatial-angular moments of the function of distributing
neutrons in an infinite environment with a flat isotopic source at z = O via the

ti H
equation O ()= dzz"{ dOP (1) 9 (2, u, ), (3.9)

where 9(% «, ) satisfies the kinetic equation.
We determine the value of the magnitude ZB as follows:
sy Don
& ()= g2l :‘;; (3.10)
In case of a point isotopic source at r = 0, the equation is

rh=(n41)z" (3.11)

The length of neutron moderation determines the average distance of a
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neutron in the process of decelerating from the point of generation to the
point at which a neutron becomes "thermal." Accorcing to Fermi's age theory,
the longth of neutron moderation yZ  is linked with the secondary mcment

by the following relatiouships

-'6" =—2-E’='2T°°. (3.12)

Another work [ 32_7 contains an equation for squaring the length of
neutron moderation, with two modifications which take into acccunt the first
and last lengths.

It is also possible to determine the length of moderation in a multi-
group approximation by applying Marshak's method [ 33_7.

The solution of the respective system of equations is found by the

method of sequential approximations. For example, the equation o = i
20;

enables one to determine the length of neutron moderation in various hgx;o-
geneous environments on the basis of the effects of deceleration (elastic and
inelastic) and multiplication. A comparison of the theoretical and experimental
values of the squares of the lengths of moderation provides one with the op-
portunity of checking various systems of multigroup constants.

The multigroup syastem of constants, which was appljed in the calculatiouns,
was constructed on the basis of data on cross sections / 34, 35_/. This
system of constants is basically presented in the work of G. I. Marchuk [ 27] .

Observed is a good concurrence of experimental end theoretical values
of the squares of the lengths of moderation in light water up to mdiun}
resonance = - lengths designed for multigroup approximations. For example, 2
the work of L. Ne Yurova, et al 36_7 presents the value Tex = 27.1 — 0.9 cm
(the experimental error determined by the dimensions of the source is minimized)
and the computation of the square of the length of deceleration in water = = 2
a computation made in the eighteenth group approximation, 7., ;. = 27.5 cia~ e
Such a concurrence provides cne with the opportunity of making reliable
computations for determining the critical parameters of a reactor in Py~
approximatione

A system of constants for designing a fast~intermediate reactor in
P3-approximation can be verified by comparing the numerical values ™ at
n =2, 4 6 with those of an experiment. The results of squaring the
lengths of neutron moderation are discussed in number 3 of this article.

d) Computation of Kinetic Effects in a One-Group Approximation
The critical masses obtained with a one-group computation in Py-approximation




for fast and intermediate roactors appear too high, comparzd with those of
an exact computation. The highest overestimation of the critical massea is
obtaincd for systems with an aqueous moderator. Because of this, it i=
9ossential to refine the results of computations at the expense of kinetic
effects. An P3-approximation is an essential refinement of an P}~
approximation in computations of a critical mass. However, with a large
number of groups, computation work sharply increases; therefore, it is
essential to be precise when working within the framework of the one-group
methode

The goal of the ome—group method is to obtain constants that result
in values analogous to those obtained through the application of the usual
multigroup theory for the critical parameters of a reactor,

The problem of obiaining one-group constants with the aid of the
solution of the multigroup problem in pl-approximation i8 considered in
detail by G, I. Marchuk / 27_7.

With the asssistance of one-group constants, it is possible to produce
a refinement of the critical masses of nuclear reactors at the expense of
kinetic effects by solving a one-group kinetic equation, which can be
written in the following manners
Vo + Ty = Ztr—2at Vi) S @ dQ. (3.13)

45

The kinetic equation (3.13) cen be solved by the method of spherical
harmonic, e.g+., in P3-approximation.

The results of computing critical parameters with the aid of the ocne-
group theory will be discussed in number 3 of this article.

2. DMothods of Computing the Critical Masses of Nuclear Reactors

a) _Tha Racalculation of the Critical Masses of Spherical Reactors
with Infinite Reflectors
from Sinsle "mrichments to Othors

In problems concerned with nuclear safety, the approximate methods cf
designing reactors are of pragtical significances In the work of G. I.
Xarchuk and V. Po Kochergin 37_7, a method has been developed for re=
calculating the critical masses of spherical, infinitsely reflected reactors,
from single enrichments to others.

Wo will consider a critical reactor in which the fuel core of the radius
R is swrrounded with an infinite reflector. The solution of a one-group



?_f_ﬁ}ﬁion equation for the neutron flux to the reflector will be as follows

e—Lr .
e(r)=C——. (3.14)
The effect of the reflector on reducing the critical dimensions of the
reactor is characterized by the following effective addition:

6=R3—R' (3.15)
where /7, is the extrapolated radius of an unreflected reactor.

We will determine the effective addition in a way analogous to that
applied to determine the length of the linear extrapolation of the neutron
flux to the reflector on the edge of the ﬁlml core of the reactor:

P [ (3.16)
_d-?. r=R +_§.
Via the equations of the expressions (3.15) and (3.16), the value 4 can be
determined: 1 1
If the magnitude'A is known, we determine on the basis of the equation (3.17)
that . R=Ma—2+ VAT (RS ' (3.18)
- 26

The ocadmium ratio foi' 023 5 is a convenient magnitude characterizing
the neutron energy spectrum in an unreflected reactor: ”

§ vZgp(u)du
RCd= u=15,5 - . (3.19)
§ vIe(du
The magnitude of A as a function of the cadmium ratio Ry is determined
with tha aid of the critical parametersk‘and R, which are obtained by solving
the multigroup diffusion equations with assigned densities of nuclear fusl and2

the moderator, as well as with assigned enrichment of uranium by the isotope U 35.

The critical dimension of an infinitely reflected reactor during other
enrichments and with the same densities of fuel and moderator is computed in
accordance with the equation (3.18), with the use of a graph for the function A «
However, it is first necessary to mske a multigroup computation of unreflected
reactora for determining the msgnitude ka and the cadmium ratio.

A graph of the function A for aqueously reflected systems is presented
in Fgure 3.1 A comparison of the critical dimensions of the fuel core
of these systems, which are determined with the aid of multigroup computations
and by the equation (3.18) in the broad range of the change in ratios o¢= 0” é is
presented in Table 3.1. The asterisk denotes a radius found in accordance £
with the equation (3.18). The deviations in the critical mass rest within
the limits of accuracy, with which is made a multigroup computation. These
deviations do not basically exceed ten perceant. »

We will observe that, in computing the critical dimensions of the



systems UOx-PuO2-Ha0 (77y0,= 7Pud, = 6 8/cm’) in accordance with

the equaiion (3.18), 1t is possible to apply the function\ presented

in Figure 3.1, This is also confirmed by Table 3.1, in which the

uraniun is natural. This reflects the faot that the graph of the function

A does not change when plutonium replaces uranium, provided the compound

in which the former is present has the same density. Thus, the equation
(3.18) makes possible the computation of the critical mass of any combination

of fissionable elements in a given compound, with the presence of th
of the funotion A 4 ’ P e graph

Table 3.1

The Critical Dimensions of Uranium-Water and Uraniume
Plutonium-Water Systems

UoO — H.0 UOs — PuOs — H20
P = 35% P = 5% g=0 p=10

a [ Ry | R |R* | Ry | R | R* | R | & | R* | R | R | R®
2000 | 87,0} 78,0 | 78,2 — — — | 34,6 | 28,0 | 27,7 | 36,9 30,0 29,6
1200 | 34,6 ! 28,0 | 28,0 44,4 | 36,8 | 36,8 | 25,4 19,0 | 18,7-| 27,8 21,0 | 20,8
g0 | 27.3 | 21,0 20,7 | 34,5 27,3 27,0 — - | = =1 =1 -
600 | -- —_ — — — — | 20,8 | 14,5 | 14,2] 23,6 | 16,5 16,3
400 | 22,4 | 15,7 15,7 30,3 | 22,2 ;22,2 | -- — | = =1 = -
200 | — — — —_ — — | 18,4 11,8 {11,614 23,9 15,5 15,5
120 | 20,6 { 13,2 | 13,4}39,3|27,3|28,218,0 | 11,2 | 11,0] 26,5 17,0} 17,3
60| — -- -- | 68,21652,9]|528| -- — — — — —
30{2¢,3|150)i51] — | — | — |82 | 11,1 | 11,0} 52,2 35,0 | 36,8
10 32,5(20,0,20,4] — —_ — 119,8 § 11,5 | 11,4 — — -

3|41,4250)25,0] — —_ — | 20,8 | 11,6 | 12,0 {154,0 |120,0 | 116

Notes For the systoms U0, ~ H,0%2#, /5 and for the systems U0, =
mog - Hy0 oc-_-/i./,a $B= P% » P 18 the proportion of enrichment with isotope
v, A

Figure 3.1
The Functicn 2 =Ral—- 1'2—'}? for spherical reactors consisting of the

mixtures U0y = Hy0. The demsity of UO2 is 6 g/cm’ (Rgq = cadnium ratio)e
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To determine the critical masses of spherical, infinitely reflected
reactors having other densities of fuel and moderator, it is necessary to
make a computation of the critical parameters with the aid of multigroup
diffusion equations, with some kind of enrichment of fuel for finding the
function 4.

Unreflected reactors are similar, and the critical dimensions are
easily recalculated if a change occurs in the densities of the fuel and the
moderator. If, for example, ©o& =t (,o,..,.( / & is fixed in a system
consisting of two components, the number of atoms of fuel in one cm? will be:

) 1
@rop = ————— (3.20)

Qfue?
where g‘: ,/__Vnt: (N = the Avogadro number; 7' is the density, g/cmd; A is the
atomic weight).

In chenging the values of )i,/ , #%,s » the magnitudes 2 /), £ ywill
also be changed in a uniform ratio; therefore, in effecting the transition
from one_ syatem to another, the macroscopic cross section must be multiplied

byc?..é-{-_-

#4*/In order not to disrupt the multigroup diffusion eqs., it is

essential to divide the linear dimensions by the similitude factor J‘ + Thus,

(Y
m__f’
> = —i—

(3.21)
The curve connecticns between the critical charge and the critical
volume, upon changing the magnitudes Yu.e/»?#meq  in the same ratio, is
carried over a parallel manner without changing the form, for the similitude
factor in this case is the same for all theo{ . If the values 2...,.,) Fmeos
changed not in a uniform ratio and, consequently, the simulitude factor
depends on o& , the curve charges from the volume, apart from the conversion,
are still deformed.

b) Recalculation Based on the Laplace Trensform

The methods of recalculating the critical mass of nmuclear reactors
from one form of reactor to another - = methods based on the Laplace transform =
usually prevail in cases in which the spectrum of reactors with uniform com=-
position of the fuel core either are not converted (unreflected reactor) or
are insignificantly converted, basically via the reflector / 26 /.

We will consider the approximation with which a finite homogeneous
reactor is replaced by an infinite homogeneous environment, and the finite
dimensions of a reactor are taken into account through the assumption that
the neutron flux is equal to zero on some fixed surface. To these require-
ments respond the well-known diffusion approximation with a zero limiting
condition for flux to the extrapolated limite

The firat basic theerem of the theory of reactors is formulated in
the following manners



"At the function (D(x,E) describing the staticnary distribution of
neutrons in a oritical unrefleoted reactor, the variables. X, B are

divideds ' O(x, E)=9¢(E) ¥ (x).

The spatial dictribution \?(;gia the basic solution of the wave equation

- Ap (x) +#*¢ (x) =0, (3.22),
i.0., a solution which is absolute for the entire reactor and equal to zero
on the extrapolated limit."

- The position of the extrapolated limit determines both the Laplacian
»* and WC“) ; in this situation, the value \)(x) is determined with accuracy
up to the constant absolute multiplier. The effective multiplication factor
W Seif depends on the properties of the materials composing the fusl core
of a’reactor, and its form and dimensions are dependent only through 3¢*,
Consequently, K. £ has the same value for the two homogeneous rsactors
constructed from tue same materials, but having different dimensions and
form if they have the uniform value »¢*, which is determined by their
extrapolated limits.

_ For an extrapolated surface of an arbitrary form, it is impossible
to obtain a solution of the wave equation in explicit form. But for some
cases, the solutions are known and have a very simple forme

Rec ar Parallelepiped with Sides a, b, c.

' Three coordinate planes aice chosen so that they will coincide with
the three planes of the effective surface; the three borders will then
coincide with the three coordinate axes. The basic solution is via the
following equati w3

\}o—sm< _,_2,) sin (b )s n(c-,-2). (3.23)
where ) 18 the length of extrapolation. '

- The loweat Laplacian value to which corresponds the eigenfunction

x;=<a+21-> + K 612;.) +<c+2;. . (3.24)
Cylinder uith E Heicht and R Radlus.

We will assume that the axis of tke cylinder coincides with the
axis 2, and the plane of the foundation with the plane (xy)e The lowest
value Kt is equal to ;9,405

is

*o=(FFx + K'H-;-"' 2;.) a ' (3.25)
the corresponding eigenfunction
= az v 405
Yo= 5'"(!1-;-2;.) ( 1.'::" (3.26)

The Sphere of R us,
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In this case, the solution of a spherically symmetrical problem
yields the eigenfunction ), = Y, sin (¢o7), where

T 2
= (7))

It is necessary to note that the extrapolated limit must be a com=
pletely determined surface, i.6., it must have the same position for neutrons
of any energy. This limits the accuracy of the method underlying the
Laplacien transform, since the average length of free range is ¥/ and,
oonsequently, the length of extrapolation A = %F. also depends on the energy
in a diffusion approximation. -

Despite the fact that the method of the Laplacian transform is less
accurate than the diffusion theory, it has been widely applied in rough
computations of a critical mass.

Through the saving of a reflector, a reactor can be converted into
an equivalent reactor having several effective dimensions. This reactor's
Laplacian can be determined for a sphere, for example, by the relationship

=7y )z ' | (3.27)

since R is the real radius of the reflected reactor, ) is reflector economy,
and ‘A is the length of extrapolation.

The application of the Laplacian transform to & reflected reactor
results in an additional, fundamental inaccuracy. This is connected with
the fact that the neutron spectrums in reactors with uniform campositions
of the fuel core and with and without reflectors differ from one another in
accordance wi.th the size of the ruel core.

The Leplacian transform method, which utilizes experimental data on
the lengths of extrapolation and ruflector economy, is widely used in con=-
verting one form sof reactor into another,

3¢ Critical Parameters o ontaining Systems

a) A Comparison of the Computations of Crjtical Parameters of Aqueous
Salt Solutions of UO> (NO3)2 with Those of an Experiment

The methods of computing the critical parameters of homogeneous
nuclear reactors in P}~ and P3-approximations are applied to the mis-
caloulations of experiments conducted with squeous salt solutions of U0
(NO3)2 enriched in the amount of 90, 10, and 5 percent with uranium 235,

Experiments have revealed the discernible influence of nitric acid

contained in aqueous solutions of uranyl nitrate on the crzslﬁ mass of
homogeneous reactors. The work of B. G. Dubovakiy, et al, has shown



that this influonce is the result of two factors. Firstlv, tha addition
of nitric acid to an aqueous golution of salt of UQ (Nog)?_ leads to a
reduction (with a constant concentration of uranium in fhe solution)

in the total plane of hydrogen nuclei. This condition increases the
escape of neutrons from a reactor and leads %o the growth of the
critical mass. Secondly, the addition of nitric acid increases the
criticel mass by introducing additional nuclei of nitrogen, which has

a discernible absorption cross section (in the thermal field,

and changes according to the I/w-law.

Figure 3.2

The relationship between the oritical radius R of an aqueously
reflected sphere and the concentration of uranium in the aqueous salt
solution of U02 (NO3), vith different ratios of Qu/Qu. The enrichment
of uranium is 90 percent. The coaputation is of a one-group Pz=
approximations A = Critical radius of the sphere, in cm; B = Concentration

of uranium, g/1.
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. We will consider the results of the computations of the oritical
radii of spherical homogeneous reactors in accordance with the concentratiom
of uranium in a solution with various ratios of nitrogen and uranium
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nucleis ﬁN = ea/ The spherical reector has an infinite reflector

of water at 209 C. Figure 3.2 presents the results of computations

for uranium of 90 percent enrichmsnt in a P3. one-group approximation.
The lower curve corresponds tof,, = 2, i.e., there is no nitric acid.
This curve indicates the minimal limit for the critical radius of the

prﬁr@ .

The criticel radius of the sphere inoreases commensurately with
the addition of nitric acid (B = 2.52; 3.15; 6.3); with a three-fold
increase of i1y, the minimal critical radius of the sphere becomes larger
by seven to eight perceat. An iacrease of nitric-acid content in the
solution, with a given concontration of uranium, leads to a reduction
in the vatio @y /€5 5 - which characterizes the moderating pro-
perties of the sphere. Since the minimal critical radius corresponds
fully to a definite value ¢} &/2‘. a @n increase of (3, consequently leads
to a reduction in the values of the concentrations corresponding to the
minimal radii of the apheres. With the changing of @3, from 2 to 6.3, the
uranjum concentration corresponding to the minimal critical size is reduced
from 350 to 215 g/1. Beginning wath a uranium concentration of about 40 g/1,
the effect of nitrogen on the critical size is practically reduced to zero.

' Experiments [ 11_7, aimed at determining the critical masses of
solutions of UO2 (N03)2 enriched in the amount of 90 percent, have bean
conducted on assemblies having the form of cylinders, rectangular parallelge
pipeds, and spheres equipped with an aqueous reflector. Found experimentally
has been the relationship of the economy of the steel reflector through
the thickness t:

7 = 0.9t (3.28)
which is mgd with t {1 ca for all fhe forms of assemblies in the
field of U3 concentrations of up to 200 g/1. The lengths of the
extrapolation for spheres and parallelepipeds within the ra%g of
experimental errors do not depend on the concentration of U in the
solution when concentrations range from 67~210 g/l and are equal %o
2.7 £ 0.15 and 2.65 £ 0.15 cm, respectively / 11 /. The savings of steel
and aqueous reflectors hae been detesmined in the work of B. G. Dubovskiy
ot al /10_/. The economy of the aqueous reflector is constant within the
limits of experimental errors in the range of urenium concentrations of up
t0 135 g/1 and io equal to 3.3 % 0.3 for spberes and parallelepipeds [ 10_7.

Compared in Figure 3.3 are the experimental and computed values

of the critical radii of the spheres and the size-shape factoxs of aqueous
solutions of UO2 (NO3)2 enriched in the amount of 90 percent. Corrections
taldng into account the effect of the steel bodies of the assemblies have
been made in the experimental results. The computation of the critical
radii of the spheres has been made in the P3~ multigroup approximation;
the multigroup system of constants has been selected in accordance with
work previously performed / 27, 34, 38_/.



Figure 303

Critical parametors of aqueous salt solutions of U0y (NO3)p in
relationship to conceatrations of U237; Pn/fn = 2,5. The enrichment
of uranium is 90 percent. The material psrameter: 1 is the computation

r-/l <
according to the formula ”h= (E;fi;-——);z is the radius of an unreflected

sphere (a computation in a multigroup Pis-approximation); 3 is the same but
with a water reflector; experiment conducted with parallelepipeds = (@),
reflected spheres = (8), and unreflected spheres = (0)e A = Critical
radius of the sphere in cm; B = Material parameter in cm“'2; and

C = Concentration of U232 in g/l.
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The material parameter of the solutions is calculated according to
the equation 2
Ly (LN
x (ﬂ,-}-;:ﬂ_) ’ (3.29)
since R3 is the critical radius of an unreflected sphere in Pz-multigroup

approximation;x of is the length of extrapolation for a sphere in P;-
epproximation.

The greatest concurrence with the experiment is observed in the computation
cf the critical radius of an aqueously reflected sphere (= 1.5 percent); the
worst concurrence with the experiment was noted in the cgggutation of the critical
radius of an unreflected sphere (3 2.5 percent). With U concentrations of less
than 100 g/l in the solution, there was complete concurrence between the com=-
putation and the experiment.

The material parameters »>C* obtained by the computation method are
different from those experimentally measured previously [ 11_7(890 Figure 3.3)e
The maximum difference in the parameters 2. is 8 percent and occurs when con=
centrations are about 200 g/l.
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Experiments with a solution of U0, (NO3), of five and ten percent
uranium enrichment have been conducted in a cylindrical configuration
[ 11_/. In obtaining the critical radii of spheres and geometric
parameters of solutions of low enrichment from experimental data, the
length of extrapolation was assumed to be 2.6 cm, and the effective
addition of the aqueous reflector, 6 cme The computation made in the
mul tigroup Pz-approximation concurred satisfactorily with the experiment
(Figure 3.4)%

Figure 3.4

The c:itié_al parameters of aquecus solutions of U0, (No3)2. The
relationship Ly /g = 2,5. The enrichment of uranium is five and ten

percent. ' *
The material parameter is according to the equation o2 é—:;‘-;o L)

3 10 (1) and 5 percent (2). The radius of the sphere is in multigroup

P3-approximetion 5 (3) and 10 percent (4). a is unreflected; b is

reflected. G, 8, ® represent experiments on cylinders. A = Critical

radinn of the sphere in cm; B = raterial parameter in cn'2° C = g5
concentration in g/1.

&

]

A Kpumuvecrud paduye cpeps, cn

i . 8,015
J’)' ol
'r/ : - 20w
|2
%—-Jq
A
1 db
// \°\~ - $a
Py - \b’"ﬁ- 4 0

14 7 50 0
C  Konuenmpoqus U%S e

The comparison presented of experimental and oomputation results
for solutions of uranium of 90 percent enrichment indicate that the multi-
group method of designing & reactor with an aqueous moderator - -« a method
presented in this article « « and the system of constants selected for the
computation properly takes into account the moderation of hydrogen. Com=
putation and experimental concurrence was observed to be good in the
investigated field of concentrations of uranium of low enrichment. This
means that the resonance effects in the capture and multiplication of
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neutrons were accurately taken into account.

The results of coaputations in Py-multigroup and Pz-one-group
approximations hLave been compared in snother work [ 11_7; 1t demonstrated
that the maximum difference smounted to 2.5-3.C percent and was increased
with the growth of the concentration of uranium in the solutione.

The square of the length of neutron moderation of the fission
spectrum of a salt solution of U0, (N03)2 up to indium rescnance is
computed in a multigroup Pl .approximation (Figure 3.5). The con=
centration of uraniun in the solution is changed fram O to 500 g/1;
enrichments of 10, 36, and 90 percent are provided for.

Figure 3.5

The relationship between the square of the length of neutron
moderation of the fission spectruw in aqueous salt solutions of UO, (N03)2
and the concentration of uranium in the solution &% = 2.5. Enrichment of
uranium is in percents 10 (1); 36 (2); 90 (3). 4% . Square of the length
of neutron moderation in cw; B = Concentration of uranium in g/1.
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Tho cozputation of the valuo t includes the effects of elastic
and inelestic diffusions, with a consideration of anisotropy, moderation
of the deceloration process, and_the effect of multiplication on the fast
neutrons in g, Breeding of U<35 18 not considered.

The upswing of the curves with an increase in the conceantration of
urenium in the solution is meinly determined by the reduction in the cone
centration of hydrogen nuclei and the multiplication of fzst neutrons in
U238, The effeot of inelastic diffusion of uranium conpetes with these
noutrons. VWith the same concentration of uranium in the solution, the

value t grows with an increase of U238 content through the multiplication
of fast neutrons in this substance.

b) Critical Perameters of Mechanical Mixtures of Plutonium
and Uranium with Water
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Presented below are the data on the critiocal parameters of
mechanical mix 8 of uranium=-plutoniun~-water with uranium of various
enrichments of U255, The data were obtained on the basis of numerical
computations made in accordance with the method of spherical harmonic in
Py~ and P approximations.®The basic equations for the method and a brief
description of it were presented at the beginning of this article. The
investigation of the critical parameters was conducted for a unidimensional
configurations the sphere, the infinite cylinder, and the infinite plate.
The spheres have been computed with the inclusion of the lkdnetic effect
in p,-one-group approximation. For cylinders and plates, kinetic
corréctions for diffusion approximation were not taken into account;
computations were made in the rougher Pj-multigroup approximation (18
groupe). Ordinary water was used in the capacity of a moderator and
refleotor. The common systemigation of mixtures - - a systemization
adopted in the computations — « permits a consideration of such character-
istic, frequent cases as mixtures of uranium of various enrichments (without
plutonium) and water, uranium of diverse enrichments without water, aquecus
mixtures largely containing plutonium, etce Computations were made for
the following enrichments of uranium (in percent)s 0.71, 0.8, 1, 1.2, 1.4,
1.6, 1.8, 2, 5, 6.5, 10, and 23. Mixtures of plutonium and uranium with
water - = mixtures having higher enrichments of uranium = = are of less
practical interest. Some of the most important, frequent cases of such
mixtures, 6.g., mixtures of highly eariched uranium and water, have been
fully discussod in other parsgraphs of this handbook,

All the results are presented in the form of graphs whichaare grouped
according to the enrichments of uranium. Presented for each enrichament is
the set of the moat characteristic critical conneotionss the critical mass
of a mixture, the oritical volume of a mixture, the ocritical radius of an -
infinite cylinder, and the critical half-thickness of the infinite plate.
For studying the oritical parameters of the triternary mixtures of
uranium-plutoniun=water, it is convenient to consider the following

mnagni tudess ,

g. 18 the mwber of hydrogen atoms in one cuy of a mixture;
8c 4s the number of U235 isotoves ip.gne cx” of a mixture}
€q,: is the mumber of atams of the Pu?? isotope in a mixture;

Bux /By 18 the ratio of the_pumber of hydrogen atoms to the
. number of isotope U atoms in a mixture;
ﬂf; «8,/(6,+€) 1s the ratio of the number of hydrogen atoms to
the total number of atoms of the fissionable isotopes
in a mixture;

o= £4/8y 18 the ratio of the number of atoms of an isotope of
© 77 Pu®9 to the mumber of atoms of an isotope of U235 1n

# All the computations were made in the Mathematics Department of the
FEI (Peliks Edmundovich Dgerzhinskiy Institut = « the Feliks Edmundovich
Dserzhinsidy Institute) on a machine of the BESM=2 type.
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in a mixturo;

Co 18 the total weight concentration of fissionable isotopeo
in a mixture, 1; 235

P 1is the enrichment of uranium by the isotope U™, percent.

In galculating the number of atoms of the individual components
in one cm’ of a mixture, i1t was assumed that the volume of the mixture
was equal to the volumen of the individual components. The densitie
of uranium, plutonium ({-phase), and wator in a mixture were in g/cm”s
18.7, 19.6, 1.0, respectivelye.

It is convenient to characterige the relative content of plutonium
in a mixture with the parameter (s Computations were made for the follow-
ing values of the parameter ¢ O, 0.1, 0.3, 0.5, 1, 3 , 5, 10, and 50.

The minimal value of &{, which is equal to zero, corresponds to a aimple
nixture of uranium and water, without plutonium. The greater values of
the parameter of thies series (5, 10, 50) pﬁgmly characterize mixtures
of plutonium with the resonance absorber U<“~. When the definite magnitude
of o and the content of one of the fiseionable isoiopes in a mixture are
known, it i8 an easy matter to calculate the proportion of the other
fissionable isotope by the following equations

_ 239 ‘
Mpuzse =Myzs- @5z . (3.30)

Analogously, with sinple mixtures containing one fissionable isotope,
the magnitude B} is considered as the moderation parameter of the tri-
component environments. It is unequivocally connected to the total weight
concentration of Co of the fissionable isotopes of the uranium and plutorium
in a mixture. This relationship is expressed by the equation

62801 1 _a. 100 1 a
Bl & v T~ vorem 1) - @331
(Graphically, this relationship is represented by the sets cf monotypic

curves in Figures 3.10, 3.15, 3.20 = 3.35; each curve corresponds to one
value of the parameter ).

In some cases, the resultas of calculations of critical parameters
have been coapared with certain, experimentally critical parameters of
solutions and mixtures which are encountered in practice. The difference
between a computation and an experiment is largely and obviously explained
by the fact that, with uniform parameters of moderation of {3/, ideal
mechanical mixtures have & greater concentration of ﬁss:lonabie isotopes,
compared with mixtures and solutions investigated experimentally. This
difference in density must result in lower critical parameters for ideal
mixtures. It is especially great for a slightly diluted system moderator.
If tuie effect is taken into account, it then appears that the computed
and experimental results differ by five to ten percent in the critical
mass and critical volume of systems in the form of a sphere.



The above-mentioned evaluation is not exhaustive. Because of the
lack of experimental data on tricomponent systems at the present time,
it has not been possible to make, for these systems, a detailed com-
parison of calculation and experiment. A qualitative consideraiion of
the oritical relationships obtained in computations provides evidence that
the presence of plutonium in a mixture has been accurately teken into

account.

Computations have been made for a broad range of concentrations
of the Co of fissionable isotopes: from the slightly diluted moderator
of fast systems to thermal neutron systems. The relationshipa between the -
critical parameters (critical mass, critical volume, critical radius of
a cylinder, and critical half-thickness of a plate) and the parameter of
moderation of p: have a number of characteristic features which are more
or less maintained for all the enrichments of uranium. It is convenient
to consider them primarily for mixtures of uranium and water, without
plutonium. With small dilutions of uranium via the moderator, the -
critical mass of the isotope U235 is increased; with several diiutions,
the maximum is reachede Following this, the critical mass in the
intermediate field of the neutron energy spectrum in the fuel core is
reduced and becomes minimal, with the parameters of moderation cor-
responding to those of thermal neutron reactora. With subsequent
dilutions of uranium via the moderator, there is observed a monotonio
increase in the critical mass of the fissionable isotope. Demanding
attention is the fact that the relative magnitude of the maximum of the
oritical mass in a fast field of the neutron energy spectrum is com-
paratively small with & ten-percent enrichment of uranium; the relative
magnitude increases substantially with a reduction of enrichment, assuming
in this range of the spectrum a practically infinite value with a 6.5~
percent enrichment. This maximum is either slightly expressed or is
completaly absent s:shen the enrichments of uranium exceed 20 percent;
for enrichments below 6.5 percent, criticality on uranium-water mixtures
is not attained in ths considered range of moderations.

The minimum of the critical mass of uranium in the range of moderations
corresponding to thermal neutron reactors shifts somewhat to the side of
great dilutions of the moderator system upon a reduction of enrichment.

All that has been stated above relative to the general character
of the relationship between the critical mass and the moderation parameter
is to a large extent characteristic of other critical parameterss the
critical volume, cylinder radius, and the half-thickness plate. These
parameters have minimal values with moderations corresponding to inter-
mediate neutron reactors. With a reduction of uranium, this minimum
is shifted, as was 80 in respect to the critical mass, to the range of
great dilutions of the uranium of a moderator. The nature of the change
in the data of the parameters in the range of slightly diluted systems
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for all enrichments via the modorator is qualitatively similar to the
behavior of the critical mass of uranium in this range.

Considered above were the critical parameters of a uranium-
plutoniun~water system with«l = o for various enrichments of uranium.
The addition of plutonium to & mixture corresponds qualitatively to
an increase in the proportion of isotope U235 in uranium. Therefore,
the curves in Figures 3.6-5.35 with indices differing from zero
have, with equivalent enrichments, the same character as the correspond-
ing curves for systems withcut plutonium.

Figures 3.36-3.47 indicate the results of computations for the
mechanical mixtures U0 + 120, with threc diverse planes of uranic
oxide Yuop 3 3, 6, and 8.45 g/cud. The critical paremeters of these
mixtures are calculated for spherical and unidimensional cylindrigg%
shapes of fuel cores with enrichmento of urarium by the isotope U - -
enrichments ranging froa 1.5 to 90 percent. With the determination of
the nuclear densities of the isotopes, it is assumed that uranic oxide
displaces the water. Calculated on the basis of this assumption was
the course of tho relationship between the weight concentration of
the isotope U272 and the atomic vatio @,,/€. for each density
of uranic oxide. The corresponding curves are presented in Figures 3.39,
3.43, and 3.47. The oxide deusities chosen for computation not only
yield an idea of the influence of density on critical parameters with
various dilutions of a system via the moderator, but also corresponds
directly to a number of practically extant mixturess aqueous solutions
of uranium salts and suspensions of powdera and compressed chemical
compounds of uranium in tbe water. For example, a mixture of water
and urani¢ oxide with an enrichment of five percent and with a density
of 6 g/cm§ corresponds directly to solutions of uranium salts UOoF2
end UO2(NO3) 50

For the purposes of illusiration, Figures 3.40, 3.41, and 3.42
present experimental data on solutions of UO2F2 [TB « The graphs make
obvious that the difference between the computation of and the experiment
with the critical wass dcea nnt exceed 10 percent, and with the critical
volume, 15 percent. A comparison bhetween the curves in Figures 3.36-
3.47 and the corremsponding curves in Figures 3.16-3.35 indicate that
the relationship beiween tho critical parameters (mass, volume of the
sphere, and radius of tho cylinder) and the moderation parameter
for the mixture U0y + 70 tasically follows the regularities of the
above—considered uraniumwater mixtures, in which the density of uranium
18 18.7 g/1 cm’$ a reduction of the critical mass to the minimal value,
with uranium concentrations correasponding to thermal neutron reactors;
of the critical volume of a sphere and the radius of a cylinder, to the
minirum lying within the range of the intermediate neutron spectrum; and
then the monotonic increase of paramster values with further dilutions
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of the moderator system. Drawing attention is the lack, in an U0y + Hy0
mixture, of a maximum in the fast range of all the deasities of uranic
oxide and emrichments considered here. Unlike mixtureas of metallic
uranium and water, mixtures of uranic oxide and water characteristically
increase critical parameters in the range of a slight dilution of the
moderator up to dry oxide.

From what has been stated, the following conclusions can be made:

1. The information presented in this article concerning mechanical
' xixtures of uranium-plutonium-water can be employed to determine the
conditions of muclear safely. The metallio~aqueous mixturss considered
in this article surpass, in density, all the well-known real hamcgenecus
hydrogen-containing systems, given corresponding moderation parameters;
therefore, the data on the critical parameters of these mixtures can be
applied in evaluating nuclear safety in all practical situations.

2. The results of the computations of the critical parameters of
U0, + Ex0 mixtures with uranic-oxide densities of 3, 6, and 8.45 g/
can be expediently utilized in evaluating muclear safety for mixtures
of uranic-oxide powders with water, aquecus solutions of uranium salts,
and suspensions of some compressed chemical compounds in water.

3. A general approach to the problem of applying the results
contained herein for determining conditions of nuclear safety must be as
follows: A weight concentration of fissionable isotopes is compared
with a theoretical concentration in Figures 3.10, 3.15, etc. for
ursnium~plutonium~vater mixtures, and in Figures 3.39, 3.43, and 3.47 for
mixtures of uranic oxide and water.' The application of the computed
results is feasible, provided that the real concentrations do not exceed
theoretical concentrations, given uniform moderation parameters. In the
nost general situation in which a comparison is difficult, it is necessary
t0 utilise the results of the calculations for uranium-plutonium—water
aixtures, from which the maximum initial densities of mixture components
v?;ggcn {uranium = = 18,7 g/cn3, plutonium « « 19,6 g/cn3, and water — =
1 o -

4. The computation methods used here are not universal and provide
satiafactory results only in a certain range of moderationss a) the
effective one-group theory is for fast and thermal neutron spectruazs,

b) the Py-multigroup approximation is for systems whose dimensions
greatly exceed the length of the free range of neutrons in a given
environzent.

In the range of moderation characteristic of the intermediate
aeutron spectrum, the presented approximations are inadequate in a
general situation; therefore, an evaluation of nuclear safety in ace
cordance with the above-mentioned cri*ical parameters in this range isa



possible only from the qualitative point of view.

5« In the evaluations of nuclear safety in accordance with the
critical relationships in Figures 3.36-3.47, it is necessary to pay
attention to the 15-percent overestimation of the critical masses,
compared with the experimental resultse

Figure 3.6

The critical mass for a mechanical mixture of uruanium, piutohium.
and water as a function of moderation. The shape of the fuel core is
an aqeously reflected sphere. The uranium is natural.
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Pgure 3.7

The oritical volume for a mechanical mixture of uranium, plutoniua,

and vater as a function of moderation. The shape of the fuel core is an
aqueously reflected sphere. The uranium is natural.
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Figure 3.8

The critical radius of an aqueously reflected infinite cylinder
for a mechanical mixture of uranium, plutonium, and water as a function
of moderation. The uranium is ratural.
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Plgur‘ 309

The oritical half-taickness of an aqueously reflected infinite
plate for a mechanical mixture of uranium, plutonium, and water as a
function of wmoderation. The uranium is natural.
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m 3.10

The relatiocnship between a concentration of 023 9 in a mechanical
nixture of uranium, plutonium, and water and the ratio of atoms .
Qu /(6 +&) with variocus X values. The uranium is natural.
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Figure 3.1l
The critical mass for a mechanical mixture of uranium, plutonium,

and water as a function of moderation. The shape of the fuel core is an
acqueously reflected sphere. The enrichment of uranium is one perceat.
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Figure 3.12

The oritical volume for a mechanical mixture of uranium, plutoniunm,
and vater as a function of moderation. The shape of the fuel core is an
acqueously retflected sphere. The enrichment of uranium is one percent.

d TR
4 5 ‘ ’y J
P 1 / |
L - / /I
”I \‘ \‘ !
< § = X =
% h \\ “/J
'g e— H \‘ . /r‘.
§ ‘\ \N\_ \ :’5 |
S . \\ ."'n. //
§~ ” \\n. ﬂ
<
“ 7
’ -
ll,l ' i v 0. P-AR:‘;/&)
B Komyenmpauws & rpy as03,xe/n o 00—
C Toxe onpaelre/ [T T

Legends A = Critical volume, 1; B = Concentration of 0, with &= O3, A9/Z,
- . C = Concentration of Co withet =/, A:.y/z,

-4l =



Figure 3.1}

The oritical radius of an ajueously reflected infinite oylindcr
for a mechanical mixture of uraniuw, plutonium, and water as a funotion
of moderation. The enrichment of uranium is one percente.
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Figure 3.14

The critical half-thickness of an aqueously reflected infinite
plate for a mechanical aixture of uranium, plutonium, and water as
a function of moderation. The enrichment of uranium is one percent.
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Figure 3.15

The relationship between a concentration of 0235 + Pu239 in a
mechanical mizt-u.re of uranium, plutonium, and water and the ratio of
atoms to &/(& +&g) with various a values. The enrichment of uraniuam

, is one percent.
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Figure 3.16

The critical mass for a mechanical mixture of uranium, plutonium,
and wvater as a function of moderation. The shape of the fuel core is an
aqueously reflected sphere. The enrichment of uranium is two percent.
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Figure 3.17

The critical volume for a mechanical m/xture of uranium, plutonium,
and water as a function of moderation. The shape of the fuel core is an

aqueously reflected sphere. The enrichment of uranium is two perceat.
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Figure 3.18

The critical radius of an aqueously reflected infinite cylinder
for a mechanical mixture of uranium, plutonium, and water as 2 function
of moderations The enrichment of uranium is two percent.
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Figure 3.19

The oritical half-thickness of an aqueously reflected infinite
plate for a mechanical mixture of uranium, plutonium, and water as a function
of moderation. The enrichment of uranium is two percent.
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ng.m 3.20

The relationship between a concentration of U22° + Pu3? 1n a
cal aixture of uranium, plutonium, sad water and the ratio of atoms
to 2g/!65 + €g) vwith varicus oc values. The enrichment of uranium is two

percent.
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Figure 3.21

The critical mass for a mechanical mixture of uranium, plutonium,
and vater as a function of moderation. The shape of the fuel core is an
aquecusly reflected sphere. The enrichment of uranium is five perceat,

|
1 - ' a-0
- 14
& "=t LI
g e /
2 N——
S \ \\\
B ~N NN 7
2 N Y \ \ T —’}u
v ““-:5_\\-% \b = / 7
Q\‘\ \\. =333
‘\ N ’a'ﬂ
< \(}J
N N
1
ar
"7 1 I A T AR
B fowyexmpouus Cynpu a=0,x2/2 05 82 o1 4qos am

solu . 5
PTRAL FETENN T AL B LT

» kg; B = Concentration of (g with xX=0o,.
k9/C.

- 49 -



Figure 3.22
The critical volume for a mechanical mixture of uranium, plutonium,

and wvater as a function of moderation. The shaps of the fuel core is an aque-
ously reflected sphere. The enrichment of uranium is five percent.
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Figure 3.23

The oritical radius of an aqueously reflected infinite cylinder
for a mechanical mixture of uranium, plutonium, and water as a funotion of

moderation. The enrichment of uranium is five percent.
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The ocritical half-thickness of an aqueously reflected infinite
plate for a mixture of uranium, plutonium, and water as a function of
moderation. The enrichment of uranium i3 five percent.
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Figure 3.25

The relationship between a concentration of U232 + Pusdd in a
mechaniocal nix?m of uranium, plutonium, and water and the ratio of atoms
to Pg/(& + Lg) with various o values. The enrichment of uranium is five

percent.
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Figure 3.26

The oritical mass for a mechanical solution of uranium, plutcnium,
and vater as a function of moderation. The shape of the fuel core is ar aque-
eously reflected sphere. The enrichment of uranium is ten percent.
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Pigure 3.27

The critical volume for a mechanical mixture of uranium, plutoniunm,
and vater as a function of moderation. The shape of the fuel core is an aque~-
ously reflected sphere. The enrichment of uranium is ten percemnt.
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The oritical radius of an agqueously reflected infinite cylinder
for a mechanicsl mixture of uranium, plutonium, and water as a function of
moderation. The enrichment of uranium is ten percent.
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Figure 3.29

The ocritical half-thickness of an aqueously reflected infinite
plate for a mechanical mixture of uranium, plutonium, and water as a funoction
of moderations The enrichment of uranium is ten percent.
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Figure 3.30

The relationship batween a concentration of U235 + Pu239 in
a mechanical mixture of uranium, plutorium, and water and the ratio of

atoms to £y/(£; + 9) with various o¢ values. The enrichment of urenium
is ten porcent.
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Hm 3031

The ocritical mass for a mechanical mixture of uranium, plutonium,
and water as a function of moderation. Thc shape of the fuel core is an
aquecvsly reflected sphere. The enrichment of uranium is 23 percent.
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l"igure 3032

The oriticel volume for a mechanical mixture of uranium, plutonium,
and vater as a function of moderation. The shape of the fuel core is an
aqueously reflected srhere. The enrichment of uraniuwm is 2% perccat,
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Figure 3.33

The critical radius of an aqueously reflected infinite
cylinder for a mechanical mixture of uranium, plutonium, and water
as a function of moderation. The enrichment of uranium is 23 pe-cent.
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Fgure 3.34

The oritical half-thickness of an ‘aqueously reflected infinite
plate for a mechanical mixture of uranium, plutonium, and water as a function
of moderation. The enrichment of uranium is 23 percent.
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Figure 3.35
The relationship between a concentration of 0235 + Pu239 in

a mechanical -bxturb of uranium, plutonium, and water and the ratio of
atoms to &g/ (€5 + ¥5) with various o values. The enrichment of uranium
is 23 percent.
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Legends A = Concentration of Co, kg/l.
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Figure 3.36

The critical mass for a mechanical mixture of g 2+ H0 a8 a

function of moderation, with various enrichments (U222, %), The shape

of the fuel core is an aqueously reflected sphere. The density of the
U0p is 3 g/cm3.
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Figure 3.37

The oritical volume for a mechanical nixturo UO« + HO as a

t1 f moderati wvith vari enrichments
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Figure 3.38

The critical radius of an aquecusly reflected infinite cylinder
for a mechanical mixture of UO2 + Hp0 as a function of moderation, with
various enrichments (U2%, %). The density of the UO, is 3 g/cm.
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Figure 3.39

The relationship between a concentration uf 0235 in a mechaniocal
aixture of U0, + E;0 and the ratio of the atous to °H , with various enriche

ments (U222, %). The density of the uoz 18 3 g/cad.
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Figure 3.40

The critical mass for a mechanical mixture of goa + 320 as a

function of moderation, with various enrichmenta (U2, %).“ The shape

of the fuel core is an aquecusly reflected sphere. The density of the
U02 is 6 g/cm3 .
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Figure 3.41

The critical volume for a mechanical mixture g; +HOas a
function of moderation, with various enrichments (US%2, %)
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Figure 3.42

The critical radius of an aqueously reflected infinite cylinder
for a mechanical mixture of U0§ + H0 as a function of moderation, with
various enrichments (U255, %). 1The density of UOp is 6 g/cmd.
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Figure 3.43

The relationship betwesn the concentrations of 0235 jna
mechanical mixture of U0 + H20 and the ratio of atoms to ZH with

various enrichaents (U2, %), The density of the U0, 10 Pefond.
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Figuao 3444

The critical mases for a mecnanicel mixture of ggz + Hy0 as a

funotion of moderation, with various enrichments (U232, %$). The shape

of the fuel core is an aquecusly rcflected sphere. The density of the
U0, 18 B.45 gfemd . =
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Figure 3.45

The oritical volume for a mechanical mixture o +HB0 -3 a
functica of moderation, with various enrichuents (U 5 ; The shape of
the fuel. core is an aqueously reflected aphere. The density of the U0, is

8.45 g/cw’,
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Figure 3.46

The oritical radius of an aquecusly reflected cylinder for a
3echanical mixture of U0 + Hp0 as a function of nodoration, with various

=

enrichments (U235, £). Tho dersity of the U0, is 8.45 g/cm”.
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Figure 3.47

The relationship between a concentration gqf 0235 in a mechaﬁical
mixture of UOp + H20 and the ratio of atoms to z{i_ with various enrichments

(0®, %), The density of the UOp 12 8.45 g/cu,
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Legends A = Concentratica of U222, ke/l.

c) Critical Parsmeters of Mechanical Mixtures of Uranium with
Water and Solid Moderators

Presented below are the critical masses of mechanical mixtures of
uranium, water, and carbon; uranium, water, and beryllium; and uranium,
vater and beryllium oxide. These masses were computed in a P) -
approximation (Figures 3.48-3.63).*

* The computations were made in the Mathematics Departmcat of the FEI
on a machine of the BESM-2 type.




Mauwe 5.48

The critical mass of U 235 for a mechanical uixture of U + C + Hy0 as
a function of moderation. The shape of the fuel core is an infinite aqueoualy
reflected sphere. The enrichment of uranium is two percent.
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Legend: £ = Critical masa of U°2°, kg.

Figure 3.49

The critical mass of U222 for a mechanical mixture of U + C + Hy0 as
a function of moderation. The shape of the fuel core is an infinite aqueously
reflected sphere. The enrichment of uranium is 6.5 percent.

0

_‘-Jr \_....

;\,;’ R
5
>
5 Z,
g 59
g A ?aﬂ —
3 74 —
g ASSTI oA s =
:::“
<
w* 0 £/p

Legrnd: A = Critical mass of 0235, ke

- T5a -



Fgure 3.50

. mmu«lmsofvasfora-eohmiodmtm ofU+C+
Hy0 as a function of moderation. The shape of the fuel core is an
infinite aqueously reflected sphere. The enrichment of uranium is

ten percent.
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Figure 3.51

The critical mass of 7233 for a mechanical mixture of U + C +
Hy0 as a function of moderation. The shape of the fuel core is an
infinite aqueously reflected sphere. The enrichment of uranium is

: 20 percent.
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Figure 3.52

he critical mass of U2 for a mechanical mixture of U + C +
H0 as a function of moderation. The shape of the fuel core is an
infizrite aqueously reflected sphere. The enrichment of uranium is

36 percent. _
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Figura 3.53

The critical mass of U235 for a mechanical mixture of U+ C +
H0 as a function of moderation. The shape of the fuel core is an
infinite aqueously reflected sphere. The enrichment of uranium is

95 percent.
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Legends A = Critical mass of U222, kg.
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HXO as a function of moderation.

Figure 3.54

The oritical mass duasforamochanicalnith of U+ Be +

The shape of the fuel core is an
infinite aqueously reflected sphere. The enrichment of uranium is

two percent.
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Legends A = Critical mass of U2, kg.
Figure 3.55

Thecriﬁcalmsofﬂasforamchanicalmmeofn+30+

Hx0 as a function of moderation.

The shape of the fuel core is an
infinite aqueously reflected sphere. The enrichment of uranium is

6.5 percent.
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Legends A = Critical mass of U7, kg.



Figure 3.56

The critical mass of 0235 for a mechanical mixture of U + Be +
Hy0 as a function of moderation. The shape of the fuel core is an
infinite aqueously reflected sphere. The enrichment of uranium is

20 percent.
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Figure 3.57

The critical mass of 0235 for a mechanical mixture of U + Be +
H;0 as a function of moderation. The shape of the fuel core is an
infinite aquecusly reflected sphere. The enrichment of uranium is

36 percent.
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Figure 3.58

The critical mass of 0235 for a mechanical mixture of U + Be +
H20 as a function of moderation. The shape of the fuel ccre is an
infinite aqueously reflected spheres The emrichment of uranium is

90 percent.
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Figure 3.59

The critical mass of 0235 for a mechanical mixture of U + Be +
Hy0 as a function of moderation. The shape of the fuel core is an
infinite aqueously reflected sphere. The enrichment of uranium is

two percent.
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Figure 3.60

The oritical mass of 0255 for a mechanical mixture of U + BeQ +
H0 as a function of moderation. The shape of the fuel core is an
infinite aqueously reflected sphere. The enrichment of urarium is

6.5 percente.
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Figﬂr‘ 3061

The critical mass of 0235 for a mechanical mixturs of U + BeO +
H20 as a function of moderation. The shape of the fuel core is an
infinite aqueously reflected sphere. The enrichment of uranium is

20 percent.
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Figure 3.62

The critical mass of I.lz35 for a mechanical mixture of U + BeQ +
H20 as a function of moderation. The shape of the fuel core is an
infinite aqueously reflected ephere. The enrichment of uranium is

36 percent.
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Legends A = Critical mass of 0235, Kge

The following values of the densities of the components of a mixturs
were applied for the computationss

7, &/’
Uranium 18,7
Berylliua 1.85
Beryllium oxide 2.85
Water ' lom

The results of the computations are presented in the form of graphic
‘relationships between the critical masses of variously enriched uranium
(2, 6.5, 20, 36, end 90 percent) for the mixtures of uranium, water, and
beryllium and uranium, water, and beryllium ozide, and 2, 6.5, 10, 20, 36,
and 90 percent for mixtures of uranium, water, and carbon on the one hand

2
z:gg zlggegc:rresponding parameters of moderation Qa/f‘_ > gc/f‘. 5 e& / g. on



Figure 3.63

The critical mass of 027 for a pechanical mixture of U + BeQ +
H0 as a function of mcderation. The shape of the fuel cors is an
infinite aqueously reflected sphere. Tne enrickment of uranium is

90 percent.
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- For each value of a critical mass, it is posaible to compute the
following critical volume znd density of a mechanical mixture by the
following equationss

Vem (233_ + 0,038 4- o,osogpc) ; l

_ 1004-6,0383p; P+ 0,05100cP 1 (3.32)
Y= "5,3550,0393p:1P 5 0,03098cP ,
for a mixture of urenium, water, and carbon;
V= (i};“l 4-0,0383f - 0,0208{’»‘,“) m;
(3.33)

__ 100--0,0383f (P - 0,0385f 1P )
Y =="5,35-10,0383F 11 -+ 0,0208 pcP




for a mixture of uranium, water, and beryllium;

160-4-6,03838y P < 0,1033f,0P (3.34)

Ve (52 1:0,038301 -+0,0373yc0 ) 3 }
Y = 5351 00383 P 0,007 iy o F

for a mixture of uraniva, water, and beryllium ox%de, since V is the

critical volure, 1; m i3 the critical mass of IJ:Zj » kg; 7’18 the density

nf the mechanical mixture, &/ca’; P is the enrichment of uranium, %; ﬁH

is the ratio 9H/ £5; FBe is the ratio @pe/ és;,{;’Beo is the ratio

!BeO/pS'

For mixtures of uranium, water, end carbon; uranium, water, and
beryllium; and uranium, water, and beryllium oxide, there are no
oxperimental data with an aqueous reflector; therefore, it is impoasible
to verify the results of the computations. The applied method of com-
putation apparently results in a maximua weviation of X 30 percent froa
experimental data. Especially great is thie deviation for systems having
small dimensions and utilizing uranium of iow enrichment (2 and 6.5 percent).

On the basis of the presented graphical relationships between the
critical messes and 4,/2, 2 /4 47:/ &+ it is possible to obtain the
gZeneral regularity of the behavolr 62 curves. When there is very little
or no water in a system (&,/2.= ©-57), the critical masses increase .
commensurately with the addit'{on of a solid moderator (carben or beryllium);
they attain their maximum value, following which they are reduced until
they reach the minimum and then again increase. The growth of crivical’
masses with small values of the relationship of %/ﬁ-or .::_/ ;.‘:-is explained
by the fact that the small quantities of solid moderator, while essentially
not changing the neutron spectrum, substantially reduces the density of
uranium, .

A subscquent addition of solid moderator reduces the critical mass,
for the neutron spectrum is substantially sottened. After the neutron
spectrum has become thermal (;ﬁ;,"-,";-: 6,000 - R,000; é‘}.’f,. = 30,000 .
40,000), an addition of a solid moderator iccroases the critical mass,
since the neutron spectrun is essentially unA:'=5:~._-.:&. Hutzver, the density
of the ura:iium is reduced and neutron captury in the moderator is increased.

._With tho presence of an insignificant agmount of water in the system
(f'g.:./’ ?.: 60 300), the critical mass is reduced commensurately with the
addition of a solid moderator, and after having attained the minimum, it
increasea. This occurs because the addition of the 30lid modorator
nevarthless results in this case in softenirg the neutron spectrum.



After the system has becccisc thermal, the subsequent addition of solid
moderator increales iha critical mass because of the reduction of the
density of urenium end the increase of moderator absorption. With
the presence of the cptimal amount of water in the system (PH/'Q =
400 plus), the addition of a solid moderator leads only to a reduction
in the density of the uranium and the additional capture of neutrons,
ani the critical mass increazes.

4. The Computaticn of Sise-Shane Factors of Complicated Geometrie
Configurations '

In solving problema of the nuclear sefety of the containers of
complicated geometric configurations, the calculation of size-sha
Sactors is of substantial significance. The size-shape factor [-E:ometric
parameter]of a container in a critical state is equal to the material
perameter of the solution filling the container. When the geometric
parameter o¢f a container is less than the material parameter of a solution,
the filling of the container with this solution may result in a chain
reaction, Conversely, when the geomeiric parameter is greater than tLe
raterial psremeter, filling is safe. Since the geometric parameter is
squal to the materiel one in a critical atate, the most convenient and
asccurate method of calculating the material parameter is through the
employment of experimental data on critical masses. When the radius
of %the criticel sphere is designated by the letter R, the material
paremeter #*(equal to the gecmetric parameter) is calculated with the
equation

S

(3.35)

~~
~
-
(=3
=3
_—
o
-~
<
(]
-

aince 0,71 At is the length of extrapolation‘ determined via the transport
length A

When it is usual to ascuwe the same value 0.71 ;\,t in computing the
georetric and material parazsters of various figures via the equation (3.35),
avea a 30-percent error in tho extrapolation length does not yield an
error of over 2 percent in calculatirg the dimension of a container.

A gecmetric parcmeter is computed exactly only for a small number of
ascurate Tigures. The best kmown geometric parasmeters are the sphere, the
cylinder, and the parallelepiped. Also known are the geometric parameters
of som2 othor less employable figures, for which the problem of the cal-
culaii..t of gecmetric parameters can be solved accurately in the spherical,
¢ylindrical, and Cartesian cdordinates [ 38_7 Presented below are the
figwras, whose exact values of the geometric shaps-size factor w® , as
well as the distribution of neutron flux §, are known.
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The sphere

a? sinx’
P (P=20X
grv V=<7

(r is the point cocrdinate).
The cylinder

S D
2,405 _ .

T
Wy==—py K=

@ = Jy(%,r) sinz

(r and h are the point coordinates).

The infinite flat layer of thickness H
x‘:.;"i;.. @ =sin»h ,
(h—xkoopaunara Toukm).
(h is the point coordinate).

The paralleleniped

T _ . 4" Y3 e 1.
“ ”'y'|"§ /':'i' 7'.:,

. _a, N 5
M= Ke=pi K= 2
D ==sin»;a’ sin %,b" sin xyc’ 0

(a', b', c' are the point coordinatesj.

The infinite cylinder with the central cylindrical cavity
The magnitude 7" is determined by the solution of the equation

Jy (%r) Jo (xR) Y, (xur)==0; @

T Yo(xR)
N :
©=Jo (20) ~ ’?'.',((:‘,% Yo (x0)

( is the point coordinate).
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The sphera with a central spheorical cavity
The magnitude s¢* is determined by the solution of the equation

»eosx(R—rs) f‘.i_'l_"'.(.R:'_'). =0:
S ra =
O ==sinz(R—q)0 V

(Q is the point coordinats).

Individual parts of a cylinder
The magnitude n takes the values 0, 1, 2, 3, ees.

_&fw
Sim

. !
2.1 2. - 1

K=oy n %y =TT a1
: !

i
s

p—p——

~,

#* {a found from solving the equation
withn=0, 1, 2, 3; %R ic equal to 2.405, 3.83, 5.13, 617;

@ = - sinwfif, (%Q)-cos G
{n, P, are ihe point coordinates)

Sectors of a sphere
The magnitude @ assumes the values determined by the equation

Pp(cos0)=0 npu n=1, 2, 3, 4, ..., @

A\

whereupon the maximum value will be taken in accordance with the magnitude
of the root. The first four values of cos © are

is found through the equation J p + 4 (%R) = 0; for the first four
values, %R equals 4.493, 5.762, 6.590, 8.184. § =1J n+t Ne) b

{cos ) (e.e ere the point coordinates).
It 18 usefl to employ the exact valuss of geometric parameters
in eveluating the criticality of figures somewhat diffexing in shape from

those whose exact goometric—parameter value is knowne. For example, the
geometric parameter of a cone can be sucessfully calculated by using the
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precise value of the geometric parameter of a spherical
seotor. Insofar as this method of comparison is definitely
arbitrary, good results are obtained only for figures having
gecmetric configurations approximating those of the original.

There is a general procedure for computing a geometric
parameter of an arbitrary body = = a procedure based on
variation methods/ 38, 39_/. However, to obtain a fair
degrea of accuracy, many computations are required.

Figure 3.64. Presented below is a relatively simple method of

Tovard a con=- calcula the geometric parameters of complicated

clusion of an figures 40_7.

equation for

a geometric We will consider a convex body of arbitrary shape

parameter. (Figure 3.64). In this body we will inscribe the sphere
of maximum radius. It is obvious that the geometric

parameter ,,_2 of a body of arbitrary shape can be presented in the form of
the sum of

”=12g-}-Ax, (3.36)

where %€ is the geometric parameter of the sphere; 4x¢is the contribution
of the remaining part of the body to the geometric parameter.

We will ccnsider that the elementary contribution to the geometric
parameter At from the layer of the thickness dr (S2) is expressed in the
form of

dx =’ (r)dr 2 (3.37)

4

m™is is tantamount to saying that the volumstric elements within the sphere
sake an identical contribution to the geometric parameter regardless of its
angular coordinates e, 9 « Here r is the radius drawn from the center

of the sphere, and

®(r)=2, x'(r)== — - (3.38)

The equation (3.37) somewhat approximates actuality and is fairly accurate.
The accuracy of this approximation will be indicated by a concreie computation



and a comparison with the precise results.

Using the' eguation (3.37), the equation (3.36) can te presented in
the form of

r‘m (\0
x=so-k | (ndr S, (3.39)

e

where v, is the maxisun valus of r.
Ve will integrate the eguation (3.39) by Pa;—ts :

?‘!{‘
= o+ 3 (g YL — 20— S w(r) 228 (3.40)

Te

(The expression x(xr)Q (r)tz= 0 vith r = r,,, since with rpax the solid
angle becomes zero; x{v)* Q (£)/lz = x4y with r =1 o+ Since with r = r, the
solid angl~ becomes 4 r, whiie x(ro) = w/ro). Replacing the expression

Tmax
7 d o) = %fm 4 9%(r)
r

.x(r) with its value =/r, we get x = /’ ’
r r

K o

o

Here d 2%(r) is understood to mean the quantity obtained by the subtrac-

tion of the solid angles Q(r} — 2(r + Ar): that is, the solid angle
3 is formed by two conicall suifaces,

Tne integration ot v can be supstituted simply by the invegratidn oI
the solid angle. Tho value does not change in this aituat:.on, since the
integrand wiil run thiough the saze ralues provided that dqQ” is under-

stood by its usual definition of dQ’ = sin@dfde. In this situation,
the single integral Becomes a double one; the second integration appears
in solving the problem to find 4 Q(r). Thus, the final equation for
can be written in the form

L1 de : 3.41

¥=T)F@y | (@41

Q
Similar equaticns for »% x% etc. can be evolved in an analogous manner;

therefore, anathar critericn is necessary in selecting the indicator of degree.

-9l =



¥TOm tTne IOIWuiation OI Tne equation IOor . ' Oneé OugNT TO 8XDPect
that the result, closer to reality, should be obtained for figures whose
shapes approximate the spherical. This phenomenon, as a computation
indicates, is actually observed. Therefore, it is natural to demand that,
in choosing the indicator of the n degree, the equation yield an accurate
result for a figure whose shape substantially differs from the spherical.
An infinite flat layer was chosen as such a figure. In this case, the
equation with the indicator of the degree 1 yields a result accurately
coinciding with the actual result.

, Thus, for computations it is best to use the equation (3.41), whare
JQ /S the element of the solid angle emerging from the point of maximum
flux (we will subsequently call taie point the integration center); »(¥27) is
t‘he ray emitted from this point lying in the solid angle 52’ and extending
to the extrapolated border of the body. Subsequently, we will mean every-
vhere the dimensions of bodies, including the extrapolation length. We
will consider an example of computing the geometric parameter of an
infinite flat layer with thickness H. The center of integration must
be placed in the middle of the layer. We will direct the axis of the
spherical coordinates perpendicularly to the plane. It is obvious that

F(Q) = goist dQ = sin 8 d 0 dy.
Hence

=i (3.42)

which coincides with the exact value of JG.

The numerous computations made with the equation (3.41) for the
most diverse figures with the known, exact values of a geometric parameter,
as well as a comparison of the computations and the experimental data of
many complicated figures, have indicated that the deviation stemming from
computations ¢f the geometric parsmeter € via the equation (3.41) is
no worse that four percent. It should be noted that the error is, in a
majority of cases, propitious from the point of view of nuclear safety.
The equation (3. 41) is nearly insensitive to the selection of the center
of integration. It is easy to bs convinced of this, for example, by
waking computations for a flat layer with a displaced integration center.
For a flat layer, the error stemming from the selection of an inaccurate
integration center is the greatest, but even in this case a ten-percent
deviation from the exact point yields an error of one percent in the final
ro3t, In those cases in which the finding of maximum flux is difficult,
it is possible, taking advantage of this conservative characteristic, to
choose it at random within the regions of the maximum flux point. The



given characteristic is aluo uasefully employed to simplify calculations
during computations.

We will present a wethod of finding the integral (3.41) in a
situation in whicii the cguations of the surfaces bordering the body
in spherical coordinstes are knoun. Let, for examole, the body be
limited to two surfacce r; = £ (7, 9} and ' =,._(0‘f) (Figure 3.65)0
Via the eguation ,f[.-fl; = ;‘; "‘, (.9) . it is possible to find the range
of integrstion br # in its relationship to ¢ . Let this be the
function I = f Z;‘»’/ TIg i3 nuw pogsible to write the value of the
integral (3.41) in su 2suaxtion easy to solves

i '_SK:! 6==%(q) a1 =
YL des sin ©d0 sinBde
3 e oy d
l‘a :S fu(@, ) -7 .S ? =§ T2 6.9 (3.43)

It is possible to proceed in analogous fashion in other situations.

. Fig‘dl‘e 3-65
For_ the computation of the geometric parameter of a common situation

All the figuxes enccuntered in practice sre usually formed by the
intersection of the rlat, cylindrical, sj.erical, and conical surfaces.
The coaputation of the integral (2.41) serarates into a calculation of
integrals in the form of (3.43) accordmg to the individual elements of
thaese surraces,

Presented below is the computation of ae integral of a flat
triangle, whose two sides are rectilinear and one side is curvilinear

(Figure 3.66):

0=J (o) «
R S T R { S

f=- \ ‘ T TaT T T et 2

: ¢ ) .

3 LI B, (3.44)
' L U S .
- }dfp o \ LQ 2 ¢ et Jdrp
(1]
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where @(¢¥) is the equation of the curve AB in the polar coordinatese
When all the sides of a triangle are rectilinear, it is possible

to effect integration according to @ and obtain an expression for the
integral in a distinct form (Figure 3.67):

02,((“) :‘-’al'clg ._-b sinea

asin(@j-q) °
() == - bsina
D= nare
-4 ety VAL /AT
1 Tyt LAl = le(@+qo)—arctg -1—---;(-—-- tg ‘Fo] »  (3.45)

whgrg A= —:—- sina.

When the curve AB (see Figure 3.66) is polynomially expressed,
it is possible to effect integration according to f .

:18“:0 30660 Foxr Figure 3.67 POI‘ E‘igure 30680 For

the computation of the computation the computation

an integral of a of a flat tri- of an integral

Tlat triangle. angle whose sides of an arbitrary
are rectilinear, flat figure.

for example, with (@) =by - Lyp + byt

=1TrTe a? 2690+ b
I=4z [ 7= Vi (afdg —:{'}"—T’ —arelg 2 (3.46)

va)l:

rae A =463 (a?-- by) — b2.
v{:‘"' Flpu o (9) = b0+ b,9
Wk 1
11 9 a? . bypi-by-i-a2 '
I=g [ - intBilota) (3.47)
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: I l[‘il Q“ ('l') = i.’0
Wik ! rl a2
T %o | =gy | (3.48)
Mpie 2 ) 0% cens! gy =: 23
wits, ot 0® 4
= (3.49)

The integral of any figure lying on a plane can be expressed with
tise equation (3.44) in the Tollowing manner (Figure 3.68)3

. Analogously, wita the ald of similar additions end subtractions via
integrala of trisngles, it is possible to compute the integrals of the
cylindrical, spherxical, and conical surfacea of any figurce

The intezrals for trieigles lying on such surfaces are presented

below.
The cyliadrical chrisce {Figure 3.69)

TS e
7% N2 . ) < 3.50)
- Coverede 0 T pe) a2 sy (g) (33
l:=-5 } g\ e eV LRy iy,
¢ A=l o

for & round cylinder (Figure 3,70), we obtain the following expression

for plw) » e
eﬂ) elqy Y r2--at-afcostyd-acosq. (3.51)
The s8ign velore tha xoot is esaumed according to the significance relat-

inz 1o the ponition cof psint Oo
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Figure 3.69. For Figure 3.70. For Figure 3.71. For

the computation of the computation of the computation

an integral of a an integral of a of the integral

triangle lying triangle lying on of a triangle

on a cylindrical the surface of a lying on a

surface. round cylinders. spherical
surface.

When in the case of a round cylinder 2(%)=r and £(@ = O
then

I=-§—:’- (-,.,——E)-{-%sin 29) . (3.52)

The spherical surface (Figure 3.71)

PO =a; r*=a*+-r*(Q)—2ar () cos O;
e (3.53)
rQ=x)rr—a*+a’cos©-+acosO.

The sign before the root is assumed according to the eigm.ﬁ.cance
relating to the position of point P



o 9=:/(9) o

1=\ do \ v e\ [t VE@Fo+
o

"/;'-'—a3 c0s20-l.acos ©

+oin [ L@+ VERTH |~ --}-bm(x -|-%)+ 1} de, (3.54)

r2—.q%
whig b=t %, 1(9) = cosf{g).
W#A,np“ 9 =: const

: b, - e m—— Q. Voo a1 h ' .
I= g [cos @V 6O 1 1-b In 22 Veos e+b—-§-+sin=9]. (3.55)

l-f-r/a

For a hemisphere,

COSG = :i’a-__;_:.: y Go== 21!;
__na 72 r2—a? 'L’az-;-r- r
I= a2 [ G2-f-r2 + u? a4~r _T] (356)

The conical surface (Figure 3.72)

O=f(9); OA=a; AB==r; AC:=h; PO=r(Q)cos0;
DM =[h+r(Q)cosO]iga; Pa=VDM‘—a’-%c’cos’(p-!—dcosq:=--r( Y)sin 6,

aence _é)_—"_ﬂ‘ﬂ (the sign before the root is assumed according

to the significance relating tc the position of point 0), since

0=asinOcos@-}-rigacos®; c:= a*—r% d==sin®*0—cos*0 {g;
<o 2

I ) —Vb%(0. ) —d (6) ¢
1=_4_ de g b(0, :,_)__'ybzc(e.q) JQ)—fsin(-)dO_—-l,—lz;
0 =1(%)
1 Geo 1'/‘2 <o
=g\ do ) 2@9) gnodo- L { [202 (5 -
0 '( ) ¢ ¢ '0 2

_.i((f) .2. ._- sin 2i ((‘ )> - _:?_l.q.a_sgﬂ_(gl)_ ‘l dr{;

_L]
ic

O'."'."c

‘ V62 (0, q)—d (©) csin 0 dO.
=/(T

12 can lead to the computation of elliptical integrals, but
the expression of computation is obtained in a very cumbersome manner;
i% is thorefore more convenient, in concrete cases, to separate the :
radicand into a series and compute the integral numericallye
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When a = O, then

lea Po
"“‘s;—§ — [cos? f (¢)] do;

!
L=+

O&’)g

a8 | ,
ki [ 5 — @)+ —-2f (fp)] dp.  (3.57)
Ilpn © =const

I‘=M%29&. lz__ (%‘“e+%sin29>q:o
! - & -(3.58)

éty)
— £
(]
9 t < )
JA == %
N
'

Figure 3.72. Toward the computa-
tion of the integral for a triangle
lying on a conical surface.

The integral of the cone (the range of integration according to ©
from © to7 and according to7t from O to 27 is equal to

I= '43,‘ (ﬁ—EJ-i- ; sin 20 -+ tgasin’@) .

(3.59)

The above mentioned integrals make possible the computation of

geometrically complicated figures.

reduces the number of computational operations.

It is also useful to combine the
numerical computation of integrals with the tabular.

This substantially

For containers with

reflectors, computations are made in an analogous manner, provided the
effective addition of the reflector is taken into account in the dimensjion.
The equation (3.41) is used to compute multiply connected figures [ 40

(the computation of interaction, etc.).
those of an experiment.

Results concur favorably with
A careful anclysis indicates that in this case

the equation yields results with a small reserve in favor of nuclear

safety.

Presented below is an example of a computation made with the

use of tabular integrals of a one-connected figure (Figure 3.73) and a
two-connected figure (interaction of two spheres, Figure 3.74). Also
presented are examples of calculating the sige-shape factor.

The cne-connected figure
x::l‘+lz+la+’l



I, s calculated via the equation (3.49):

’]' i Rz

=i RER? -

I, and I, are calculated according to the equation (3.52):

3

: : L0
I,= »4;,— (: - O+ 5 Sin 26),) npu O, =arctg-’;—;

\ <

: s 1 .
13::-4-;{ (-:;- — ;- sin 2(-)2> npit 6, == arclg Hih .

I 4 is calculated according to the equation (3.59):

b4

1 . .
I.=4—R- :t—93+§sxn20_1+(gsm’93) npit (:);=i,:,—-+92.

The two-~connected figure

r{()=r4-PQ; AO0;==dsinC;
PA=Vrr—d*sin®; PQ==2V r*—d*sin®0;

| 23 a ax B::an:s(n;-

_ ¢ ¢ sinvHdd | sin @ do

=t lde | S0 Nag nedo___
H v b A r+2Vr--- sin e

0= rg:sln;-

T T
When there is a replac:ment of sin © by © and the arcsin d by d, the
newly obtained integral differs by no mcre thsn 0.1 percent from the

former. Hence, we obtain
X ] / re
¥, = -—r— l — .dT +

--réj;i(l —-;-ln:;).
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Figure 3.73. For a Figure 3.74. For the computation

computation of the of the geometric parameter of
geometric parameter interacting spheres.

of a one-connected

figure.

Il
|28
|
l

We will also consider the calculation of the size-shape factor of
several important practical cases, e.g., T- and cross-shaped pipelines.
In the situation under consideration, the pipes of the radius r and R
(R>r) are intersected at a right angle. Evaluations indicate that with
a T-shaped intersection the error in computing K will be less than 1.5
percent in the worst of cases (R = r). Using the equations of the surfaces
of cylinders in spherical coordinates, the integration range can be found

according to _
' - 2
6=, (p) =arcsin V E,—_I—:{,E.g‘—p ]
H ' : }
dad

' . 3
0,= f:(’F)""arcsmV%—@ ’ }

Using the equations (3.50) end (3.52) for a T-shaped intersection, we
obtain the valce

=g I+ o5 o+ I (3.61)

(3.60)

and for a cross-shaped intersection

x:—--;—!,-!--;{’z‘{‘lv (3.62)
since
X
z
f= § [ @) —g sin2i (o ] de:
0
erCOSV;—_;:i )
= S [fz(q’)_'é' sin2f, ((P):] dg;
0
—
Ie (‘.1 arccos4}?/1 R’) n ,
(n—2 arccos ‘/q;) a
Ii= 4R -
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The values of the integrsls I) and I2 are presented in Table 3.2.

Table 3'2
Values of the Integrals Il and 12
For I}
— e —
— 16 lois o, 02 03 !03 {040 |05 |05 | 0,5
I, |0 0,0035 | 0,0114 0,019350,027250.0503 0,0734{ 0,0965 | 0,1196 |0,1603
1
= | 060 [0.65 100 o, io.so 0,85 |0,9 |0,95 |1,00
Iy | 0,010,957 0212 | 0,3% (0,460 0,561 |0,661 | 0.83 | 0,999
For
Dan I,
% 1o G151 1025 10,30 10,35 0,40 | 0,45 [0,5 | 0,55
I, |0 0,205 | 0,254 | 0,302 ;0,351 30.379 0,407 10,435 10,453 : 0,48
{ ! i
= | 060 foes {00 075 {060 (085 10,9 10,9 |10
1. | 0,502 0,523 |o0,5¢4 |0,563 0,581 0,614 10,647 | 0,87 30.999 ;
i i
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CRITICALITY OF SYSTEMS OF INTERACTING SUEBCRITICAL ASSEMBLIES
OF FISSIONABLE MATERIALS

Pages 169-201 Eriticheskive Parametry Sistem

8 Delyeshchinmisya Veshchestvami
i Yedernaya Bezopasnost! :

Introduction

¥hen a certain number of subcritical assemblies of fissionable
material wmake up a certain system, the exchange of neutrons among the
assemblies —- —~ interaction - - may make the system supercritical and
cause an uncontrolled release of substantial energy.

The ensurement of nuclear safety in interacting systems of
fissionsble materials is a very important problem, which is often
encountered in practice by specialists woridng with fissicnable
materials. The problem of tae interaction of a large number of sub~-
critical assemblies in a common set-up is extremely complex.

Developed at this time are exact mathods for the cslculation of
interacting systems: Acikxroid’s unified theory of interaction [Thﬂ;;ﬁ
the Konte-Carlo method, V. G. Zagratfov's method of evaluaiing the critical
paraneters of bodies of erbitrary shape zf7#1j7, stce. However, these
wethods, although yielding good results, ara quite complicated and
several of thea require the application of high-speed computers.

frequent atterpts are made to {ind not exact solutions but
reliable, appraisable, sexi-—empirical methods which provide an assured
reserve wWnen evaluating the conditicns of the nuclear safety of a system
of interacting suocritical assemblies. Presented below are the following
methods for computing interacting systemss
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the equivalent dimensions method,
the method of the safe solid angle,
the interaction parcmeter method,
the homogenization method.

[ -

Presented also is a summary of published experimental data on
interaction. The results of some experiments are presented in the sections
describing the computation method.

A. The Equivalent Dimensions Kethod

l. The determination of equivalent dimensions

We will assume that to every combination of subcritical assemblies
with definite nuclear properties and size-shape factors corresponds a
Laplacisn—equivalent single assembly with changed geometric and fcrmer
nuclear characteristics. We are attempting to write an equation for
finding equivalent geometric dimensions.

. The effective dimensions of an equivalent assembly depend on the
probability P; 4 to the effect that neutrons escaping from an i assem-
bly falls into"j. The value of Pij is determined by the s0lid angle

which substends the surface j of the assembly at a point on the i
assembly. This solid angle must be computed with a consideration o? the
angular distribution of the neutrons escaping from the assembly. We will
discuss the link between the equivalent dimension and the solid angle.

Fig“r‘ 5.1

Tovara a computation of the interaction of assemblies in the shape
of parallelepipeds




We will consider a case in which u of the uniforam, parallelepiped-
shaped assemblies are spaced in a line at the uniform distame d from each
other and have neither a common nor & sSeparate reflector. (Figure 5.1, a).
It ia advisable that in the given situation the equivalent reactor have
the dimension a x b x €3, i.e., only the dimension in the direction of
interaction is changed. The desired relationship must wmeet the following,
obvious conditionss
”Il’{l’)’ll d—>0 cpy-=nci KB = eqr
» U—> Cyxs==C; (5'1)

» N—>00 Copp—> O |

for any fixed d.

If the 3o0lid engle is standardized zo theg?:.-l at d = 0, the follow
ing equation for finding tihe ejuivalent dimension meets the abcve-mentiomed
ceudi ticna

Can=c[l +(n—1)Q]. (5.2)

The significance of this expression is completely clear: the first temm
to the right is the real dimension and the second is the addition to the
dimension via interaction.

We will ccnoider a flat lattice of uniform parallelepipeds (sece Figure
5.1, b). It is essential to reduce the given set to a single equivalent
parallelepiped with sidesa x t. .., x Coyite TWO 9equential spproximations are
possible to find the values b~ v and c-,,,,,. In the firat approximation,
each of the series along the divection Y and Yy is considered independently.
Then

Catn (“ - ("‘.x"‘ U!’!:]: (_h}x'l)
Ban == b1ty — D Q). (5.36)

since ny and conatitute tac number of assemblies in the series in the

directing of X and y; 2., €2, ure the solid angles between the closest

adsexblies in the directicn of x eund Y, respectively,
viazoaal interactioa is taken into accourt in the seccad approximation.

Tho equivalent cimcnsions ere found via the following equations

¢ ==cll4(ne—1)L0 0. (5.42)



This corresponds to the "bunching"™ of all the asbemblies in the series x
and to the transformation of the initial system into the system shown in
Figure 5.1, b. Now, we find that

barn == B (1, — 1) Q1. (5-46)

' d
whece .9’ is the solid angle on the surface of a x ¢'.

To determine 009 y »:-¥e "will bunch” all the asscmblies in the
series ys

=51 +(n,~—l)Q,]. (5.5a)
Tencpo .
”‘wp Caxn==C[1-} (nx— ‘)Q;l- (556)

wAgn&is the solid angle on the surface of a x b'.

We will consider the spatial lattice of a parallelepiped. In the
first approximation, the equivalent dimensions are found via the equation

@y =all4-(n,—1)Q,L; (5.6a)
Ok == [1 -} (1, — 1) Q3 (5.60)
Caxe =C[1 + (ne— 1) Q] (5.6m)

The equivalent dimensions can also be found by a system of sequential ap~
proximations. Usually sufficieat ia the first approximation, irrespective
of the fact that in this situation we disregard diagorial interaction.

The above-mentioned system for computing equivalent dimensions is
quite common, for each irregular deployment of uniform assembliea can be
rearranged into a regular one, creating a more reactive configuration. The
spherical and cylindrical assemblies can be replaced by the described
parallelepipeds. In this case, the technique of calculating the solid
angle from the point at the plane a x b is simples

2 ab -
Q= S arcfg ;d-‘_v"a—z:_:*j -l;é-—-é-—‘id;' . (07)

Prasented below are several equations for calculating soiid angles. The
expression for §2 1is obtained in the assumption of the isotropism and
homogeneity of the escape of neutrons from the surface of an assembly.
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1) Pipes

Q = m sin0.
2) Dievs
w.
|
C Q=:2:1(1--cos0).
3) Planes
P

2
Qu ' - el == .lﬂ m—.nnt. l-.l...,'bmw ST

® 24 Var4-b2-4n2
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4) Cylinders

5) Spheres

r Q= 2x(1—cos 0).

e =

N\ -7
< 2 L
T\

Table for the Transfer of the Proportion of the Solid Angle
to the Sterad (Ster)

9y l {2: 9  emep ! o ng;
P Y
1,000 12,56 (41) | 0,33 4,10 | 0.100 1,26
0,750 5,42 .33) ' 2,230 3.14 (n) 0,03 0.63
0,500 ' 5,28 (21) | 0,i50 1,88 ‘ 0,000 0,00
|

For frequently encountered cylindrical reactors, it is neocessary
t+c uvse more accurate equations Tor the solid angle. For the interaction
on the end planes of cylinders, the sclid angle from the point to the circle
of the redius R of the previous assunptions is calculated according to the

equation

= . . (5.8)



The solid angle from the point to the lateral surface of the cylinder
is computed by the equation

I 7 1 . R
oY OPL U D R —,A-,wj arcsin — 5 . (9.9)
2 "o\ A% TR
h/(.?./ 22 ‘/ ( 7 ) R

Bere, d is the shortest distance from the point to the surrace, H ia the
height of the cylindar, and R is the radius of the cylinder.

Following thLe determination of the equivalent dimensions, the
wyuien obtainoed ehould be transfoimed into a sphers by equating the size-
cuap2 factoros

u'-' _.:.‘Em- -’. A....'?:_.-H. R "(2,._, . e n
(Fara-t-22)° 1 (bona-t-2257 * (Copn-i-22)* T (aget+2)?'

(5.10)

wlere A 12 tha extrepelation length.

To solve the probler of the criticality of a systeam of assemblies,
it is neceseary to compare the sphere's critical mass of the given materiel
v, taken from en experiment and the mass in the volune of the obtained

spnsre m._77- TrLe condition of sutcriticality will be

1 -
My = Pl = T :‘Rg;:n(’v (‘:Ll l)

& {wre Q2 i8 the known dersivy of %tae fuel) core in the givon aystem.

_ The method unudsr censideration can be cpplied to the computation of
vove intoraction of aubcritical sssemblies entirely enclcsed in a moderator.
Ian this situation, the relatiecaship (5.2) is

d
Capn T2 C 01 -F (n— 1) Qe M,

(5.12)

iy }22 is the wigravion area and d is the distance between assemblies.
Usier tho cond.iion of eubcriticality (5.11), tho critical mass of the
spaexra vith a reflector of the given moderator must function in the

-, Fad
¢ PRIREOP SN S o M K4
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2. Comparison of the Results of sxperimonts and Computatjons

Conducted for the purpose of explaining some regularities of
interaction were experiments with subcritical assemblies in the shape of
cylinders and parallelepipeds. An aqueous solution of salta of UO2(NO3),
with uranium of 90-percent enrichment, served as the fuel core of the
assemblies. The cylinders and parallelepipeds were made of stainless
steel of 1.5 to 2-mm thickness; the diameter of the cylinders was 30 cm,
and the basis of the parallelepiped was a square with a side of 30 cm.

Figure 5.2

The interaction of assemblies shaped as parallelepipeds
with the square of the basis amounting to 30 x 30 cm in the
air. The number of the assemblies:
2 (x), 3 (A). Three in line (0), 4 (4), 5 (@).

0 — I |
§ //:/ / ./T,
E 2‘; / / d
- ]
55 In
§§ d
ST
23 7
] S 7
§§ 2 PR
g d—d 1
3 0“0 0
( ,19 ' 4[ |
] 50 17 50 200 250

8 Paccmoanue @ necdy baunadedzmbyceuma chaprary, cn

Legend: A = Volume of the solution in one of the interacting assemblies, 1;
B = Distance d between interacting assemblies, cm.

Presented in Figures 5.2-5.6 are the results of experiments aimed
at determining the effectiveness of twg, three, four, and five assemblies
in the air. The figures point out the relationship between the volume of
the solution in one assembly and the distance baetween them. The entire
pysten of assenblies was criticel, and the quantity of the solution in
all the assemblies was unifora. The concentration of uranium in the
soluiica was T1 g/l, vave for the test on interaction in water (Figure 5.7)»
in which the concentration of uranium in the solution constituted 113 g/l.
Determined via the experiments was the critical state of the system com=-
posed of several homogeneous assemblies spaced at various distances from
one another. Obviously, with the presence of interaction, each assembly
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individually was subcritical while the entire syastem as a whole was critical.
The analogous relaticnship of two cylindrical assemblies of 25-cm diameter

- - assecmblies interacting in water = - is shown in Figure 5.7. For the
purposes of comparison Figure 5.3 also contains curves computed according

to the equivalent dimensions method.

Figure 5.3

Comparison of tha interacticn of four assembliess the interaction
vas computed by the eyiivaicat diceasions method, with an experiment: @ is
the experiment,A is tho computetion, firat approximation; 1 is the computation
with a consideration of oblique interaction in the directions A and B.

]

b
i
|
|
|

wlir eo0ex, o

PRy riaeee s
I AT NN,

37 I3 50 200 250
Pucoanve @ nexly (corodedendyominy clzpramy, e

A 0fsex pacmitra 0227 a2 Lazume,

ozends A = Voluze of the solution in one of the interacting assemblies, 1;

L
B = Distunce < betweer interacting assemblies, ca.
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Figure 5.4

The interaction of cylindrical assemblies of 30-cm diameter in
the air. The number of assembliess
2 (x), 3 (0), three in line (4), 4 (O).

by clopox, A
N

oy

(1]
(]
>

O

S

O

>
S
“ .

A Cfsen peemlosa 8 odnod v rounal

5 ™) 750 ]
B Arcenzime @ nexdy Baaumadedondypouuny cfeorany, e

Legends A = Volume of the solution in one of the interacting assemblies, 1;
B = Distance d between interacting assemblies, cm.
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Fgure 5.5 Figure 5.6

The interaction of two &asscutlies The interaction of two
in the shape of parallelepipeds, cylindrical assemblies
with a basis of 15 x 60 ca in of 30-cm diameter with-
the air (X) oud in water (0). out a reflector (0)

and with an aqueous
reflector of S-cm
thickness (©).
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Legend: A = Volume of solution Legend: A = Volume of

in one assembly, 1; B = Dintance solution in one assembly,
between the sides of interacting 1l; B = Distance between
essemblies, cm. the sidsa of interacting

assenblies, cme.

Brploycd for the study of the interaction of a large number of sub-
titical siscublies in a £patial lattice were six-liter, cylindrical glass
on%ainers filled with 2a scueous solution of salts of UC,(NO3),. The diameter
7 the container wad about 18 cm, the height of the solution 24 cm, and the
chdcin.us of the walls C.5 cme Tohe device exployed for the study of the
interacting asueshliec in a spatial lattice is shown in Figure $.8. The
support ané the Iraae of the device were made of steel, and the charging
holo-equipped loading platforms on which the containers were deployed were
ande of lnsdees, 9ie resulta of these experimeants are shown in Table 5.1.

2]

S0 W
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The values dx and dy presented in the table are the distances in the plane

and d' is the distance between planeas. All the distances are indicated with
account taken of the wails, i.e., between solutions.

Figure 5.7
The interaction of two cylindrical assemblies of 25-cm diameter
in water '
n
NS
=Y
§§ n
83
€ »

[ n 2 N #
B Ferzmotwe nzad) engrovay Baoamedevon oy cdipoe,on

Legends A = Volume of the solution in cne of the interacting assemblies, 1;
B = Distance between the sides of interacting assemblies, cam.

Reutron capture by the canstruction materials of the device were
disregared in the computations. The calculation of neutron capture ap-
proximates the computed values of those of the experiment. A ccmparison
of the results of computations and experiments indicate that the equivalent
dimensions method yields in all cases a reserve in favor of safety and can
be employed in evaluations of the nuclear safety of interacting systems.

With the equivalent dimensions method, the interaction of several
subcritical assemblies is computed with an accuracy of about 20 percant;
the interaction of many assemblies is evaluated with an accuracy of 100
percent, and in all cases computation overstate the effeztiveness of
interaction. The equivalent dimensions method, being very simple, does

not cede, in terms of accuracy, to the methods of the parameter of inter-
action and homogenization,
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Table 5 1

The Interaction of Yix~Idtor Containers in a Spatial Lattice
without Reflector
(the concentration of uranium in the solution is 96 g/1; enrichment is 90 percent).

L mmarmene concnea |2 Komweero yeouonacunss |3 Kpumewos | pacsernoe 4
(sxcn.)
5  BTanyx naccrecrsn: 10 23 . 23 12
de=1 cm, dy=:4.5 cn, 1 o 140 naockocTn 4x3==12,
dy==12 cu 60 2-1 (1>3)--1=11] 11
B 1pex naocknerax: 1 52 543.{)'5 18
6 dx==d,==6,5 car, d; =12 cm (n 1.0t nrockocrt 4X4:=16,
- e -
PO 2-1-—46X 5220, B 3-it— (3xcTpanoamuin)
4X4= 10) 13
7 B Tpcc maecrocTi 14 39 39,540,3 12

dy= -dy=-4,5 cx, d; =12 cut (o 1-it naockoctie 3x4 =12,
80 2-it—-3X4-{-3=:15, 15 (arcTpanoasuus)
B 3-i1—3x4=12)
8 D uertpex nacckoctax: 17 67 16 80415 36
de==dy=:9 cu, d;=11 cu (8 1-it naockocTit 4X4 =16, (3KcTpanoantin)
82 2-i1—4 X4 =16, B 3-1—4 X 5—
18 | —1=19, b 4-t—4x4=16)
9 B eTdpex JLI0CKOCTAX: 64 19 7245 27
de=dy=17,5 cu, d; =12 (2] (8 Rax 1011 naockoctn 4 X4 = 16) | (3kcTpanoasuus)

20

Legend: 1 = Container location, 2 = amount of prescribed capacity,
3 = critical vaolue (ezponential), 4 = computed value, 5 = In two planes,
6 = In three plsnes, 7 = In three planes, 8 = In four planes, Y = In
four planes, 10 = / in the first planc..., 11 = in the second lano...J,
12 = (in the first plane..., 13 = in the second planeo.s.), 14 (in the
first plane..., 15 = in the secoad plane.c., 16= in the third plane...),
37 = (in the first planec.., 18 = in “he second plane...and in the third
laneeees, 19 = eeein the fourta plane...).zo = in each plane, 21 =
?e:trapolation) .
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Figure 5.8
Device for studying the interaction of assemblies in a spatial lattices

Legend: 1 = neutron source, @ = container for neutron source, 3 =

cadmium screen, 4 = containers with solution, 5 = hoses for pouring the
8olution, 6 = charging hole-equipped loading platforms for the containers,
T = support. _

Bs The Method of the Safe Solid Angle

1. The Essence of the Method

“hree basic conditions underlie this method of evaluating safety
during interaction.

l. Each assembly must be safe when it is surrounded completely by
an aqueous reflector,
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Ffigure 5.9

The interaction of assemblies containing solutious of uranium of 9O
percent enrichment in accordance with the K eff of each assemblys

2 \\\ . )
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pﬂ,-’ o4 o5 a6 97 kY3 o9 Kapp

Legend: 1 = the curve saie for any container; 2 = the curve safe for a

solution contaimng,‘H = 100; 3 = the curve safe for unreflected cylinders,

4 = the computed minimal criticul curve for two infinite cylinders, 5 = an
infinite cylinder of 15.24-cm; 6 = 7 cylinders of 15.24~cc diameter; 7 =

3 plates with & bisis of 7.62 x 120,65 cr, 8 = a plato with a basis of 7.62
x 120.65 em of infiait=> height, 9 = 7 cylinder of 20.32-cm diezmeter, 10 =
2 plates with a basis of 15.24 x 120.65 cu, 11 = 3 cylinders of 20.32-cm
diemeter, 12 = 2 cylindors of 20.32~ca diameter, 13 = an infinite cylinder
of 20.32 ca aicmever, 14 = 2 cylinders of 50.8-cm diameter;

>

‘H = 44.3 for cylinders with dieneters of 15.24 and 20.32 cm;

5

Ve i

:_z_{_ = 169 foxr cylinders of 50.8~cm diamster; ¢ i = 330 plates;
2

5 Fs

g = Lalodsy geticed cylindera.
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2. The distance between assecbiios must be no less than 30 cm.

3. The dictance betucen assexblies nust be such that the zaximum, general
solid angle subtended to the central assexbly from all the other asseamblies
does not exceed a certain sefe magnitude. The firat two coaditions provide
safety during the flooding of the system of assemblies with water, since a
water layer of 30-ca thickness ensures the complete absence of interaction
(see, e.g., Figure 5.7). The third conditioa requires the determination of
the certain maximum sclid angle at which interaction is dafe. The magnitude
of the maximum safe 80lid esngle is determined by the effective multiplication
factor K. ¢p. of tke individual assecblies of a system. The K-e cp cCan be found

via the two-group difiusion theory.

Experimentation is basic for the purpose of determining the relationship
between the solid angle and the multiplication factor. Two or more uniform
assenblies are set up at definite distance and reach a critical state, after
which the critical solid angle $2., and the K eff &re also determined for each

assembly. The relationships between $2__ and the Kepp found in this manner
are shown in Figure 5.9.

2. Safety Criteria for g System of Unreflected Assemblies

With the graphs in Figure 5.9, it is possible to conclude that, for un-
reflected s:semblies with a uniform K rp but of various shapes interaction

is increased with an increase of the solid angle. The essumption that the
zeneral solid angle subtended to the central assembly carn be applied to multi-
assembly systems is conservative.* Figure 5.9 also presents the computed
minimal eritical curve. It pertains to the pair of infinite cylinders con-
taining the most reactive solution (90 percent enrichment, €4/C = 44.3).

Although the maximum solid angle for the two infinite cylinders is 20 percent
of 4 , a part of the curve for solid angles, greater than this magnitude,
yields a conservative theoretical limit for a multicomponent system (e.g.,
for the seven cylinders).

Curve 3 for unreflecied systems is a safe range for the solid angle. 1t
is quite conservated under any condition, provided that neutron reflectioa in
a system is completely excluded. To determine the spacing of containers (as—
semblies), the Koy Of each assembly is computed; the angle is determined

from curve 3, and distance between containers, by the magnitude of the solid
angle. Table 5.2 presents the Kegr values of scme assemblies.

* fere and subsequently, tke word "conservative" will mean "with a great
reserve in favor of muclear safety."
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Tabla 5 02

}( Yalues of Unreflected Cylinders Containing an Aqueous Solution
r of UO2F,
(urenium 10 of 90 percont onrichment)

: H1pa- -
nu..‘:‘«; r nn..‘ -;;ra. Puihs l&::::uu: Jp‘a' Ko
7/ . £ x/a “p
12,5 60 5) 0,48 0,55
12,7 o 50 0,48 .58
12,7 60 150 0,17 0,50
i2,7 o HoR) 0,17 0,52
12,7 0 250 0.075 0,42
12.7 o 350 { 0,075 0,43
20.3 15,4 s - 0,48 0,68
0.3 15,4 159 [ 0,17 0,63
20,3 ang 10 ] 0,17 0.81
30,8 15,1 159 ) 0,17 0,33
39,2 15.4 350 0,075 0,72

Legead: 1 = Di a_meter in em, 2 = Beight in cm, 3 = Concentrations of 0235
in a:g/l, 4 = ,\C‘L{:.

Maximus: & _:, Yoclues for Aqueous Solutions of 00,7,

] Ciciewva ! K:,‘»:n
llu‘. wip, O 12,7 e L0 Lo ... ' 0,58
4 Cibepa. D ‘ 0.07
5 Ma-ciira, ; 0,91
& 0 2 Uwss n t"s‘p"-.wm obneve 12,54 .. L. 0,6%

Legesd: 1 = Systm:, 2w .. .- 3 = Cylindor, 4 = Sphere, 5 = Plate, 6 = 350 g

of 322710 a spherical volume of 12.5 1.
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3. Effects of Complets and Partial Reflectors

Safety during the flooding of a system with water is taken into
account and provided for by the first and second conditions (see 1).
Howaever, there are situations in which two assemblies have a partial
reflector. The interaction in such a case will be substantially
greater than in a situation in which assemblies have no reflector or
are completely flooded with water a~d the distance between assemblies
is 30 cm.

Moat dangerous is a set-up whereby the partial reflector is located
on the external side of two interacting assemblies. In this situation,
the magnitude Kgpe of each assembly with a "half" reflector (x{r) lies

between the values xc.r (for « completely reflected aasembly) and the
value K r.(for an unreflected assembly):

Ky = 12 (Kpy Ko

The most dangerous situation arises when one complet-ly reflected
assembly is critical. Consequently, the safety magnitude K with partial
neutron reflection is equal to

Kiyy = 5 (K g - 1)

Experiments have indicated that this equation is quite conservative. In
Figure 5.9, curve 1 takes into account safety when a complete reflector is
available.

4. Interaction among Variously Shaped Assemblies

Experiments indicate that if assembly A is safe at distance
from another such assembly A and assembly B is safe at distance
from the analogous asseably B, then the assemblies A and B are safe with
a distance between them of
619

uxperiments zimed at substantiating the solid angle method have been
conducted with fissionable materlals having high concentrations of U235,
Viith the given magnitude of i u~n an assewbly with a low uranium enrichxeut
is less sensitive to changes ifi*the intensity of an external neutron source,
and curves 1 and 3 in Figure 5.9 are more conservative for assemblies with
low enrichnents. For a situation in which a change in the concentration
of the fissionable material in a container was possible for some reason or
another, a computation of the magnitude of : .M-. was made during a change in

the volume of an unreflected sphere containing 350 g of U235 (a safe amount).
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It appeared that the maxinum magnitude of chf wes 0.65 with 12,5 1. -
Conaequently, when a change in concentration is possible, a K, ee of

no less than 0.65 should be assuued for evaluating the solid angle in
spacing containers conteining a sare quantity of uranium (350

5. Basic Conclunions and Fouations for K.or

A system of unifcrm assemblies (containers) containing solutions of
fissionable materials is sufe, provided the follcwing basic conditions are
ovserveds

a) FEach assembly is safe upen its complete submersion in water,
b) the distsnce belween ussemblies is no less than 30 cm,
¢} the general solid engle between the ceniral assembly and
the remaining assemblies is less than the following values:
O.“S"lf‘ I\’:‘«Iu‘a<0'?‘v

(0 72"0 8[\’3[ @)"11 » O 3 < 1"'\"‘(!! <O 8
(sssemblies shi=ided frcm the central assembly by others are disregarded
in calevlating the solid angle).

(5.14)

For v > 0.8, the distance between asscmblies is determined by
Refr

direct expenmentatlon (see, c.g., Figures 5.2-5.6). Yith solid angles of
0.04 percent from 4 , the interaction of subcritical assemblies can be
disregarded.

The magnitude of K ofT employed under these conditions can be
ey
determined with either known equations [ 1_7 or through experimentation.

for thermal neutron assemblies with high ursnium enrichments and without
a reflector, the magnitude of . . can be determined by

KQH,—-—-\'OU,U,, (5.‘5)

whiio ¢ A8 ti wprage nuaber of fast neutrons per one thermal neutron235
captured in D‘ 29 , 0 is the probability of thermcl neutron capture in U
U,: is the prowu‘lty of capture up to thermalization, Ut is thermal

neutron capture,

With low enrichments, it ig essential to take into account the
probability o, resonance escape. #or high enrichments, ¥ = 2.09 and 0=

- R when a solutioa does not have olaer
Tt 6 TTUTT o/ poweriul absorbern, save for uranium and
- ‘ w5 bydrogen (3.g., a solution of U02F2).
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The magnitude g¢ can be cbtained from the following empirical re/g -
+ion, waich is applicable at E“/e 6_>40:

1 5
U’=(l+xi)(l+4,2x;)(1+20.16x§)' ‘ | ® 16)

wher: ¥ is the Laplacian of a fast neutron system. The equation is also
applicable to low enrichments, with a corresponding selesction of resonance
absorptions

1
Ug=ﬁ_—x—iti ’

wheie xz is the square of the diffusion lengths
L*=8,29 (1—0) cxt. (5.17)

The magnitude of Ug can be computed by more exact methods. It is

important that tha methods yield a reserve in favor of nuclear safety.
In practice, it is reasonable to take advantage of simple approximation
methods.

C. The Interaction Parameter Method / 51 7

l. Criterion of Criticslity

We will consider the system n of subcritical assemblies of a fission=
able material. The interaction parameter ¢, between the assembly i and the
assembly j we will determine as the total number of neutrons escaping from
the assembly i per one neutron leaving the assembly j. In other words, if
F 3 is the total number of neutrons leaving the assembly j, then i ~ is

the number of reutrons forming in the assembly i upon interaction with the
assembly jo The interaction parameter g;; can be presented as the product
of the Pi 3 probability that neutrons leaving the assembly J land in the

assembly i, as well as the probability of the surface multiplication factor
Hsi of neutrons from the assembly j to the assembly i.
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It 19 obvicus tini the velua of Py 3 depende on the shapo of the

5 and j accemblion, the distence Letuem them, tho cheracteristics of .

the envivonment ecpnraiing the asgemblics, and the energy and angle of

noutron distribution. ‘the M si factor is determined by the multiplying
=4

characteristics of th

tho assembly j. Henc

8LGE

seably 1 in respect to the neuirons leaving

e
CCp

g:= DAL,

(5.18)

4 Cpse of Uwo £ssempiies.

We will consider iwo subcriticel assemblies.

l2aving an assewbly wWe wili call the asscubly’s neutron yield. Let, when
the ascembliies ere stationaxy and isolated from each other, the neutron
yield ve ¥, and F When the assemvlies are spaced at a certain finite
distance fTom each other,. they will interact and the neutron yields will
incraass to ¢he values F', and F!

T

Frona s determingtion of the intersction parameter, it follows that
tha nunter of newtrens forming in the first assemolj as a result of the

oreaence of the sscend ascembly is egual o F‘ i.e.,
dnilegcasly ‘ 1= Fi-t-qiF, 1 s 19
\
a1aNOTHUHO ‘ (5.19)
e F o F
Cﬂﬁfe‘gfﬂ%?‘r’r F,—-Fz rQ:,F,. ‘
Chelosatebho,
F= :’_i_‘_‘_'_‘ll.”-.‘.’ - FaanFy {5.20)
T—qy2f21 ’ i BN
The suburitical statls ccrrespends to n situation in which
5.21)
GGy < 1. (321
In a eraticel 3%ate 2, « 7., = 4 2nd the finxte values of F'l and F' o Can be
maiatained without su exirsnecus neulroil source. for the two uniform
AGEERDLIg

::F;:—;F'; F’—_—_—Fz;-.[" H Qe=02=0,

816 e CApleSsion ‘\3.20) can be formuiaved as follows:

T .22
F=i=- - 6=

The number of neutrons



A Case of Numerous Assemblies.

Let Fi «ad P! N be the neutron yields of the assembly i in an
isolated state and in a system of assemblies, respectively. Then

Fi=F\-FquF.-FqaF -k ... +qunFa,

-----------------

Fy=qyFi+cnF,+Fi+ .. +¢7an

etc., and the condition of criticality can be written in the form of a
determinants:

-1 93 Q3 --- Qin
g —1 G ... G ,
D= @n g2—1 ... ganl|=0, (5.23)
Gay qn2 Qn3 -1
HIH

oy ‘ D =det[Q—I]=0,

where ['is the unit matrix of the n order and Q is the matrix of the inter-
action parameters in the syatem.

When the values §, are known, it is possible to evaluate the criticality
of a system as a whole. However, the solution of such an equation is very
difficult, especially as regards large, multicomponent systems.

The Approximate Solution of the Equation of Criticality.

It is possible to replace all the values ¢, by the maximum value
encountered in a system. Under such a conditioi{ we obtair an approximate
though “safe” solution of the equaticn (5023)3

D=(—1)"(l 4 quare)"  [(n—1) q;«auc—- 1],
and the stata of criticality will be
(n—1) guanc =1. (5.24)

The equation (5.24) yields much reduced magnitudes of n - the
number of assemblies, during which the system becomes critical.
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2. An Uxperisientcl ivalustion of the Interaction Parametery

Since the individusl ansemblies in a system are usually fundementally
suberitical, they nave a very small effective aultiplication factor. The
magnitudes of ¢ for tuch assenblies cre usually low (10‘4-10" 2), thereby
malkding it difficult to mcasure them with accuracy. The method of measurements
i8 about ag follows. A subcritical asaembly, neutron source, and neutron
aetector er2s spaced an 3hown in Figure 5.10. To determine the neutron yield
in the eszembly located at point A -~ —~ a yield determined by the source at
point B, counts are made with a neutron detector in the following positionss

a = source at point A without an assembly — - 01;
b o

¢ = goucrce at point B without an assembly — -« C,;

3
d = assexbly at point A, source at point B-C 4°

assenbly at point A without a scurce - -~ ¢

Figure 5.10

Tsat arrangsment for determining the interaction parameter of

Legends 1 = esseubly, 2 = detector, 3 = source.

If & is the necutron yield of the assembly in an isolated state, Q is
the intensity of the source, and and E2 are the efficiencies of the counte:
with scurce rosition at pointe A and B, respectively, then

Cl = EIQ:
C,=E\F;
Gy E:‘.Q;
Ci= Ei(F+9Q) + EQ,
CTRY D
whence

L G—(G4 G
q - C‘ .



Table s 03

Interaction Parameters for Metallic Spheres at a Distance of
8l cm between the Source and the Center of the Sphere

c Tlapasmerp BlaumozefcTBNs
Céepa b Cpena ! 4z
e q-10¢ 9 qar,
20 xz U5 (93%5) Boaayx g | 58,4+3,9 1,0540,07
20 x2 U235 (939;) Boaayx. Kouteiinicp na nony £ 71,3+2,3 1,28+0,04
20 x2 U235-(93%) Mecok. Ceepa: g
NOKPWTA KagMieM h 4,54-0,4 0,08+0,01
663 Kaamus ~ 29,04+-0,4 | 0,5240,07
20 x2 U235 (93%) Boaa. Cdepa: ?
NOKPHTA Kaamuex L 0,094-0,01 1,6-10-3
6e3 xaamus ,Q 0,3740,02 7,0-10-3
9 k2 Pu (15,5 2/ex?) |Bosayx. Kouteiihep na noayom 8346 1,444:0,10
9,0 x2 Puw Boaa. Cdepa: ~n
NOKPHTA KaAMHCM -0 1,241,2 0,02+ 0,02
7.6 k2 Pu Bosayx. Kouteiinep wa noaypf 60+4-4,0 1,4840,1
4,6 ke Pu To xe ¢ 29+4-3 1,584 0,16

Legend: a = Sphere, b = Environment, ¢ = Interaction Parameters, 4 = Air,
f = Air. Container on floor, g = Sand. Sphere:, h = coated with cadmiunm,
i = without cadmium, J = Water. Sphere:, k = coated with cadmium, 1 =
without cadmium, m = Air. Container on floor, n = Water. Sphere:, o =
coated with cadmium, p = Air. Container on floor, q = Air. Container on
floor.

Comment: l. The parameters are obtained at an angle of
(see Figure 5.10). 2. In the second ‘to the seventh tests, the neutron
source and sphere were located in the center of a steel container (p =730
cm, H = 60 cm, wall thickness = 2.5 cm). 3. In the third test, the
containers were placed on the floor and surrounded by sand (the thickness
of the sand layer was 30 cm in all directions)e 4. In the fourth and sixth
tests, the containers were placed in a box with water and completely sub-
merged in the water. The magnitude g. éﬂﬁ? characterizes the magnitude of

3

neutron diffusion and capture, since for systems in the air this magnitude
must always be on the order of a unit.

The accurate determination of the magnitude of necessitates a
similitude of the neutron source spectrum and the spectrum of neutrons
escaping from the assembly.. Usually utiliged is a source -~ = a spectrum
fission simulator. :
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Table 5.3 presents the reaulta of experimentally determining the
interactlon parazeter of mctallic spheres.

3, An Svalustion of the Interaction Parameter on the Basis of Meagure-
rents of Reutron Multiplicetion in Assenblies

It is usually adequate to point out that the determined magnitude of
is less than a certain value of ¢, following the criticality of a system.
This cen be done by rneu*ron rultiplication measurements, provided the neutron
source is constant. Ir the determinate equation ¢=/a7, it is also necessary
to detorinine P - - the proouoiliiy of fallout and Mg - = the surface multi-~
plication factor.

An Unreflected System

For unreflecoted assemblies, the wmagnitude P is determined by the solid
argle betweecn two essemblies. To evaluate the surface multiplication factor
Tor an unreflected assembly - - the factor Msbq; we will consider a spherical

nssembly with a point neutron source of intensity Q. We will locate the source
cn the surface of a spherical asseuoly. The number of neutrons falling into
the assembly is 1/2 Q. These neutrons will cause fission and yield 1/2 Mbe
of the neutrons emerging from the assexbly. Total neutron emission is :

/2 (4 + 1) Q. VWhen this source is located in the center of the spherical

apsembly, total neutron emission will be Mch, since ﬁcb is the multiplication
factor of neutrons from the central source.

It is possible to formulate the equetion:

4 (Moo 1)Q = MaQy,
.’“55 = 2'1‘”cb‘_‘ l,

whare is the function determining the relative value of the neutrons
adaitted into the reactor's surface and center.

Figure 5.11
The relationship between l/i-is and the linear dimensions of an assembly

5%

!

4 (G
i, Vo,

- 126 -



For systems with dimensions on the order of a single free-path
length, there are no special points at vhich neutron multiplication is
great, and the magnitudes 2, i b and My are on the order of a unit.

For systems with dimensions on 2 orde® of several free-path lengths,

a diffusion approximation csn be applied. It is possible to dem.nstrate
that the number of neutrons U (a, r) which are generated in a sphere with
radius a is due to the presence of an isotropic spherical unit source

located at the radius r (< @), which is proportional to #22¢" |  ,iere 2t
xr
is the naterial paramcter.

Since M (a, 0) = M and M (a, &) = 1/2 (¥i_p + 1), then according
to the diffusion theory

__sinxa

3 = « For an unreflected assembly, we
za

thus have the basis to assert that 7 is always less tian a unit and
Moy <2Ma--1, (5.25)

since the valua of the neutrons admitled into the center of the system is
greater than the value of the neutrons fallen on its surface.

Other Methods of Evaluating M/ 51-53 7.

It is possible to evaluate the interaction parameter by assuml.ni
that the magnitude of the inverse surface mmltiplication factor (l/l‘l8

is charged linearly in accordance with the cubic root of the magnitude
of the mass, i.e., with the linear dimensions of a system. If the mag-
nitude l/Ma is constructed in accordance with the linear dimension

which is divided into the critical mass, then 1/:-1B must be equal to a

unit vith Z = 0 and 1Mg =0 for Z =3’?: in the cri.tical state of the
[

systea, Then, if the relationship is linear, we obtain_a graph for the

rapid evaluation of the surface multiplication factor [ Figure 5.11_/.

Computations indicate that such an evaluation is conservative; it
results in overstating tne value of M a° Thus, if either the critical

mass or the size of the sphere or the size of the cylinder for a fiasion--
able material of given composition is known, II./R\(B can be evaluated by the
equation

3 7,—
_%_==1_.v/l__, (5.26)



whare m,, 1is the critical xass, m is the wass for whi h we determine
the Ms factor. Specifically, for a sphere

A, N T e

The interaction parameter ¢ is equal to the multiplication surface
factor multiplied by the solid angle connecting two assembliens

A Q fer Q LA Q
foo s .

gredMooe - T m e df 5.27

4t Lo 7 4 Ar 4 ( )

The multiplication surface {actors of metallic spheres and spheree with
a solution of UO,(N 3)2 are presented in Figures 5.12 and 5.13.

Figure 5.12

Irverse surface multiplication of l/M in accordance with the
radius of a metallic uranium, unreflected sphere.
Enrichment of urarium is 93 perceat.

-149
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Legends A = Inverse surface multiplication, B= Nuss of 023 5 in kge
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Figure 5.13

Inverse surface mltiplication of I/Ms'in accordance with the

radius of an uareflected sphere with an aqueous solution of UO,(NO.)... The

enrichment of uranium is 93 percent. The concentration of uranium’ig in g/13

40 (9), 60-80 (0), >100 (X)
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/) 82 g% 05 88 /Ry
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C onsen pacmbgpa,n
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S

Legend: A = Inverse surface multiplication, B = Radius of sphere in cm,
C = Volume of solution in 1.

4o Intersction Perameter iethod in Matrix Form

Ia the interaction parameter, the equality of zero to the determinant
is the criterisn of criticality. This criterion, however, has certain shori~—

comings which leaa to a lack of definitiveness in evaluating the criticality
of interacting systems.
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1. The zero equality of the determinant is a necessary but
inadequate condition for the criticality of a system. It is possible
to demonstrate that, when the determinant is equal to zero, a syatem may
be critical or supercritical. When the determinant does not equal zero,
a system may be either supercritical or subcritical.

2. The numerical solution of the determinant is a difficult and
prolonged procedure.

3. It is of interest to know not only the criticality or sub-
criticality of a system but also the magnitude of subcriticality, which
cannot be determined by solving the determinant.

The criterion of criticality formulated below [ 52_7 is free of
these shortcomingse.

Criterion of Criticality.

We will consider the system n of subcritical assemblies. The
characteristics of this system will be analogous to those of part 1.

In a critical system neutron fluxes are maintained constant,
without an extraneocus neutron source, and are expressed in the form of

Fi= 2‘ MyPF;  (i==1,2, ..., n),. (5.28)
= .

where Sy =My Py .
The equatiaca (5.28) can be written most conveniently in matrix form:

F, G11 Q12 --- Gin F,
F. oy e F
A P LR N I (5.29)
F,_ Gng Qn2 - - - Yqnn _F,

Having specified the matrix of interaction parameters through [ Q] and the
vector of fluxes through / F_/, we will obtain

[F==[CHF (5.30)

In & critical situation, this equation is satisfied by the vector

[ FJ, every term of which is positive. Consequently, the characteristiu
equation

A[FI=[QI[F} (5.31)
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must have the eigenvalue A = 1, This is inadequate to evaluate the
criticality of a system, since the eigenvector FJ corresponding to

= 1 must be ccmposed of only positive terms. It is possible to
demonstrate that for positive matrixes the eigenvalue connected with the
eigenvector with the positive elements is the greatest eigenvalue
of the matrix / 52 /. This eigenvalue A, is real and positive, and
modules of other eigenvalues do not exceed max®

Consequently, in addition to the requirement that the matrix / Q7

have an eigenvalue equal to a unit, it is essential to require that this
value be maximum.

Thus, the criterion of criticality can for formulated thus:

a) a system of interacting subcritical assemblies is critical
only in case the maximum eigenvalue of the matrix of interaction parameters
is equal to a unit;

b) if Amax >1, then the system is supsrcritical;
¢) if AM“< { » then the system is subcritical.

In a certain sense, Rmis a measure of critlcality. For example,
in a supercritical system for which A =2 a two-fold reduction of all
the interaction parameters makes the system critical.

The degree of the criticality of a system is equal to ¢* if, having
changed all the interaction parameters by the factor yog we will obtain

a critical system. The magnitude o& is determined by the maximum eigenvalue
of the matrix of interaction parameters A, ax ®

Previously, in part 1, the criterion of criticality (5.23) was preaen‘i:ed
in the form of
D=det{Q—1}=0,

since I is the unit matrix of the n order. This condition is equivrlent
to the requirement that Q have an eigenvalue of A= 1. If, however,A =1/
is not the greatest eigenvalue, then the determinant can be equal to zero,
and the system to supercriticality.

We will assume that [ Q] has an eigenvalue of }=2 zndA=/ (generally
speaxing) has n of eigenvalues of the matrix. Sinceld =),D =0 and if

condition (5.23) is accurate, the system would be critical. However, ‘;l‘-‘7‘
is also an eigenvalue and therefore

det [Q—21} =0. (5.32)
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This equation is accurate, provided cach element of the determinant
is reduced by a half so that

det [; Q—1]:=0. (5.33)

In accordance with condition (5.23), the system is still critical,
although all the interaction perameters have been halved. Thus, the
equation (5.23) is not an adequate condition for the criticality of a
system. The eigenvector / F_/ corresponding toA=1 has pesitive and
negative terms, which do not correspond physically to the realized
system in which all the fluxes are positive.

Neutron Multiplication in an Interacting System Located in a
Nonabsorbent Eavironment. An External Neutron Scurce.

Let the surface multiplication factor M 1 not depend on the
neutron spectrum. Then Mjj = Mj = Mg 1is the surface multiplication
factor of uniform assemblies.

We will consider a situation in which not a single neutron from

e source escapes from the system, does not fail into any assembly. We
will designate the source by the vector [3_7 = £ S,, 2....,8 3

since Sy is the proportion which has fallen into the assembly i. Then

n

2 Si=1, (5.34)

i=1

and the matrix egquation for neutron fluxes in a stationary state is written
in the form of

M, S,
M, S.
IFl=1QIF14+| %77 . (5.35)

M, S.

Then, it is possible to determine ror the given source [ SJ and the matrix
Qj the neutron fluxes in the system of assemblies:

Al’l Sl
M, S,
Fl=t—Q*f | (5.36)
M, Sn
After computing the fluxes in the system, the number of neutrons escaping

from the system can be calculated.
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The number of neutrons escaping from the assembly j and falling
into other assemblies is equal to

2:: Py;F;.

The number of neutrons from J escaping from the system is equal to

F,-——F;};Pu-

The total number of neutrons escaping from the system is equal to

2 (Fr—zi} Pul’;];?ﬂ’;—-z %:PUFJ* (5.37)

] i
From the equation (5.35) we have

AN
Fl=§5.‘l quF;+MS; = Miz,_: PijF;-+ MiSi,

T3aK 4YTO 1
So TAAT D PyFy = 5= (Fi—MiS)).
i

Having placed this value in the expression (5.37) » We will obtain, for the
number of neutrons escaping from the systen,
1 1 1 .
2‘ F!""? E(Fi—lwtsi)=2‘_| (I_T’t_> Fi=-1,
Since

TaK KakK ‘Z}S;:l.-

Thus, when all the neutrons of the source fall into an assembly, the
multiplication A7, of neutrons in the system is equal to

My=1 +§n} (1—+7) Fe (5.38)

i=t

The multiplication A7, caa be obtained following the determination of the
magnitude / F_/ of the equation (5.36) and the placement of this magnitude
in the expression (5.38).
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If the proportion (1 — P) of neutrons of a source escapes from the
system without interacting with assemblies, the multiplication of neutrons
in such a system /7, pWill be equal to

Marmp (143 (1) ]+ |
o I (5.39)
M;xp-':l-fjpi}:_‘,‘(l —--1%;) Fi. ]

The exact calculation of the value P is quite difficult; however, reasonable
aevaluations for nuclear safety can be made through the computation of solid

angles.
Multiplication in Systems of Uniform Assemblies A7,

My in a system of uniform assemblies with surface multiplication
M, can be computed without resorting to the evaluation [ FJ of the equation

{5. 36)

We will again consider a system of uniform assemblies. For it,
Apax (F1 = QL CFLwith A, LI We will add (7= Anq J[F] to the left and to
the right, ¥/ is the eigenvalue corresponding to /'\ " It is then

possible to write

[F1:=1QI [F1 -+ (1 — o) [FI. (5.40)

This is the equation for neutron flux in a subcritical system of uniform
asgsemblies with source [ SJ equal to

M(S}=(1 ""ﬂ;auc) [F]. 5.41)

o M
Tak kak IS; =1, 10 &F; = —5—
Since i 1 —2Xyanc

-

Its replacement in equation (5.38) yields

l"’mm:ﬁ 1 —"-.\mxc

IWA =1 +— '"_l M — M—2uaue }

M (5.42)

S M—1_
.‘_‘i‘{:l— = l —'"uJIRC' J

Surface system multiplication /‘{4 » which depends on assembly surface
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multiplication Ma and the degree of the criticality of the system, is useful
for evaluating reflector effect. When the proportion R of neutrons escaping
from a system are returned to it via the reflector and distributed among the
assemblies as in the equation (5.41), the reflected system will be subcritical,
critical, or supercritical if/A/ £ is less than 1, equal to 1, or more than 1,
respectively. )

If the neutrons returning to a system are distributed in a manner
differing from that of the equation (5.41), the effect of the reflector
can be evaluated by considering it as an additional assembly in the system.
Returning to an evaluation of system multiplication in a situation in which

of the neutrons of a source escape from it, we have

Myp=PM4{-(1—P),
A’Ap— 1 '-'-:P(MA‘— l)-

M—1 1—Ayan .
Applying the equation (5.42), we obtain Mo T = e, (5.43)

From this equation, if follows that a mulitiplication system of uniform
assemblies 2!4 > 15 may be less than individual assembly multiplication.

Mypo of a system is less than M, provided 2 < /—ﬂmﬁm(</—pj,
Thus, when the proportion of neutrons of a source - — the proportion which
passes through the system of individual assemblies without interaction -
is greater than the degree of criticality, system multiplication is less than
individual assembly multiplication. The above-described matrix criterion of
criticality of a system of interacting assemblies is necessary and adequate
for evaluating the criticality of the interaction psrameter method. The
criterion of growth in evaluating the degree of criticality of the system
also makes possible the computatioa of neutron multiplication in a system
enclosed in a nonabsorbent environcent with a source of neutrons.

The following is exceptional for a system composed of uniform assembliess
multiplication is determined by individual assembly multiplication, the pro-
portion of neutrons of a source not interacting with the system, and the
degree of the subcriticality of the system.

5« hbplicetion of the Criticality Matrix Criterion to the Computation
of Spheres Deployed in tne Air / 52 /

We will assume that, for a system of uniform spheres deployed in the
air, neutron emission from each sphere is distributed evenly along the surface
of spheres, that the distribution angle of neutron emission at each point of
a sphere is isotropic, and that the surface multiplication of each sphere is
uniform and does not depend on the energy and distribution angle of the falling
neutrons,

For such a system Pij is equal to the solid angle (standardized at 3-17‘)
subtended by the i sphere on the surface of the j sphere. Then

QU’—:M‘QU'
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Approximation 1. An analytical evaluation of $Z;; is difficult
in the general case of the partial screening of the i sphere from the j
sphere by the sphere spaced between them. ~or the purposes of simplification,
partial screening zan be disregarded. When three spheres are arranged
in a single line, the spheres on the two ends do not interact with each other
directly because of the complete screening provided by the center sphere,
and the angle between them is equal to zero. The average solid angle
between the two spheres of radius r at d distance between their centers
depends only on the relationship of r/d (this relationship is shown in
Figure 5.18 by the unbroken line)s

Approximation 2. It is assumed that the average solid angla

between the two spheres of radius r at d distance between their centers is
changed by the $2=K(»/d)®=law, eohorc K 18 a certsin constant. The
magnitude K is determined for each iattice in such a way that the solid
angle between the two closeet spheres has an exact value, and the solid
angles between other pairs of spheres are oversized. If we will now
designate the spacing of the lattice, i.e., the distance between the
centers of the proximate spheres via d and the distance betwwen the centers

of the i and j spheres via dij, then having applied the second approximation,
we can write

ok (55 = (5)' (&) G
or
Q=9 (7":—1)2 . (5.45)

L is the average solid angle between the proximate spheres.
/ The relationship between 2, and tne rstio r/d is shown in Figure 5.18
& and 3?1_7 After measuring the coordinates of the lattice points in

U

units d, we will obtain the i sphereé coordinates x,, Yso and z;. In
this manner,

Quy = Qeay;, (5.46)

__ i 1
Ll (Frer oy gy ey pypp

wherc

(5.47)

or
au=0

depending on whether or not there is a complete screen between the spheres.



The interaction parameters can be written in the form of
quy=MSQa1; == qoa1;, . (5.48)

since /{Qo =g, ia the interaction parameter betweca ths two
proximate spheres. Each interaction parameter dij is simply proportional

o0 the interaction parameter #» and the proportionality factor depends only
on the relative position of the i and j spheres.

Figure 5.14

The number of critical spheres n in a cubic lattice in accordance
with the interaction parameter

L
X

200} R

o 6% 41 g,

The Criticality Criterion Expressed via the Interaction Parameter.

When all the interaction parameters are known, it is an essy matter
to evaluate the state of an interacting system. It is least difficult to
compute the magnitude 7, at which a given system appears criticale.

We will assume thatA _ is the greatest eigenvalue of the matrix
AJ with the elements a, .«

53 Since 7.,7 =5 a‘-/- then the matrix of the inter-
action parameter [QJ = ¢,[A] and the greatest eigenvalue is, consequently,

- 137 -



The previously written criticality criterion yeilds

o= ——— . (5.49)

. Amaxe

It is possible to write matrix [ A_7 for any system and then calculate
the magnitude ¢, , at which the system is critical.

Number of Critical Spheres in Accordance with the Density of a System
aund the Surface Multiplication of Each Sphere.

A calculation of a matrix for a series of interacting systems = -« a cal=-
culation made on an electronic computer - - has been presented in another
work [ 52_7. For a system w'th fixed dimensions and shape, the magnitude
& = 52, at which a system is critical can be obtained from graphs (see
Figures 5.15 and 5.16). _

When the surface multiplication factor of a sphere is known, the
determination of the magnitudeQ, is easy. fSc, yields immediately the
rat/e .. /4, i.e., the density of the system, since S,  is the
solid angle between spheres at distance d (see Figure 5.18).

Figure 5.15 Figure 5.16
The number of critical The number of
spheres n in a square critical spheres
lattice in relation to the n in relation to the
interaction parameter density of the cubic
lattice r/d.
B B e e et e
S ¥ o s S s R
- : § q R \ R T4"./
N T B A N N\ \\#s
S ALY
4 - §
"0 ._\_\X o WA R}
u X = ; N YR
R , NN

% 1 - 1 , . \ %\s

TS | A\

P o0 0w




Minimal Multiplication M_at Which a System Is Critical.
The oriticality condition of a system is
90+ MR 2= iage. (5.50)

The maximum solid angle of contacting spheres is equal to IE", <07,
Since

Q,<0,08, %<0,08,
consequently,

M > ,/0,08. (5.51)

For a system of apherea,444==7z/420918 the lowest value of Hs at which
a system is critical. As regards a cubic lattice, the nsgnitude M, must
be less than a unit for a system of at least 48 spheres.

6. A Consideration of the Hypotheses Made during
the Computation of Interaction

In analyzing interacting systems, the following five basic hypotheses
are employed in all the methcds of computing interaction.

1. Neutron emission changes along the surfsce of a sphere.

In the formulation of the equation, it has been assumed that neutron emission
along the surface of a sphere is uniform, which, however, is not always so.
This leck of uniformity is a result of the dimensions of a sphere and the
surface multiplication Hs of a sphere.

Neutrons falling into a small sphere¢ whose dimensions are comparable
with the frec-path length of a neutron usually escape from the opposite side
of a sphere (forward scattering). With an increase in sphere dimensions,
an increasingly large proportion of neutrons begin to escape from the
sphere's side on which they had initially fallen; and for large spheres
whose diasmeter is much greater than the free—path length of a neutron,
backward scatiering predominatese.

Yhen surface wultiplication becomes great, neutron emission along a
surface is more uniform. Spheres found at the edge of a system can return,
depending on the size—shape factors and the magnitude of surface multiplication,
to the system a number of neutrons discernibly different from that number
which would be returned to a system on the basia of the hypothesis of
unifora neutron emission along the surface cf a sphere. Thus, the com—
putation overstates the reactivity of a system composed of small spheres



and can understate the reactivity of a system composed of large spheres.

2. Angular distribution of neutron emission. It is reasonable to
assume that neutron smission is isotropic at all the points of the surface
of a sphere. Then, all the interaction parameters are simply proportional
to the average solid angle. It is impossible to say definitely that the
angular distribution of neutrons escaping from a sphere constitute the
maximum proportion P, i.e., the mumber of neutrons escaping to another
sphere. If such a distribution exists, it will extend in a radial
direction (Figure 5.17, a).

Figure 5.17

Angular distribution of neutrons escaping from the surface of a
spheres a is distribution with escape in a radial direction, b is the uni-
directional escape along the radius.

! 2 7 ﬁﬁﬁi 2

7 5b

In this situation, a large rumber of neutrons escaping froam field A
of sphere 1 fall into sphere 2, while neutrons escaping from sphere 1 in
field B are less li.'ly to fall into sphere 2. Usually, the solid angle
is averaged according to all the points of both fields, and the opposite
effects try to compensate for each other and have little influvence on the
magnitude of the effective average solid angle

When angular distribution is directed completely along a radius,

the magnitude $? is determined by the solid angle between tha center of one
sphere and the surface of the other (see Figure 5.17, b)s

N N =)

A cozperison on snd thae average solid angle G indicates that the use
0of(? in place o‘j? yields a more reactive system, i.e., a more intense
internctxon.

Ig Table 5.4, the magnitude K, is selected in such a macner that G2, is
tre uccurﬁqe average solid angle between the contacting spheres



the value-i is exact for a diastance when r = 0.4,
d

3. Surface rmltiplication of a sphere. The surface multiplication
of each sphere in a system is assumed to be uniform. In a real system, MB

depends not only on the nature and size of the spheres themselves, but also
on the spectrum and engular distribution of the falling neutrons and, con-
sequently, is changed with the position of a sphere in the system. In order
to be on the safe side, it is reasonable to choose the surface multiplication
factor maximally realized in a system.

Table 5 ¢

A Comrarison of Solid Angies

/d a £y=Ky (r/d)? {3 = K= (r/d)? 2
0,50 0,080 0,050 — 0,067
0,45 0,060 - 0,065 —_ 0,054
0,40 0,013 0.0351 0,015 0,042
0,35 0,033 | 0,039 0,934 0,032
0,30 0,024 0,029 0,025 0,023
0,2 0,016 0,020 0,018 0,016
0,20 0,010 0,013 0,011 0,010
0,15 0,005 (7)f 0,007 (2)] 0,006 (3)| 0,005 (6)
0,10 0.002 (5)} 0.003 (2)] 0,002 (8)] 0,002 (3)
0,03 0,0006 (25)] 0,008 0,0007 0,0006

4. The hypothesis of partial screening. The solid angle QU' is
evaluated by proceeding from the lhypothesis that a partial screening of
spheres by other spheres does not exist. Because of this, the solid angles
sssumed in computations are frequently greater than those in a real system.
The magnitude of partial screening is reduced with an increase in the
distance batveen spheres. A disregard of partial screening leads to an
overestiaation of some interaction parameters and, consequently, to an
overestimation of ‘he reactivity of a computed systeme

S. Celculaticn of solid angles. The hypothesis to the effect that
aolid sngles are changed inversely with the square of the distance between
assenblies yields safe results. By an appropriate choice, the value K of
the eguation §2=4(7/"is made precise for proximate spheres (at distance d
from each other). -

i'>> opheres spaced at great distances, the solid angle 2 a kK [ W)"
overstates the real solid angles.



In Figure 5.18, Q is the exact solid angle, Q ie computed according
to the equation _Q’ =K, 0-/4)‘ since the value of K, is chosen in such a

manner that f?' is the exact angle for spheres touching each other ( l'/4 =08 )
The solid angles are {2, = A, (/4] since” the value of K, is chosen in such a

manner that the solid angle is exact for sphéres with %1‘- = 0.4,

0f the hypotheses considered above, the first obviously yields a
"safe" result for systems composed of small spheres and a dangerous result
for systems composed of large spheres. The second hypothesis insignificantly
effects the evaluation of criticality, and the third-fifth hypotheses yield
"gafe" results, i.e., they overstate system reactivity.

Figure 5.18

Change of the solid angle §2 according to the lattice demsity r/ds
1 is 9,=/(;ﬁ‘/df , 2 ie.(?:(z [%ﬁ' 3 is theexact solid angle,
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7. Coxzpsrison of the Solid Anzl=2 and the Interaction Parameter iethods

A comparison of the solid angle and the interaction parameter methods
makes clear that the solid angle fZ and the multiplication factor K eff
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correspond to the fall probability P (which is equal to 2 for unreflected
systems in the air) and the surface multiplication factor My, It is of
interest to obtain simple and reliable correlations between M, and .(’e 93

Upper limit of the tudes Me and ¢ expressed through the multi-

plication factor s

7 It is known that neutron multiplication in a system is equal to
1/ (1~ K;ff)' Using the designation of section B, it is possible to

write that the proportion of fast neutrons (1 - Us) leaks from the system,
and the proportion Uf remains in the system. In the thermal range, the
proportion of neutrons UfUt is captured in the fuel core and the proportion
of neutrons G, (1~ U, ) escape from the system. The total number of neutrons
escaping from the system is one generation is equal to

: Koo
(1—U)+U;(1=U)=1—Ul=1——3 .

Thus the number of neutrons escaping from a sphere per one neutron falling
into it, with the presence of the eigenfunction of neutron distribution, is
equal to

o 1—(Kogq/¥0) (5.52)

M = —t'l\-—"‘— .

g

Let an isotropic neutron source be enclosed in a sphere. Then the number of
neutrons esceping from the sphere per one source neutron is equal to Mc »

provided the scurce ia in the cenier, &nd Ng +1 provided the source is
: 2

on the surface. Under these conditions, the average multiplication M satisfies
the inequality

Mc> M > 5 (M5-1)- (5.53)
Orcioaa
Hekc _ _?_ K
M <1+[l <‘:° ] i G 54)
8 === l—l\:,@@

. In a general
1-Keys

For assemblies with highly enriched uranium v 0 22 2 , M.<

situation,

2 7.
l+[|—KJ(\9¢,¢

MeS — =K
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For assemblies in the air, the fall probability P is equal to the
solid angle §2, and then

v [ 1 Ko g (5.55)
IS Ry '

Examples. 1) We will consider two uniform assemblies containing a
solution of uranium with PH/@;?M'. This magnitude has been chosen on the

4
1- eﬂ
g=l and the solid angle .%_ > 1—K,

40 Ff )

_§_2 In a critical state

basis of the condition that vf=2 and 75 T3

Curve 2 in Figure 5.9 in which the solid angle is equal to I-Ke‘,'
is the line of safety for solutions wita vl=2 (—gﬂ—'&‘w?’critical and sub=
5

critical systems lie above and below curve 2, respectively. Experimental
points lie above curve 2 and confirm its "safety."

. 2) We will consider two nonuniform assemblies with the values
Keze—%, (type 1) and K, (type 2) and expresa the solid angle by the
areas of the cross section of the assemblies (Al and A,) divided by

_ fh_ Po) ____-5:-
Q‘”Edi_._' 227 ndy,

On the basis of the expressions (5.21) and (5.54), it follows that the two
nonuniform containers are safe at the distance d12 , which satisfies the

inequality
T R GO AL W Lt €D LW Y
TRy T Taadiy i--Ka Aadi,

For subcritical systems composed of two uniform assemblies of type 1 or type 2,
the co.responuing magnitudes be less than a unit, and the corresponding
distances dl and d2 must satisfy the inequality

-G 1%

1—K;

AU o i1, 2.
4._(d,i<17!-’c.vf't ,
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Hence, d §2'> d,d, , i.es, the distance between nonuniform assemblies

must be greater than the average geometric distance. The empirical rule
presented previously requires that distance d)» be greater than the average

arithmetical distence. It is known that the arithmetical average is always
greater than the geometric, and the empirical rule is more conservative.

D. Homogenization Method

1. Description of the Method

The search for a purely empirical macroscopic method of computing
interaction has led to the creation of the so-called analog density method or,
more precisely, the homogenization method / 54, 55_7.

The method is based on the assumed similitude of a relationship between
critical mass and density of homogeneous assemblies and a relationship
between critical mass and porosity (density) of spatial heterogeneous systems
composed of subcritical assemblies deployed in air. An attractive characteris-
tic of liomogeneous reactors is the relationship between critjcal mass and
density, which is described by the relationsnip Mg, ~ (@)~ ( @ is the density
of the fuel core, 8 is & constant which does not change in a broad range of
éensities. For example, s = 2 for unreflected assemblies, 8 = 1.2 for
assemblies with a natural uranium reflector). Figure 5.19 shows the behavior
of 8 with a change of the reflecting capability of a reflector. The indicator
of the degree of 8 aims at its limit, which is equal to 2, as the reduction
of reflector effectiveness proceeds.

Figure 5.19

Indicator of the degree s for reflected, metallic spheres (R.. , Is
the critical radius of the reflected spl:re, R“is the critical radius gg an
unreflected sphere)s IJ is uranium of 93.5 percent enrichment, O is PuS’?

in ¢-phase.
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Like a homogeneous situation, the critical data on the entire series
of cubic systems of subcritical assemblies with various distances separating
the assemblies (which correspcnds to a different density) demonstrate that
the magnitude s is constant within a broad range of system density (porosity)e

As 8 = 2 for an unreflected homogeneous cube, the analog 8 aims at the
value 2 for a cubic heterogeneous system of very small, subcritical, un-
reflected assemblies. Thus, th2 method provides an opportunity for the
reasonable extrapolation of experimental data on heterogeneous systems.

For determining a series of systems, the degree s is a convenient inter-
nediate parameter which, analogous to a homogeneocus situation, is reduced
commensurately with the increase in the eiffectiveness of the system reflector
and depends intensely on the degree of the subcriticality of individual
assemblies composing the interacting system.

Fgure 5.20

Critical systems composed of metallic uranium spheres.
The enrichment of uranium is 93.5 percent:
0 is a 20-kg sphere in a cubic lattice with a concrete reflector; £7 is a
32-kg sphere in a square lattice on a plane, without a reflector; 0,88 , A
‘ are the more reliable points.
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Legends A = Nunber of spheres in the critical system, units; B = System's
voluzotric proportion of uranium.
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A work [ 50_7 described a series of experiments with a system composed
of metallic spheres of 93.5 percent enrichment with U232, The weight of the
spheres amounted to 20 kg. Twenty-seven spheres were arrayed in a cubic
lattice within cubic concrete boxes with a size of 1.5, 1.2, and 0.9 meters.
The thickness of a wall was 30 cm. The critical charges were obtained by
extrapolation, and errors in their determination coastituted about ten
percent. The experimental results are presented in Table 5.5.

Table 5.5
Critical Quantity of Twenty-Kilogram Ketallic Spheres in

a Cubic Lattice
(the uranium is of 93.5 percent enrichment)

B C D Kos 'nntcrao t¢cp mwr.

6 c 1y e | —_
A E;%'::c:::lo:;oa:::‘o- E:::;:::.:&‘;r}: n“o“:fl";}?:;! “u" cdepn Ges o1pa- | Avc noaycdepu
- xateas PRAON
\E F

1,5 50,8 7,66 9 -
1,22 40,5 4,9 61 73
0,915 28 45,9 30 45
0,61 . 20 119 12 16
3,05 J Bnaomuyo 907 3,6 —_

Legend: A = Side of the concrete, cubic box, in meters; B = Distance
separating the centers of the spheres, in centiceters; C = Density of the
lattice, in spheres per cubic meter; D = Number of spheres, in units;

E = Unreflected spheres; F = Two hemispheres in a row; 1 = Contact

In all the cases, the dimensions of a box exceeded the dimensions of
the lattice by three times. The data of the table and the results of
experimentation with 32-kg metallic spheres located on a plate at a height
of 25 cm from tke concrete floor are shown graphically in figure 5.20
rigure 5.21 present the results of experiments with metallic plates [- 55 _7
Along the axis of the abscissa is presented the porosity of the system
F, i.e., the system's voluretric proportion of metallic uranium; along the
exis of the ordinate is presented the number »7_, of subcritical metallic
ascemblies compo3ing the critical systea at an assigxed porosity. From
tr--e data 18 also chosen the analog s which will be applied to a system of

‘aL...cgous or other asseabliess The negative inclination of straight l:uzea
in the logarithmic coordinates determine s, since
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Figure 5.22

Indicator of the degree s in the relationship
oetween volumetric proportion and the un-
reflected critical sphere f:

0 = concrete reflected sphere,{) = partially
reflected systenm,[j= unreflected system, 1 = 20-
. kg sphere of 93 percent enriched uranium, 2 =
Critical systcms composed of 32-kg asphere of 93 percent enriched uranium,
metallic uranium plates. Uranium 3 = 24.5-kg uranium plate with a size of 2.54
enrichment is 93 percent. The x 20.32 x 25.4. Enrichment of uranium is 93
dimonsions of a plate are 2.54 x percent. 4 = assexbly of 5-kg uranium pieces
20.32 x 25.4 cm; the weight is with a porosity of 40 percent and a total
24.5 kg: A ,4 = no moderator weight of 30 kg. Enrichment of uranium is
between plates; O = plexiglass 93 percent; 5 = cylinder of 15.24-cm diameter

moderator of 2.54-cm thickne§a with a solution with 9:4:.”.. 6 = cylinder of
between plates, 0;4 = critical -0

experiments,d = curve extrapolation

Figure 5.21

of inverse multiplication; 20.32-ca dismeter with a solution with & _ 4
r~.,. = number of assemblies -
in the critical system, F = systea T = cylinder of 22.32 cam with a solution with
..porosity, p
(-,-’3: 309-8 = cylinder of 24.13-cm diameter with
Y |
s
= é SRR iE ] 5_4, %7, 9 = 3 plates of 7.62-cm thickness with
S TRl &
AN THI ) solution.
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When experimental data are known for a single porosity (at one assigned
distance between assemblies) , the straight line for determining s can be drawn
through this known point,so that this line will intersect the abscissis with
P = 1.

The figures make evident that s depends on the presence of a reflector
and the reactivity (multiplication factor) of a system's individual assemblies.
In accordance with reflector effectiveness, as was previocusly pointed out,

8 is charnged from 1.2 to 2.

Subsequently, it is essential to find the relationship between s and
the reactivity ~7 isolated assemblies composing the system. The most con=
venient magnituie to which s has been successfully connected is the proportion
]l-’ , weight or volumetric, constituted by an individual isolated assembly,
Compared with the critical assembly of this same material, i.e., £= 7. /m,,
where 77, 18 the cass of an isolated assembly composing the systea, and
is the mass of an unreflected critical assembly of this same material.

For a spherical asseably,f is the ratio of the mass of the assembly
4o the mass of the critical spherical assembly of the same material. For
an assembly having another shape, the mass of the sphere equivalent in
reactivity to the real assembly is assumed to be the real mass. Obviously,
the magnitude A is a certain zeasure of the reactivity of an essembly.
Figure 5.22 shows the relationship between the magnitudes s and f . The
relationship is the generalization of experimental data on the criticality
of systeas of sssexblies. v

An evaluation of the number of critical, uniform assemblies with mass
m in a cubic lattice having a common, complete reflector is made in the
following menner.

Deternined is f of an isolated assembly; this is followed, with a
consideration of f » by the establishment of *he value s along the bottom
straight line on Figure 5.22. The critical mass n, of the material of the

spherical ssseably is computed when it i3 closely surrounded by the lattice
reflector. The value of tne desired porosity (lattice demsity) F is establish-
ed, i.e, the ratio of the volume of the assembly to the volume of the cell
founé n one assezbly. The mass of the criticallattice is determined: M =
moF'a {tke value s has been determined abcve). The number of critical

assemblies with cass m is

m

(5.56)

-3
Np=—"— .

- 149 -



In A majority of cases in practice, the oritical mass of fissile
materials required to evaluate £ and @, can be found in this handbook.

An example. To compute the number of critical, metallic, 20-kg
spheres of U295 laid in an accurate cubic lattice with a general conorete
reflector.

We will determine f 3
=m
= o

where m,, 18 the critical mass of metallic uranium without a reflector.
Then, Figure 5.22 makes evident that § =2 0.85.

sls
b

= 0,417,

0

The critical mass of 235 vwith & concrete reflector is equal to 22 kg,
if one takes into account the fact that a concrete reflector is no more e fective
than an aquecus onee

We will compute a systexz with the porosity F = O.1 and F = 0,013

M = mgF* == 22.0,1%% = 156
Ryp == .‘;.5 =17,8 cdepw npit nopieroctin F = 0,1:
M =22.0,01-*5 = 1080 £g;
nep(F=-0,01)==120=51 spheres.

For such a system lacking a concrete reflector, we obtain

M=mg-F~* - 18.0,195-.340 Loy

"sp(F'—=0.|)=:-¥5q== 17 spheres,

M .- 48.0,01-0% - 2360 &g
nep(F - 0-01)’—“—?;?-:]18 spheres

At this point we have only considered systews with assemblies placed
in eir. kcxperiments indicate that the presence of hydrogea-coataining
matcrials between metallic assemblies in a system sharply reduce the
nuguer of critical assewbliiese Jigure 5.21 presents the results of
introcucing plexiglass plates of 2.5—cm thickness in a space between
jrtorictics metallic plates. The bottoa curve on the figure attests to
tke fact that the introduction of such plates reduces the number of
critical ascemblies by five or ten times. It should be noted that
plexiglass of ?.“~ca thickness has nearly a maximum effectiveness (a
subsequent incrvase of thickness has very little erfect on the change of



the quantity of the plates), and it is more effective between metallic
plates than beitween assemblies. With thickness of water or plexiglass of

over 5 cm, system reactivity begins to drop, and with a thickness of about
20 cm interaction almost completely ceases.

2. Comparison of the Results of riments and Computations

Table 5.6 presents the results of experiments with €~liter assemblies
in an unreflected, spatisl lattice and the results of computations by the
interaction parasmeter cethed in matrix form - —~ computations made by homo-
genization and equivalent dimensions methods (for data on the deployment of
the 6~liter containers, see Table 5.1j.

Table 5.6

The FKumber of Critical Assemblies n.. in an Unreflected Cubic
Space iattice
(experiment and coamputation)

A Iﬁ ic ' " PacteT NETOIOM MapaMeTpa
Du:nno;:ggr:;;:e MATPRY-
. 3 T2CNCT XCTO2I Pacxe
T | | e T |
0,373 . 23 12 3 10 15,5
’ 2.5 |53
2 20
0,329 32,5%0,3 12 3 12 28
2,5 i9
2 28
0,278 5130,8 18 3 14 24
2,5 23
2 30
0,256 235 27 3 18 32
2,5 25
2 34
0,235~ 8030,5 35 3 20 36
2,5 28
4

Legend: A = lattice porcsity, B = experiment, C = Computation by the equivalert
dicensions method, D = Computation by the interaction parameter method in
matrix form, £ = Computation by the homogenization method.

Since the equation (5.54) yields the upper range of the magnitude M_,
results with several values of k, are presented for the purpose of indicating
the relationship between 72_, and the surface multiplication factor MB. One

can see from the equation that the three methods yield a reserve of ~~ 2 in
favor of nuclear safety.
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rigure 5.23
Unceflected critical systems of cylinders containing aqueous solution of
UOZ(I\'O3)2 salts. The enrichment of uranium is 92.6 percent, concentration -

is 410 g/1. The cylinders are made of polyethylene of 13.65 cm—~diameter.

Volume is 12 73
4 jis the triaagular lattice, the height of the solution in a cylinder is
312.4 cn, volume is 12.76 7.

Square lattice

Height of solution Volume, 7
in a cylinder, cm

£ 56.5 509
A 8408 903
B 112.4 12.76

D is the height of a solution in a cylinder - - 112.4 cm, volume is 12,76 1.

The cylinders are placed at 2 levels, the distance between ends of the cylindeis
is 14.2 cn. The graph shows the number of cylinders at one level, i.e., half

of the total number. ‘

A = Number of cylinders in the system, units; B = Distance between the surfaces
of the cylinders, cm.
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Figure 5.24

Interaction of 32-kg metallic spheres drawa up in a linear or flat lattice.
Ureniun earichzent is 93 perceat:

1 = flat lattice, the disiance between the centers of the spheres is 40.6,
50.8, and 76.2 cm; O = the Gistance between the centers of the spheres,
63.5 cm; =, +,constitute the line=r lattice,the distance between the
centers of the spheres is 40.6 cm. :

A = Inverse multiplication, B = Number of spheres.
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B. Soze Exvericental Results

Figure 5.23 points out the results of experizents of polyethylene
cylinders filled with anaquecus solution of saltof U0,(¥0), /37,
Figure 5.24 shows the inverse multiplication curves in accordznce with the
number of 32<kg uetallic spheres in a linear or flat system / 55/, The
vilues ‘of  the effective.mltiplication factors for agueous solution of salt
of Uoz(:.'o3)2 and UOF, = ~ values which can be useful in computing interaction = =

are preser.ted in Table 5.7 [ 49_7.
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Critical height of agueous solutions of ‘J02F in aluminum cylinders
of 15-cm diameter in accordance with the distance getween cylinders. The
enrichment of uranium is '

a = seven cylinders in a hexagonal lattices: 1 = cadmium-coated cylinder
placed in water, 2 = cadmium~coated cylinder placed in air, 3 = cadmiumless
cylinder placed in air, b = hexagonal end triengular lattices: 4 = seven
cadmium-coated cylinders placed in water, 5 = three cylinders in water,

6 = geven cylinders in water, 7 = solution level in one isolated cylinder.
A = Critical height, cm; 3B = Distance between cylinders, cum,
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Figure 5.26

Critical height of an aqueous solution of U02P2 in unreflected
aluminum cylinders in accordance with the distance between cylinders. The
enrichment of uranium is 93.2 percent.

1 = three cylinders in a triangular lattice (diameter of a cylinder is

20 cm), 2 = seven cylinders in a hexagonal lattice (Ais the 15-cm diemeter
of a cylinder, 23 is the 20~cm diameter of a cylinder).

A = Critical height, cm; 3B = Distance between cylinders, cme.
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Exparimental results [ 8_7 have been published on the criticality of

systems of aluminuam cylindera filled with an aqueous solution of U02F2 salt,
with uranium of §3.2 percent enrichment. The atomic ratio in the solution

is é“ /€S=44.3, The axes of the cylinders are parallel. The thickness of a

wall of the cylinders is 0.1l6 cma
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The experizmenters summarized the results in the following manner,
It was established that a hexagonal system of seven (one in the center)
aqueously reflected, cadmium-coated cylinders of 15.2-cm diameter remain
subcritical at eny solution height, provided the inside distance separating
the cylinders was no less than 5 cm. For a similar system of unreflected
cylinders of 20.3~cm diameter, a distance of 46 cm between cylinders was
necessary. Three unreflected cylinders of 20.3-cm diameter situated at
the apexes of an equilateral triazngle were safe, provided the distance
between them was no less than 23 cm. A&n aqueously reflected, cadmium-
coated cylinder of 20.3~cm diameter becams critical at an approximate height
of 62 cm.

Table 507
The Value of KQ.‘ for Unreflected Cylinders Containing Aqueous
Soluticns of UOF, (uranium enrichment is 93 percent) and Aqueous Solutions
“of U02(N03)2 (uraniun enrichment is 90 percent)

UO: F UO: (NO3)z

D. cx H,cx | PHPs ‘ff,‘j, Kol Ko T, cx® L2, cn2 |Us=as, x.’,’.xg Kypp
12,7 30,5 50 0,48 |0,32} 1,871 | 49,14 0,377 | 0,412 !0,330
12,7 6l 50 0,46 10,55| 1,871 | 49,14 0,377 | 0,412 10,555
12,7 o 50 0,48 10,57 1,871 | 49,14 0,377 | 0,412 :0,569
12,7 30,51 150 0,17 |o,47] 1,816 | 33,30 0,801 ! 0,140 0,468
12,7 6l 150 0,17 lo,50] 1,836 | 33,30 0,801.| 0,140 {0,493
12,7 o 150 0,17 {0,52| 1,846 | 33,30 | 0,801 | 0,130 10,506

12,7 30,51 330 0,035 |0,39| 1,714 | 20,64 1,331 | 0,666 0,412
12,7 €l 350 0,075 }0,42| 1,714 | 30,6% 1,331 | 0,666 {0,467
12,7 © 350 0,075 |0,43] 1,714 | 50,64 1,331 | 0,666 |0,478
20,32 ! 15,24 30 0.s8 |o0,68] 1,871 | 49,14 0,377 | 0,412 0,633
20,32 | 15,24 150 0,17 10,637 1,86 | 33,30 0.801 | 0,140 {0,587
20,32 | 30.5| 130 0.17 ;0,811 1,846 | 33,30 0,801 | 0,140 |0,725
20,32 | 15,24f 330 0,075 |0,5¢1 1,714 | 30,64 1,331 | 0,666 :0,539
20.32 | 30,5 330 0.075 | 0,70 1,714 | 30,68 | 1,331 | 0,666 !0,691
20,32 61 330 0.075 | 0,77{ 1,714 | 30,64 1,331 | 0,666 :0,749
30,5 15,240 130 0,170 10,83 | 1,816 @ 33,30 0,801 | 0,140 0,738
30,5 ! 15,24) 330 0,05 |{0,72] 1,714 | 30,64 1,331 | 0,666 0,704

i




Cylinders of 15.2-ca diemeter arrayed in a line in water were
effectively isolated from one another at a distance between them of no
less than 30 cm. Two unreflected cylinders of 20.3-cm diameter remained
subcritical at every solution height, provided the inside distance separat-
ing them was no less than 7.5 cm. When three cylinders of 20.3-cm diameter
were arrayed according to an iscsceles triangle, the total critical height
remained constant, provided the angle at the apex exceeded 90°. It was
established that this relationship between interaction and the angle
is substantially greater in an unreflected systems In these experiments,
the systems had no upper reflector.

The experimental results are presented in Figures 5.25 and 5.26.
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THS BASIC NORMS FOR ERSURING NUCLEAR SAFETY

Pages 214-222 Kriticheskiye Parsmetry Sistem
8 Delyashchimisya Veshchestvami
i Yasdernaya Begopasnost'

On the basis of the experimental data on criticality presented
in this handbook, some basic generaligations can be made. The
significance of these generalizations narrows down to the determination
of the maximum permissible charges and volumes of fissionable materials,
as well as the determination of the safe dimensions of systeas and the
distances between them. The maximum permissible charges of isolated
honogeneous systems are determined with a consideration of a reserve
factor somewhat exceeding 2; permissible volumes have a reserve factor
of 1.5. The presented norms have been takez from other works [ 4, 63,
64_/ and ere only tentative. The possibility of accidental submersion
of an entire consignment, as well as the mergirg of the shipment contained
in two consignments, is permitted.

1. Basic Norms for Isolated Systems
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Table T.l

Permissible Masses, in Kilograms, for Isolated, Aqueously

Reflected Systems

Mertaax, B Cuecn, 'C Pacreopu
x e} 4 <2 —Dﬂ <20 l i | Pir .
ox Py | 7;—$l00 ‘ E‘S?aoo
Uns 11,0 2.5 | 0,8 l 0.35
Fus3e 2,6 2,2 0.5 0.25
yms 3,0 1,3 i 0.48 | 0'23
[} .

Legends A = Metal, B = Mixtures, C = Solutions

Table 7.2

Permissible Volumes, in Liters, of Isolated, Aquecusly Reflected

Homogeneous Systems

A Pacteopu
* 20 < S 400 < SH. I 800 < L
Py Px H x
y=s 4,8 9,5 I 20,0
Pu»® 3,3 6,8 11,4
U= 2,0 6,0 12,0

Legend:s A = Solutions
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T&blﬂ 7 03

Safe Diameters of Cylinders of Aquecusly Reflected, Isolated
Systems, in Centimeters

A - B Pactsoput
Mciaaa o o
o P S oenu b 20 < -%‘1 100 -—‘: l 800 < r_:'
| x i
- | - ;

U 6,35 i 12,7 17,5 ' 23,!_
Pu3® 3.95 : 11,4 15,8 18,7
U 3.80 ! 9.4 1.7 | is,

Legends A = Metal at maximum density, B = Solutiaus.

Table 70"#

Safe T hicknesses of Plates for Aqueously Reflected, Isclated
Systems, in Centimeters

A B " PacTpoput
M'na.m a o
- PR s o 20521 w0 L s00 < 1L
Px Py P
U3 1,78 3,6 6,3 10,0
Pu23® 0,50 3,8 6,3 8,3
ys 0,50 1,2 4,8 7.3

Legends A = Metal at maximum density, B = Solutions.

Table TS5
Maximum Permissible Values of the Hejght and Diameter of Cylinders
for the salts and Aqueous Solutions of (aqueous reflector, enrichment and
any density of ursnium of no more than 3.2 kilograms per liter )
A B
Nnaueip, cx I Bucora, cx Jlluuetp cx Bucota, cx i Nuaxerp, cx Bucora, cx
12,7 i 20,3 15,7 ! 30,5 8,4
14,0 .5 22,9 12,7 38,1 6,6
15,2 44,7 5 25,4 10,7 1 91,4 4,3
17,8 21,6 27,9 9,4 E foe) 3,8

Legends A = Diameter, cm, B =Height, cm.



Table 7.6

Meximum Permissible Values of HMass, Volume, Safe Diameter of
Cylinders, and Safe Thickness of Plates aggr the Salts and Aqueous Solutions
of U</,
(homogeneous systems, any Eu/es)

n B c b Beaonacauit 'E Besonac
nn Macca 115' » B _uau
0‘;;::’;’.:‘ %C “xzu OGuen, 2 A-«axerpcl}‘namupa. ronuutua‘r:‘.'l.nctuuu.
100 0,350 4,8 12,7 3,8
7 0,360 5,0 13,2 4,1
50 0,390 6,0 14,5 4,8
40 0,410 6,7 15,2 5,1
30 0,440 7,7 16,0 5,6
20 0,480 9,5 17,5 6,9
15 0,520 11,0 18,8 7,9
12 0,583 12,5 19,8 8,6
10 0,600 14,0 20,8 9,1
8,0 0,650 16,0 22,1 9,9
6,0 0,710 20,5 24,4 11,4
5,0 0,800 27,0 26,0 12,7
4,0 0,930 33,8 23,4 14,0
3,5 1,4 40,0 30,5 15,2
3,0 1,200 49,2 32,5 16,5
2,5 1,470 64,6 35,6 1§,0
2,0 2,000 95,1 40,6 22,1
1,75 2,560 126,0 44,7 24,4
1,5 3,600 186,0 50,8 27,9
1,25 6,670 308,0 61,0 34,3
1,0 22,700 731,0 83,8 49,5
0,8 36,000 3917,0 147,3 91,4
0,72 oo} oo © [os)

Legends A = Uranium enrichment, in percent; B m Mass U2 , kg.; C= Volume,
1l; D = Safe diametex of a cylinder, cm; E = Safe thickness of a plate, cm.
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Table 707

Maxizum Permigssible Values of Kass for the Salts and Aqueo{m
Solutions of U2 in Ac:ordsnce with the €y /€ Relationship
(a.queoua reflector, any uranium enrichzent, density of uranium of no less

than 3.2 kg/1)
m Macea Uz, [ Py Macea U233, on Macea U23s,
P ks Py &z Ps r2

0.01 43,0 4.0 11,8 40,0 1,31
0.1 39,8 5.0 9,5 50,0 1,10
0,5 13,6 §,0 6,3 75,0 0,80
1,0 28,5 10,0 5,0 100,0 0,65
1.5 24,2 15,0 3,3 200,0 0,41
2.0 kAN 2,0 2,5 Be3 orpannsyetiit 0,35
3.0 14,8 30,0 1.7

Legend: A = Mass of 0235, kg; B = No limitatio.

Table 7.8

Maximum Permissible Values of Mass for Metallic Rods of [1235 with
a Density of 18.9 Grams per Cubic Centizmeter in Accordance with the Enrichment
of Uranium
(aquecus reflector)

CCGoramgerne UBS, Macca U3, ‘CGowen, OGoramenue U233, Macca U233, OGurex,
: x2 2 S s 3
a_" e A B ¢
100 1 11.0 0,582 2 31,9 8,44
SO 11,0 0,647 15 33,5 13,6
75 12,6 0,889 10 51,6 27,3
50 17,0 1,8 8 67,0 39,7
10 19,8 2.2 6 . 72,6 64,0
30 24,0 4.23 <3 [~ <) ©

Legend: A = Enrichment of 0335 » in perceunt; B = Kass ofnm . Kgo3
c = VOlumO, 1.
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Table 7.9

Permissible Values of a Mass of 0235 for Mixtures of UF. and
Eydrogen-Containing Materials with €u/Q_ <10 (any reflectof)

B A

R . ACK.
ool BERCO R oo il R S vt
ypana, 2/ca3 s > ypama, 2/cad P x>
1,8 10 5,0 3.0 1 28,5
2,3 S 9,4 3,2 0,1 39,8
2.6 3 14,3 3,2 0,01 43,0
2,8 2 20,0

Legond: A = Maximum uranium density, dcn3; B = Safe mass of 0235. kge
Table 7.10

Pernissible Values of a Kass of Metallic Urenium in Water
with Any Volumetric Ratio of Water to Uranium
( aqueocus reflector, blocks ar pieces of uranium placed at random in a

cantainer with water)
OGoramierne ypaxa, Macca U133, OGoramexse ypaa, Macca U233,
o = ' k) B s
a - g A
1.04 0,9 12,5
2;8 1.36 0.8 30,0
1.0 6,80

Legend: A = Enrichment of uranium, in percent; B = Kass of 0235; kg.

2. Conditions Kot Requiring Limitations

No limitations are required for masses and volumes of aquecus solutions
and homogeneous mixtures provided that:

a) vhich corresponds to a concentration of 0235< g/l;




b) which corresponds to a concentration of P29 S 7.3 g/1;
c) which corresponds to a concentration of g3 <10.9 g/1.

These values contain almost no reserve factor; therefore, it is essential
either to reduce the above-mentioned concentrations by 10 percent or to control
them exactlye. 7

Any mass of natural or depleted uranium homogeneously distributed in
common water is safe.

No limitations of uranium with 27 < O.0%5 are required, provided the

b =
uranium is in the form of a:

a) metal without hydrogen~containing admixtures,
b) chemical materiels without hydrogen,
c) homogeneocus mixtures with any element having the atomic number z > 13,
provided that €z pp < 100.
(3

3. Conditions Requiring Special Consideration

The basic norms are not applicable to such systezs as mixtures of
fissile materials containing heavy water, beryllium, and graphite (in which
the ratios @578, » Cac/© or &./Q, are equal to about 100) or to systems
with a thick reflector e of these materials, or naturai uranium, or 'wags-l-en.

7he norzs are also inapplicable in case the densities of fissile materials
are higher than normal densities. If the density of the fissile materials
is greater than the density of 7a (Figure 7.1), the permissible charges
cust te multiplied by('ﬁ,/,)"the volume by (ﬁ,ﬁ)z , and the linear dimensions
of a syetem Dy T°/T'
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Figure 7.l

e Relationship between the maximum densities of Pu>o9 (1), and
o233 (2), and U255 (3) and the atomic ratio of !
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Legend: A — Demsity, g/c:?.

4. Conditions Permitting an Increase of the Basic Norms

Tablezgsll presents the factors of a form for metallic, aqueocusly
reflected U rods of cylindrical configuration with any uranium enrichment.
Figure 7.2 indicates the factor X, by which it is necess o multiply the
percissible values of the mass&sp(see Table 7.1) of U235,a%53%, ard I{zjz%9 in
cetailic form, provided their density = is less than the normei r‘,- The norual
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densi%ea of metals in [,:/c:n3 are a3 followss 0235 - = 1746, Pu239 - = 19,6,
and U°%J - « 18,3. The factor p is applied only for aquecusly reflected
netals,

Table 7011
The Factor of Form K for Matallic U222 Rods of Cylindrical

Configuration
( water reflector, any enrichment)

) 1 1

H/D K HID I K HID l K
L -

4,0 1,515 1,5 1,085 0,3 1,22(_)
3,5 1,435 1,0 1,010 0,2 1,435
3,0 1,330 0,8 1,0 0,15 1,650
2,5 1,255 0,6 1,025 0,10 2,030
2,0 1,170 0,4 1,115 |

Note. Multiplied by the factor of the form are the magnitudes
of the permissible masses presented in Table 7.8; H/D is the ratio of
tha height of a cylinder to its diameter.

—

Figure 7.3 shows the factor Kx 3 when the permissible masses of

fissionable materials (see Table 7.l) are multiplied by this factor they
can be increased, provided the fissile materials are homogenecusly mixed
with some dilutions. This factor cannot be applied if "the dilututions

are hydrogen, deuterium, or dberyllium. In Figure 7.3, (x is the density

of a fissile %genal mixed uit%g dilution and Yo is the normel density
of metallic U2, U35 , and Pu®”. Curve 1 is applied when any element
from sodiun to bismuth is the diluent; curve 2 is applied when the diluents
are carbon, nitrogen, oxygen, and the elements from sodium to bismuth,
provided that for one atom of a fissile material there are no more than

seven atozs of a diluent (UC, UOz, °3°a' 05, UOF,, UF,, UFG).
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The relationship between the The relationship between the
factor K? and the ratio of ths factor K¢ and the ratio of
densities Tx/Yo ° the densities i'.(/rQ .

£

1

I'4 ﬂ K.[ T

5 N ;i 7

] \ . 1 \\\

N 2 <

2 \ 2 \\

! N b

202 Q0% o &2 @y, ,t'.ﬂl 004 e 82 0% 3.7y,

5. Some Norms for Interacting Assemblies -

Tables T7.12 and 7.13 present the norms for storing and transporting
fissionable materials built up from the assemblies described in Table T.l4o

The norms shown in Table 7.12 are applied for assemblies deployed in a concrete

basement, whose lowest linear size is about three meters. The lattices of
such assembles = = lattices which are safe in a concrets basement - - will

elso be ssfe in basements constructed of such materials as steel, wood, and
earth.
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-Table T.12

Norms of Fissile Materials during Storage
(the lattices are composed of the assemblies described in Table T.14)

Muruaxasspnoe pac-
CTORERC NCXAY Koansecteo c6opor
Tusn pcwerkn QEHTPAINK COCCIKRY B pCIUETKC.
c6opox B pemerxe ¥, wr.
A 8 cx &
/  Msoanposaninas JHMHCIHAK WJH UJCCKAas PeOeTKA >40 Bes orpaunuennit &
H3oanposanHas KyOndeckas eTka 91,5 200
P 3 po y dew 4} 129
61 80
51 S50
3 JBe ceA3aniKe NJI0CKIle PEISTKH 70 120 (scero 240) 6 b
61 90 (scero 180)6 5 5
51 ] 50 (scero 100)6 &
Legend: A = Type of Lattice; B = distarce seperatirg the cente:rs

of proximate assemblies in lattice » in cm,; C = Number of assemblies in
a lattice, in units. 1 = Isolated linear or flat lattice, 2 = Isolated
cubic lattice, 3 = Two connected flat lattices, 4 = Without limitationms,

5 — — words and numbers in the parentheses mean (in all 240), etc. a =
Distance separating the walls must be no less than 30 cm, b = Such a total
nunber is the limit for more than twe connected lattices.



Each assembly rust be composed of a mumber of smaller assemblies,
provided the total dimensions determined in Table T.14 are not exceeded.
The lattices shown in Table T.l2 will be safe upon submersion in water,
provided that th2 distances between the walls of individual assemblies
constitute no less than 30 centimeters and that no more than ten percent
of the volume of a separate assembly can be occupied by water.

Two lattices are isolated when they are separated by a concrete
wall of about 20-centimeter thickness. Two flat or cubic lattices are
also considered to be isolated if the distance separating the walls of
any two assemblies. of <he various lattices is greater than the maximum
size of one lattice or is 365 cm.

Two linear lattices can also be considered to be isolated, their
length notwithkstanding, if the distance between them is about 365
centimeters. Nonisolated flat lattices are considered to be connected
if the minimal distance separating the walls of two assemblies from various
lattices constitutes at least 230 centimeters.

Table 7.13 presents the norms for shipping assemblies of the fissile
naterials listed in Table 7.14. The maximum density permitted by a limiting
form or shipping container is obtained with the deployment of the assembly
in the center of a limiting cubic form or container of no less than a 51—
cn side. The data in Table T.14 is based on the hypothesis that the
entirety of the forms and containers for shipping, as well as insulation
from the fall of water inside the assembly, is maintained during shipping.
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Table T.13

Norms of Fisnile Materiales for the Shipment of Assembles Described in Table 7.14

A B Makeneaaenan nieinccin, C IIpexcanioe KoauneCIRO ACANULIXCR
SCHYCRICKIN OrParnIHICABIMIN scumectn B napritre (50 cGopox,
Coctan xearutuses | ¥9PaJCUN 233 IPIUCRORIUPOROIHIN 32 HCRAWNCHUEN GrIOACHIX
BCuCSTh xonrefizepon X xoutelinepon G)
U3 l Puzs ' ums U Pu3 l U3

| Merasawe u ocuvwcn

npu —Q'—‘-\';‘.’;

Qx _ _ _ L _ * ¥

npeaca  aacew ! 142 xefu335,5 x2/u3| 35,5 kofx3 G925 xe/eazon | 225 x2feucon | 225 K2[cazon

. Boloposcoacpxa-
nule cnvecl npK

2 < B <o, :

Cx - xlas - o _ & - “4

npeaea  macest | 35,5 Kefa® | 35,5 k2/s3 | 17,7 wofu3 § 225 refsazon | 225 x2feazon i 125 x2fcazon

3 Pactsopu nan so-
A0pOCOACPRa-

nUe CXNICH npit

gH—>2\’) B He-

X
GC30TaCHHX KO- o ¥y 7]
TeiHepax B . . L] 23,4 afu3] 254 a/x3| 14,2 2/x3| 225 2/eacon | 225 1/eazon | 100 a/sacon

Legend: A = Composition of fissile materials, B = i{aximum density permitted
by a limiting form or shipping ccatainer &, C = Maximum number of fissile
zaterials in a consignment (50 assemblies excepting safe containers R

1 = FMetals and mixtures witheesothe linmit of the mass, 2 = Hydrogen-containing
nixtures with...the limit of the mess, 3 = Solutions or hydrogen-containing
mixtures with...in unsafe containers ©, 4 = freight car.

8 me density is determined as the ratio of the mass (or volume) of the assembl

the volwre of the limiting form

The limiting form or shipping container must provide a distsnce of no less
than 30 ca between the sides of an asseumbly; the packed container must not
edmit watere.

b During combined shipzents, any combination of assemblies is possible,
provided the nuxmber of units does not exceed 50.

€ If assemblies in ine form of soluticns (see Table 7.14) are in safe
cylinders, ihe caximum rucber of fissile materials during storege (see Table
7.12) cen be retained during sbipping, provided that the indicated distances
are maintained during en accident.
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Table 7.14

Maximm Paremeters of Individual Assemblies 2

Fissile materials makeup U Put3d U233

A Mertaaam n cecit npa{ %" < 2; MaKkcHMaabLHaK Mac-
ca, k% . . . . ... e ee e 18,58 4,57 4,5

Boaopoacosepxamire cuecit  npi 2<%‘-<20;

- * X

MaKCHMATBHAX MACCA, K2  « v v o = o o o =« = 4,5 4,5 2,5

PactBopwt RIu  BOJOpOACOIEpiRAME CMECH  Mpit

. 8H -, 90 & neGesonacuux xomrefimepax; Maxcil-
ManLHMT 0618, £ L L L ... ... 4,0 4,0 2,0

Legend: A = Ketals and mixtures withe.emaximum mass in kgb, B = Hydrogen
nixtures witheeemaximum mess in kg, ©C = Solutions or hydrogen-gontaining
mixtures withe.oein unsafe contsiners; maximum volume in liters . )

® Vnen the densityy is greater than the velue ), in Figure 7.1, the
maxirum value of the mass is reduced 6.,(70/7)3 the volume ‘oy(,o/i)3.

b The volume of the packed material does not exceed 4.5 1.

¢ This corresponds to 20 kg of uranium of 93 percent enrichment.

4 For a_plutoniun density of 19.6 g/cxna. With a plutonium density
of 15.84 g/em’, the meximum mass is 6 kg. € In case of the unsafe containers
mentioned in Table 7.3, for solutions with 'FH/ ¢, > 20, there is no limit
on mass or volume,
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Table 7015

Minimal Safe Distances Separating Cylindrical
Containers- Containing Dry Salts or Solutions of U235
(the density of the uranium does not exceed 3.2 k/1)

A . n=nazp B C PacCTos e MCKRIY KOKRTCHRHCPaNit, €
- besonackoe cGo-
ATIMCTD, zuCOI3, rrezne Ypaga, xoatelacp pacno- § maoCKas REAPATIAR
cx cx " J0XCHH B INMUO pcuicTRa

1 2 2 4

12,7 76 100 33 45

12,7 120 100 435 60

2,0 120 12,5 105 137

25,0 120 5,9 120 150

30,0 100 3,75 120 159

Legend: A = Cylinder; B = Ssfe uranium enrichrment, in percent; C =
Distance separating containers, in ca. 1 = Diameter, in cm; 2 = height,
in cm; 3 = containers arranged in line; 4 = flat square lattice.

Table 7.16
Kininal Permitted Distances Separating Containers of a Safe

Configuration - ~ Containers Coatairing Dry Salts or Solutions of U235
(the density of the uranium does not exceed 3.2 kg/1)

A B < DPaecxommc EEPacc'rommc
Paccrosune | memay Jtynss ue;;kuy KOH-
c MeXIY ABYXNS { KomTcinepa- TeRnepami
Komzelnep : AN'@ :onz’tﬁuc- ai, paci0a0- | B Xtaapataod
pasxw, cx INCHHRNMIE peculerxe,
B aunno, CX cx
{ Cicpaofreion 3.8 2 . . . . . . .. 0,71 30,5 30.5 30,5
X lleamazp xmaxerpox 12,7 ex . L . . 0,58 3,5 72.0 137,0
3 Ilazcrina Toanusil 35¢cx .. ... 0,31 30,5 215,0 —_

Legend: A = Container; 3 = K., ; C = Distence between two containers, in cm;
D = Distance tetween two contfiners srrenged in line, in cm; E = Distance
geparating containers in a square lattice, in cm. 1 = Sphere of 4.8-1 volums,
2 = Cylinder of 12.7-cam diemeter, 3 = Plate of 3.5-cz thickness. |

wote. The infinite dixzensions of the cylinders and plates are assumed

42 t2 60 zsters. Tne distance separating the containers is the distance
separating the proximate walls.
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Notes to Tables 7.15 and 7.16
l. Axes of the cylinders are parallel.
2¢ The cylinders are located vertically.
3+ The centers of the containers lie on a plane.

4. VWhen there are only two containers, a safe distance is 30 cnm.

6. The Intersection of Pipes Ccnveyving Solutions of Fissile Materials

Table 7.17 presents the safe intersections of pipes with aqueous

solutions of U2, U222, and Pu’>” salts. The tsbular data is inapplicable
to metals. When a pipe has several intersections, the distance between
two axes of the proximate intersecticns must be no less than 45 cam.

Table 7.17

Permissible Internal Dismeters of Pipes (in centimeters) for
Intersections at an Angle of 90°

. ‘

Otpamarexs U3 Pu3? =33

3 INlepecesenns B Buie GYKBH T

1 BeckoRequnlt BOASHON OTPR&AATEAb - « o o - - - - 8.9 8,1 6,6
B L25CHBOTH o v v 2 4 it a e e e e .- 10,4 10,0 §,1
b <30escraxm . ... ..o 11,9 12,2 10,0

C Mepecesenne B Buae KpecTa

] BeckoroqHRIl BOXSKHOI OTPIAATEIL . . - . - - - - 7,4 6,6 5,3

@ L25CH BOTH « = - - 2 e e o e e e e e e e 8,4 S,4 6,8
9,9 9,9 8,4

b<30ecuwcraam .. .. ... ... ... ..

Legend: A = Reflector; 3B = T-shaped interseciion; 1 = Infinite aqueous
Teflector; a = <.ocm of water; b = ...0f steel; C = Cross-shaped intersection.

- END -
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