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Assembly of Fissionable Material in the Presence of a
Weak Neutron Source’

G. E. HansEN
Undversity of California, Los Alamos Scientific Laboratory, Los Alamas, New Merico -
Recetved August 15, 1960

The probability distribution in time at which the neutron population is a slightly supereritical
system attains a preseribed level is considered for the ease where a souree injeets well under one
neutron per neutron lifetime. For the case of ramp insertion of reactivity it is shown that the
energy relensed in the consequent burst of fissions may in some cases (e.g,, unmoderated enriched
uranium systems) exceed by over a factor of one hundred the energy release predicted by the reae-

tor kineties equations,

I. INTRODUCTION

The carly growth of neutron population, n(¢),
within a supereritieal system of fissile material is of o
statistical nature and may depart significantly from
the average time dependence, 7(8), of an ensemble
of these systems. After the initial growth period,
the time dependence of neutron population becomes
governed by a kineties equation which, by virtue of
the transitory existence of the supercritical system,
is essentially nonlinear. Qualitatively, #(t) is or is
not an approximate solution of the same kinetics
equation depending on whether the supercritical
coufiguration is prepared in the presence of a
“strong” or “weak” neutron source. When operated
in pulsed fashion, Godiva (1) furnishes one example
of the weak source case: here, highly enriched
uranium metal pieces are brought rapidly to a con-
figuration a few cents above prompt critical with
only the spontaneous fission source present. A burst
of fissions results which is reproducible in number of
fissions (~10"") and in width (~100 usec at half
maximum power) but not reproducible as to the
time after assembly for the occurrence of peak fission
rate. The average time to maximum power following
the step increase in reactivity is ~3 sec or ~3 x 10*

half-widths, and #(¢), rather than describing the -

typical growth and decay of the neutron population
during a fission pulse, gives primarily a measure of
the probability of a fission pulse maximum at time ¢,

* Work performed under the auspices of the U. S. Atomic
Energy Commission.
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In another *‘weak’” source example, such as the
inadvertent assembly of large quantities of fission-
able material, energy release as well as time delay
will not be reproducible. In this case, where we
assume a ramp increase of renctivity,. the average
number of fissions produced will exceed the value
computed under the neglect of fluctuations in
neutron population. ‘

For the weak source case and the limited excess
reactivity often associated with criticality accidents;
simple approximate expressions for the probability
distributions in time of burst occurrence and energy
release will be obtained. Essentially, the approxima-
tion consists in identifying as the main source of
fluctuations the distribution between neutron in-
duced finite fission chains and neutron induced per-
sistent (nonfinite) fission chains. One then neglects
the additional fluctuations in the growth of neutron
populations associated with the latter class. The
main sections of this report utilize this approxima-
tion while the appendices indicate the range of
validity. Section 2 derives an expression for the
probability, W, of a source neutron sponsoring a
persistent fission chain and defines a *‘weak” source.
Section 3 develops expressions for the probability
in time of occurrence of fission bursts following step
and ramp increases of reactivity and, for the ramp
inerease, the probability distribution in energy re-
lease associated with the Energy Model (2) of
reactivity quenching. Appendices 1 and 2 treat
briefly the neutron position and velocity dependence
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of W and the distribution of nonpersistent or finite
fission chain lengths while appendices 3 and 4 treat
the fluctuations in the growth of persistent chains
for special cases of zero and one delayed neutron
groups.
II. THE PROBABILITY, I, OF A SOURCE NEUTRON
SPONSORING A PERSISTENT FISSION CHAIN
AND THE DEFINITION OF A WEAK SOURCE S
We consider a simple reactive system in which all
neutrons behave identically, each having the prob-
ability p of producing a fission, and each fission
having the probability P(») of emitting » neutrons.
Since the probability (1 — W,) of a source fission
" not sponsoring a persistent fission chain is equal to

the probability that none of its emitted neutrons

sponsor such a chain, one has
(1=W) = 2 Pt - pW,I
v

The distribution P(») 1s known for the common
fissionable materials (3) and permits evaluation of
Eq. (1) for W = pW, in terms of the reactivity
index p.' For a slightly supercritical system where
W <« 1, one may approximate {1 — plV,]" as
I — vpW, + »(v — 1)p"W,*/2 and obtain

2117 2
(]. bt IV;) =1 — p"V/l'l-f- p‘],:/ viv— 1) (,))
W1

where 3 = D, o vP’(¥) is the average value of the
number of neutrons emitted per fission, etc. The
quantity pv, which is equal to the average number
of daughter fissions produced per fission is. conven-
tionally called the reproduction rumber k. Adopting
this notation together with T» = (v — 1)/7 (the
notation of reference 8 where it is seen that I'y =~ 0.8
for the various fissionable nuclides), Eq. (2) may
be re-expressed (4):

p“"’/ =W = 2Ak/7rz
for 0 <Ak=k-1K1 (3)

W =0 for AL <O

To show that Eq. (3) has a more general validity

I Equation (1) actually gives I as a double-valued func-
tion of p, one branch being W' (p) = 0, the second having
the behavior Wa(p) < 0forp < pand We(p) > O forp > p,.
The value p. = 1/2 ,u0 vP(») at which these two branches
cross is obtained by partially differentiating both sides of Fyq.
(1) with respect to W and setting " = 0. For a subcritical
system (i.e., p < p.) ohe must reject the We(p) < 0 branch
because of the probability interpretation of W, whereus
for a supereritical system (i.e., p > p.) one must reject the
Wi(p) = 0 branch, since this branch denies the existence
of persistent chains.

than suggested by the restrictive premises given iy
the first paragraph, Appendix I develops the ana-
logue of this equation for the probability W (r, v, ak)
of a neutron, with space-velocity coordinates r, v,
sponsoring a persistent fission chain.

With a neutron source of strength S neutrons per
second, the expected number of persistent chain
initiations per second is evidently W.S and the
average time interval between successive initiations
1/W 8. The expected growth in neutron population
n:(t) associated with the 7th persistent chain is of
the form A,e*“ "' where 7 is the mean neutron
lifetime (e folding time multiplied by Ak). The ex-
pected value of n..(t) is then ¢ *'"Sn.(¢), and,
if Ak/WS+ > 1, the total population at time ¢ is
essentially comprised of neutrons associated with
the first persistent fission chain. Using Eq. (3) to
eliminate W, this inequality becomes 2S7/3T, <« 1
and leads to the definition

287 /3T < 1 (4)

One may note that for a strong source, St >> 1, the
neutron population at a time after assembly ¢ > 7/Ak
is primarily derived from source neutrons occurring
in the first ¢ folding time #, = +/Ak. During the
interval 4;, the expected number of persistent. fission
«chains sponsored is N = WS4 = 287/7T., and the
probability distribution in N is Poisson, so that
(Nt — N*)/N* = 1/N; the fluctuation in ncutron
population, n(¢), is accordingly [n?(¢) — 7°(¢))/A°(t)
~ 3T/287 or the fluctuation in time at which the
population reaches some moderately large prescribed
value is given by (Ak)Y(& — I')/7* ~ »T:/287. In
the weak source case, to which our attention will be
confined, fluctuations in time to a prescribed power
are even larger than suggested by the above 1/S
proportionality. '

Weak source:

1I1. PROBABILITY DISTRIBUTION IN TIME OF
OCCURRENCE OF FISSION BURST FOLLOWING
STEP AND RAMP INCREASES OF REACTIVITY
Reckoning the zero of time as the instant the

system becomes critical, one may consider the time,

{, of the occurrence of the fission burst as composed

of two parts: ¢ = t, 4 {, where # represents the

time at which the first persistent fission chain is
sponsored; and £, the time for the neutron popula-

2 Here we have neglected the fluetuations in neutron
population buildup associnted with a single persistent
fission chain. If one designates the asymptotic form of this
population as A,e*, the fractionul mean-square deviation
in total population is more properly
[n2(t) — @O/ @) ~ [(A,2 = 4,9/4,2 + 1N

~ [ = A0/4,0 + 1151:/28r
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tion associated with this chain to grow to a maximum
or other fiducial value, The average and mean
square deviation of ¢ then become formally expressed
as
I=104L+ b (3)
E-D)=E-)+ -5 (6
AL Step Increase of Reactivity—The probability,
P{t)dt of the first persistent fission chain being
sponsored at £ in the interval df, is (again letting S
denote neutren source strength) composed of the
probability "3 of no persistent chains sponsored
up to £ and the probability WSdt, of a persistent
chain sponsored in diy

P(t)dy = ¢ " "W Sdt (7)

"and leads to

W— L= (1/8W)  (8)
When delayed neutrons are not involved in the
propagation of persistent chains, the mean square
deviation &7 — &’ is small compared to that of

- h = 1/8SW and

& — 1) thereby implying that the probability dis-

tribution in time of burst occurrence is essentially
identical to (4 )dt , save for a simple time transla-
tion of % . Appendix II develops an expression for
the probability ®(n, t) of a neutron population n at
time ¢ with the boundary condition ®(1, 0) = 1,
and shows that

(L2 — &) =~ 1.64(+/Ak)?
The inequality
4 - B E -1
is thus equivalent to (r/ak)’ K (1/WS)* or
(87)° « 1 and is automatically satisfied for the weak
source case. As indicated in Appendices III and IV,
f2 = 8 +:.0.577 7/Ak where f is defined by the
fiducial population value no = A,e*""". 4, is 4/W
where A¢**"'" is the expected neutron population at a
time ¢ after insertion of one source neutron. Then
one has for the average time from step insertion to
burst peak (or other fiducial) ‘

[~ 5T2/28Ak + to + 0.577 7/ Ak
~ pTe/28Ak + & (52)
and for the dispersion
& — o [pTo/288kF + 1:64 (r/Ak)°
(6a)

=~ [ply/28 Ak}

B. Ramp Increase of Reactivity —Neglecting de-

“, layed neutrons the kinetics equation

dijdt = (Ak/7)i + S (9)

has as a solution for the ramp reactivity increase
Ak = al

a(t) = exp (al’/2r) f dt'S exp (—at”/2:) (10)

~ S\/Zxr/a exp (al’/27)
for ¢ > v/2r/a

As may be shown from Eq. (10), source fissions
occurring prior to I’ = 0 arc respousible for one-half
of the average asymptotic neutron population given
by Eq. (11). This indicates that persistent fission
chains sponsored prior to the system reaching critical
play an important role in determining »(¢). For a
time-dependent reproduction number, the quantity
pW; appearing in the right-hand sides of Egs. (1)
and (2) must be generalized slightly to

(11)

L wow@e oy ()
v Je

which merely indicates that a neutron emitted by
the source fission at time't 15 ahsorbed at the later
time ¢ with probability ™" """dt’/r. Equation (2)
then becomes, again neglecting terms higher than

w?
aw, _ Wy (r._, W, ) .
- =3 Ak (13)
or, for Ak(t— «) > 0
W) = —— o (14)
x‘zI‘g[ dt’ exp (— f Ak dt”/r)
t ¢
For the ramp, Ak = af, Eq. (14) reduces to
=T /0
W) = /8ar/ 7Tyt exp (—at/27) (15)

1 — EX(/a/2r1)

where Ex(x) = —E.(—xz) is the error integral (5).
The probability of the first persistent fission chain
being sponsored at £ in the interval dt, is

t ‘
exp [— [ WS dt'] W{t) S dty
= /2arS* /77T,

(2S7/7T 2)—1
| [1 - Ez( 2%&)}

L 2

P(t) dty

]

(16)

- exp (— at’/27) dty

Figure 1 graphs P(#) vs ¢ for several values of the
source strength parameter 287/5T, . It is seen that,
for the weak source case, P(; < 0) is very small,
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Fig. 1. The probability per unit time, (4}, of the first persistent fission chain being sponsored at time ¢ under the con-
dition of the ramp reactivity insertion Ak = at and for several values of the source strength parameter 28r/5Ty; of., Eq.

(16).

thus indicating that persistent fission chains spon-
sored prior to the system reaching critical play an
unimportant role in determining & and thence the
average time { = L + & {ef, Eq. (3)] for the
neutron population to reach a prescribed value. In
many types of conceivable criticality aceidents (6,
7), the severity is governed by how much excess
reactivity, Ak , is inserted before some overriding
quenching mechanism again reduces the reproduc-
tion number below unity. For these types of acei-
dents, Alu. is directly dependent on the delay
time in fission-power buildup, so that time moments
such ax Tor F are of central importance. An appro-
priate approximation of I5q. (16) for estimation of
these time moments in the weak source case is’
() = exp (—aSt*/sT)2a8,/5T, for 6, 20
== for L <0 (17)
3 This approximation is equivalent to representing W)

by 2a4(0) /50 for £ > 0 and by zero for ¢ < 0, and therefore
is not suitable for estimations of 71(¢) or #2(1).

and gives
(18)

The Energy model (2, 7) of reactivity quenching
postulates o negative contribution to the total repro-
duction number proportional to the energy releaxed
by fissions, so that with this model and ramp inser-
tion of reactivity, the kineties equation is

13
dn _ I:at - bf n(t) dt'/r:] 48 (9a)
dt —e0 T .

where b i a constant. Because Eq. (9a) is nonlinear,
the quantity n cannot be identified as the expected
neutron population 7(¢); such an identification re-
sults, for the weak source case, in the predietion of
an cnergy release, say. Ey, less than the correct
average, say E. To prove this, we review briefly an
approximate solution of Eq. (%) : one supposes that
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during lixsion-power buildup the reactivity quench-
ing term is negligible and henee that n(?) i given by
Iy, (10). This form of n(¢) is presumed to persist to
the time 4 when the bracketed term of L. (9a)
vanishes, after which n(¢) rapidly drops to zero.
Iixpressing energy in units of neutron absorptions,
the energy released by time ¢ is'

K.~ S\/Orr/a exp (abi/2r) /at >~ ati/b (19)
or (2),

blse ~ /"2ar In [2ar (DS~ 2xr/a))

(19a)

To account for the probability distribution in
cnergy release accompanying ramp  insertion of
reactivity, one identifies as the source of this distri-

hution the probability distribution in occurrence.

of the first persistent fission chain. Thus, with
probability 7’(t)dt;, one has the first persistent
chain started at ¢, the corvesponding neutron
population,

n(8) = exp [a(f — 6°)/271/TV (1)
and the energy release
L) ~ [/ )at] exp [a(f — ¢7)/27]
: : (20)
~ al/b
or
blo(t) ~ v/aty* + 2arin[2arV (1) /b
(192) and (20a),

(20n)

Comparing  Iigs. one finds

E(t,) > Ei when
exp (—al’/27) < (287/30:)\/Zwal/r

From Eq. (17) one then obtains the expected con-
clusion that the weaker the source strength the more
probable the inequality E(4) > E, . To illustrate
the extent to which the average energy release can
exceed the value predicted by Eq. (19a), we con-
sider the ramp insertion of reactivity into Godiva
with only the spontaneous fission source present.
{This system is especially favorable by virtue of (i)
a low effective source strength of about 90 neutrons
per second; (ii) a short prompt neutron lifetime of
about 0.6 x 107" sec (8); and (iii) a known quench-
ing constant b = 0.5 x 107" per neutron absorption

iIn Eqs. (19) and (192) we have made use of the in-
equality at2/2r >> 1, which merely implies the energy re-
lewsed by the source fissions is negligible. As is shown in
reference 2, an additional energy release of & occurs during
the '(:oll:mpse of power following ¢ . Assuming the ramp in-
sertion of reactivity is terminated immediately after this
bower surge, the total energy release is 2E;.

(9).] Here, from s (20a) and (18)
WE = fl)l:'(!l)l’(ll) dty ~ aly >~ \/7asT,/48  (21)

which may be rewritten with the use of Eq. (19a) as
E'Ey ~ A/(x50s/857)/In [2ar/(bS\/2rr/a)] (21a)

The magnitude of E/F, is primarily determined by
the factor #502/8 S+ and is insensitive to the values
of the ramp parameter, a, and quench parameter, b,
For the Godiva example, Eq. (21a) gives 235 <
E/E, £ 252 for 107 < a < 107" see™. The require-
ment @ = 107% see™ insures sufficient penetration
into the super-prompt eritical region that delayed
newtron effects may safely be ignored. For faster
insertion rates, the encrgy model is not strietly
applicable to  CGodiva-like systems (because the
thermal expansion which produces reactivity quench-
ing (6, 10) lags the energy generation), and Eq.
(21a) underestimates E/ L, . Perhaps the main con-
clusion to be drawn from this numerical example is
that eriticality aceidents can oceur, principally with
unmoderated enriched uranium, with energy re-
leases exceeeding by a couple orders of magnitude the
values predicted from a reactor kineties equation.

APPENDIX 1: THIS NEUTRON POSITION-
VELOCITY DEPENDENCE OF I (r, v)
Theovem: “A neutron, injected with velociry v at
position r in a slightly supercritical system, has the
probability of sponsoring a persistent fission chain
W(z, v) = 2aK¢™(r, v)/oT: where T (r, v) is the
neutron adjoint or effectiveness function for the
system normalized by

fdv dr(r, v)va,(r, v) [fX(V')¢+(r, ) dv/].:

_ /dv dro(r, V)io(x, ) X [fx(v')¢+(r, v) dv']

Here, ¢(r, v) is the normal mode neutron flux func-
tion, o, the fission cross section, x(v') the fission
neutron spectrum.”

A proof of this theorem may be obtained by a
procedure paralleling that of the first paragraphs of
Section IT; that is, obtaining an equation for W(r, v) -
by enumerating the contributions, Af{l — W(r, ),
to [1 — W(r, v)]. These contributions are :

(1) The probability of the neutron escaping the
system without a collision:

Afft = W(r, V)]

=1 —f exp (—f cds')ads (1-1)
(1 0 )
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where the integration is along the line
r+ sv/v=r-+ sQ

r' =

(2) the probability of the neutron being elastically

or inelastically scattered at r’ multiplied by the

probability that the scattered neutron does not
sponsor a persistent fission chain

Afl — W(r,v)] = [, exp (—fscrds'>
. 0

e(v = v L = W, V)] dv' ds

(1-2)

(3) the probability of the neutron producing a
fission at r’ multiplied by the probability that none
of the emitted fission neutrons sponsor a persistent
fission chain

Al — W (r, v)]

= fm exp (—/E o ds') oo, r) 2P (1-3)
o o

. {fx(v') av'[l — W, v')]}v ds

(4) the probability of the neutron being radi-

atively captured at r':

A1 = T (r, v)]

@ Pl , (1_4)
= f exp <—f I ds) o (r',0) ds
: 0 (1]

After approximating
L= W=1— ol + (v — 1)/2]117%
sumning these contributions gives

Wir,v) = fom exp <—[ o ds') [o(r’, v = v')

+ vo (', V)x(WH (I, V') v ds
[n ( g /> I 172

- exp —f o ds -
Yo o 2

. [fx(v') dv' I (r, v'):]- o (', 0) ds

or, the equivalent differential-integral equation

=@ v+ oW(r, v)

(1-5)

= [aViole, v = ¥) + 5,0, DX V) (15
I [f(lv’ifx(v’)ll’(r, v’):r o(r, 1)

2
Except for the small term quadratic in 1V, L. (1-6)
is recoguized as the time independent Boltzmann
equation for the neutron flux adjoint funetion,

HANSEN

¢t (r, v). We thus introduce the normal mode flux
equation

[QV + dlor,v) = fdv' [a(r, vV —v)
] 4
+ om0 |ote,v)
and, after the conventional procedure of multiplying

¢ equation by 1V, the W equation by ¢, forming the
difference and integrating over drdv, one obtains

<1 — %) fdv dro(r, v)vo,(r, v) fdv'x(v’, W (r, v)
= fdv dro(r. v)vo(r, v) |

o [ f do'x (v, )Wz, V')]-DTFZ

Since, in the limit & — 1, Eq. (1-7) becomes adjoint
to Eq. (1-6), we have W(r, v) — C¢™(r, v) where

(1-8)

the constant C depends on the normalization of
ot After letting
f de'x (v, Do (v, 1) = ¢ (1),
substituting this asymptotic form of 1 (r, v) in Th
Eq. (1-8) gives fiss
1 fdv dro(r, v)se,(r, l')¢u+(r) :..-n
c-(i-]
f dv dre(r, v)vo,(r, vV)éi (r)s/2 whe
fiss!
or )
Wi, v) =~ [2 (1 - l)/z‘zl‘-_»] ¢ (r, v)
k (1-9)
= 2A/:¢™ (1, v) /5T,
for the normalization
the
[ av dzote, vz, ot @) ;
of :
= [ av dro(e, v) 50,5, )0 (). is {
The above equation for € indicates the proper Wy
weighting of #Ts when this quantity is energy or
spuce dependent. We note that a neutron =ource with
a spectral and spatial distribution
$(r, V)70, (1, )" (1) whe
Ny-
has .the prol.)‘ubility, per neutron of spoisoring a Ch':l.
persistent fission chain W,
W= 2AL/F1% sun:
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[specially for an unreflected system, this spatial
distribution is centrally peaked more strongly than
uniform or normal mode sources, which in turn
would then be characterized by average or effective
" < 1. In this report, IV is always used in associa-
tion with a source strength, S, and, rather than
belaboring the issue of ¢", we lump S and ¢ into
an effective source strength, Sq5+, still labeled S.

APPENDIX 2: AN ALTERNATIVE DERIVATION OF
I¥ THROUGH ENUMERATION OF FINITE CHAIN
PROBABILITIES

A specific chain of NV fissions (excluding the source
fission may be deseribed as follows: the neutrons
from a source fission produce N fissions, the neutrons
from these N, fissions produce N, fissious, etc., the

total number of fissions being 2. N; = N. The -

probability of a source fission sponsoring a specific
chain of N fissions is readily expressed as the product
of probabilities of the individual steps N — Ny .
With our premises of identical neutrons and identical
fissions, the probability that the neutrons from the
source fission will produce N, fissions is

£ V!le(l - p)v—l\" ,
e 2-1
. PO =y =N (1)
The probability of the neutrons from these N,
fissions producing N fissions is

0 m=—Ng

S P(N,m) R0 = P)
o, Y Nol(m — Nyt

where P(N,, m) denotes the probability of N,
fissions emitting m neutrons and is given by

M
P(Ny,m) = S'HP(W)
" (2-3)
Z v, = m
fam]

the summation 8’ being over the partitions (v, »,
- vy,) of m. The probability W(Ny, Na, --- Ny)
of a specific chain (Ny, N2, -+ N,) of N fissions

is thus
. g+1 K
W/(Ny, N, - Ny) =TT 2
j=1 mi=N;
1 N(I )m~—‘\’- (2—4)
) ‘ . m]-p 1 — p i 1
P(Nj_l ’ ml) N,-!(m,- - I\I—j) !
where Ny, = 1 represents the source fission and

Ny+1 = 0. The probability W;(N) of an N fission
chain is then obtained by summing over the possible
W/(Ny,Ns, --- N,) subject t0 D i N; = N. The
summation appears to be most readily accomplished

for neutron number distributions P(N;o(, m;)
whose functional form is independent of V. ; eg,,
the delta distribution ’(v) = §,; which gives
P(Nj—, mj) = 8v;_y.m, and the Poisson distribu-
tion P(v») = 7¢ /v! which gives P(Vo, m;) =
(5N jo]™ie” Y= /m;l. For these two hypothetical

distributions (the delta distribution is of course

narrower than the observed distribution of neutron
number per fission whereas the Poisson distribution
which has Fs = 1 is somewhat broader) one has

(N, delta)
= (1 — p)’p(1 — P71V + DIY
(N + DFWN + 1) — NF° (25)
(N, Poisson) )
= ¢ ope WV A+ YV + DY (26)

The probability, 11, , of a source fission sponsoring a
persistent fission is now obtained by subtracting
from unity the sum S w2y WHN). This summa-
tion is readily accomplished if one notes that the
right hand sides of both Eqs. (2-5) and (2-6) are of
the form y(p)r¥(p)4(N) where x(p) (either
5p(1 — p)” " or spe™?’) is such that to each p 2 1/5
there is a p* < 1/7 for which x(p*) = x(p). But, for
a fission probability p* < 1/7, there are no per-
sistent chains and

oG

Z (P (PAN) =
or
S DA = (")

For a fission probability p > 1/7, then,
u(p) 22" (P)AN) = y(p)/y(p")

where p* < 1/7 is defined by z(p*) = x(p). Thus,
W(delta) = 1 — (1 — p)’/(1 = p*)’ (27)

with  sp*(1 — p*) T = wp(l = p)
and p7 s 1
W, (Poisson) = 1 — ¢ 77?7 (2-8)
with sp*e P’ = vpc”
and p7 =1

Although Egs. (2-7) and (2-8) are readily derived
from Eq. (1), the explicit introduction of p* permits
the determination of all moments of finite chain

L v 5 v, d “ N N . .
POCIRIRES T VTS 207 I Y PE S VR s HVU RNY ST SN

A4 Foi g :,;? ‘L “f:
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lengths by repeated partial differentiations of 1, :
the nth moment, N”, of the finite chain lengths is

Z iv"w/uv)/z WA(N)

N=0

= 2 N"y(p) " A(N)/ 20y A(N)
= [wa/0x)" 2 y(p)r AN/ 2 y.v“':l(N)
= {1 — W (xd/82)"[1 — W,].

More simply
NVo(delta) = (1 — p*)*
*(] —p*) 9 1" . (2-9)
EAETO NN P
— ip ap

— L. ik
Nn(Poission) = ¢~

p* 9 n gk (2-10) .
T—mprapr] ° :

The nth moments thus depend only on p* and one
has the finite chain length distributions of a super-
eritical system duplicated in o suberitical system
with the same p* value.

For reproduction numbers pp close to unity,
Egs. (2-9) and (2-10) may be approximated as

— L\ (20 — 20! 1
In~ | .= R
: “<z> =D <|AI.'.|> (211

where Iy = (7 — 1)/7 and unity for the delta and
Poisson distributions, respectively.

Of interest for the discussion of Appendix 4, are
the moments mi of the number, m, of delayed
neutron preeursors produced by the prompt fission
chain multiplieation of a source neutron in a <ystem
whose reactivity lies between delayed and prompt,
eritical. Noting that in the present manner of reckon-
ing fission chain length, the probability WV + 1)
of a source neutron sponsoring N 4 1 fissions is
pW,(N), and assuming that the probability of ob-
tauining m precursors from (N -+ 1) fissions is the
Poisson value [B7(N + D" imt one has

[ m! ]—pz > WAN)BHN + D]

(777 - [) N=0 m=0

e-—dﬁm‘+1)/_,'(m . l)!
. . (2-12)
= p(B7) (N + 1)/ = p(B7)

. 13)"’ (20 = 2‘)!( I )‘-”"
2 (T=1)" \J ak, |
or
LT A S LA T «
I~ _ 7 —— RN
m \i’(_p’u) ()> =i (l |> (2-13)

The approximation of (2-13) follows from (2-12)
because | Ak, | < 1. As only prompt neutron linked

fission .chains are included, the prompt reproduction

number k, has been substituted for k in Eq. (2-11),

APPENDIX 3: THE PROBABILITY ®(n, ?)
© OF n NEUTRONS AT TIME ¢

If the probability for a neutron to he absorbed,
including leakage, in the infinitesimal time interval
dt is dt/r, then ®(n, t)[1 — ndt/7] represents the
probability of n neutrons at time ¢ and no absorp-
tions in the ensuing time interval d¢, and thus con-
tributes to the value of ®(n, ¢ + dt). If the prob-
ability for a neutron absorption to cause fission is p,
then ®(n + 1, £)[(1 — p)(n + 1)dt/r represents the
probability of n 4+ 1 neutrons at time ¢ and one
nonfission producing absorption in the ensuing time
interval di; i.e., a second possibility for having n
neutrons at ¢{ + dt. If fission produces » neutrons
with probability P(»), the remaining contribution
to ®(n, t + dt) is

i ®n+1— v, )[(n+1 — »)P(v)pdt/7]

ye=l)

and one has (17)
®(n, t + dt)y = [1 — ndi/r]¢(n, t)
+ [(n 4+ 1)(1 = p)dt/r]le(n + 1,¢)

+ X0+ 1= PO ARE + 1= 5,0
or the equivalent
r = (P(n,l) = —n®(n, )
+(1 = p)n+ Deln+1,1) (3-1)

+p2PWn4+1=0Nen+1—11)
v=0
The th moment of the neutron number distribution

nl = Z n'e(n, t),

. . . . N R i
is obtained by multiplying liq. (3-1) by »° and
summing over a,

d[ nl = pitt 4+ Z{(l — (=1

] g=0

+ Z PGy —1 l [+ =a /g (1 — ¢)!
p=f
which becomes, after setting

(1 — pi—1y —i—pZI(u(v——]) b,

v==A

Eq.
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and noting by = 1
d — !
T (%t nt = Zl Lhn' g (L= ) (3-2)
"=

With n = 1 at ¢ = 0, and with time independent by,
the first and second moments, for example, are

UL
I (R P
by bs
where
bh=pp—L=»~L—1
and

‘ by = pit — 2pp + L =30k + | — k.
For a slightly supercritical system, by « 1, and at
times b/ >> 1, the moments have the simple ex-
pression

— 2Ak 71 A L
ol = |:1 - ﬁ"] dia+ 1 BT] e (3-1)

where 8,0 = 0, forl # 0, = Lforl = 0.
The distribution function @(n, ) associated with
Eq. (3-4) is thus, noting the identity

f nt e dn = 1![1/a]'"
0

2 9 2
®(n, t) = [1 —#] 8.0 + 24k/5Ty]

9

(3-5)
. e—-AI«:t/re‘\_p [_ (2A/‘m/'_’r2)e—.\kt/r1
Equation (3-3) is then of the form
®(n, t) = [1l — Wuo + WWEs(n, t) (3-6)

where W is the probability of the source neutron
sponsoring a persistent fission chain and ®,(n, t) is

the probability of » neutrons at time ¢ -under the

condition of a persistent chain sponsored at ¢ = 0.
To show the effect of neglecting the fluctuations in
neutron population growths among different per-
sistent fission chains sponsored at ¢{ = 0, we note
that when ®,(n, {) is summed over a small popula-
tion range An-about n,, the result, ®,(ny, ¢)An, is
interpretable either as the probability that the

. neutron population is in the range An about n at

time ¢ or the probabil\it.-y that the neutron population
reaches the value ny in the time interval At =
rAn/ne(k — 1) about . Letting ny define the time
& through

Ng = [7[‘2/2(/\ — I)Je(k_”’o/’

we have: If a source neutron sponsors a persistent

fission chain at ¢ = 0, then the probability per unit
time that the neutron population reaches ny is

(P,,( Mo, [)Nu(k _ 1)/1_ — A_/(_ C—Ak(l—to)/r
T

(3-7)
—Ak(—

-exp ["‘8 Ak{t—tp) /v

Figure 2 graphs ®,(ne, ny versus Ab(E — 4)/r.

The most probable time for the neutron population

to reach ny is &, the average time is § = b +

0.5377r7(k — 1), and the mean square deviation is

E—T = L64{r/(k = DI

These same values apply for a source fission (as
countrasted to a source neutron) sponsoring a per-
sistent chain at ¢ = 0, as the probability of more
than one of the neutrous emitted from the source
fission giving rise to an infinite number of progeny
is small (~17). As was seen in Section 3, the condi-
tion

LG64[r/AK]F & (1/IWS)

for ignorability of fluctuations in buildup times of
persistent chains is automatically satisfied for the
weak source case. From L. (3-3) one finds the
fractional mean square deviation in the neutron

=3 | | | I3
10" — —]
. T E =
~ [ -
x —]
=
= — ]
s L ]
:3 — b
:a.
10° |— —]
s I R
10 -Iz [s] 2 4 - -]
aK(t-t,) /T :

Fic. 2. The probability per unit time, ®,(no, Dneak/r,
"of the neutron population reaching no = [3Ta/2ak|e¥t/ at
a time ¢ after a persistent fission chain is sponsored. Here
time is expressed in units of r/ak; ¢f., Eq. (3-7).
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population attaining at large times the value
(n — @)/t =T/ (k — 1) = 2/W,

For time-dependent reproduction number, the
moments 7 and n? are readily obtained from Eq.

(3-2) and give

-exp l.— j{;l (k — l)dt"/r-l/r

- -

which, as is is seen from Eq. (15) of Section 3, is

equal to 2/1(0). The analogues of IEqgs. (3-4)

through (3-7) are obtained by replacing 24%/3T; by

W(0) and Akt/+ by [oAkdt'/r.

APPENDIX +4: FLUCTUATIONS IN PRECURSOR
POPULATION, €, FOR THE CASE 0 < ak < 8, 70 <
Bre < 1/8 (WHERE 70 IS THE NEUTRON LIFETIME,
+¢ THE PRECURSOR LIFETIME, 8 THE DELAYED
NEUTRON FRACTION FROM FISSION, AND S THE
NEUTRON SOURCE)

The reactivity region 0 < Ak K 8, like the region
Ak > 8, is one where the coupling between precursor
and neutron populations is relatively innocuous. In
the region between delayed and prompé critical
(0 < Ak < B), the death of a precursor results,
with probability I’(m), in m new precursors through
the agency of the prompt ncutron linked finite
fission chain sponsored by the associated delayed
neutron. If the neutron lifetime is sufficiently short,
these m new precursors may be considered as
instantancously produced and the analysis for the
probubility ®(C, t) of C precursors at time ¢ becomes
equivalent to the development for @(N, t) given in
Appendix 3. Specifically, with the neutron source S,

n % ®(C,0 = ~ [C + 8o (C,0
| + 8742 ®(C = m, t)I’(m) (4-1)

+ > ¢(C=m+ LHY)PmM)C — m + 1]

or

: .

T = X O = 1)+ e O]

dt g=1 ’ :
I (4-2)

¢!t — @)!
With the conditions C'(0) = 0, and time-inde-
pendent source and reactivity, the expressions for
the first. two moments are

- Sty lanﬁ—m/m -1 (4-3)

- (m— 1

1R HANSEN
o4 i N

0 = g (= P+ 287,73 + 787 ~ 1)
2Dty oy ST
te -m=e

AAlm — 1)¢ + 28rgmt} {e™ VI — 1) (4-4)

Under the restrictions, 7 — 1 < 1 and Srym <
(m — 1)?, which, as will be seen, are equivalent to
Ak &« B and 8S7; < 1, respectively, the asymptotic
(in time) expressions for the moments become

o Srq [(m - 1)2]1—l (- l)lel(ﬁ—l)thd

BCES B

(4-5)
1#0

and yield the asymptotic probability distribution

‘CP(C, ) = /o WS dt'e '@, (C,t — t)  (4-6)

_ where

W =2(m~—1)/(m — 1)*

TABLEI
TimE For Gobiva Power To BuiLp ur to 2.7 X 101
Fissions/sec FoLLowiNng a4 LARGE STEP INCREASE
oF Reacrivity To k — 1 = 0.0047, (Ak/B = 0.70)a. &

Run number Time (sec)
1 33.1
2 30.5
3 30.1
4 32.4
5 34.2
G 31.9
7 31.4
8 37.8
9 31.2
10 33.8

11 26.3
12 25.8
13 34.3
14 35.8
15 43.9
16 28.6
17 25.4
18 39.3
19 "~ 26.7
20 31.5
21 27.0
22 27.8

¢ The ncutron source is S ~ 90 ncutrons/sec and the
stable positive period is 1/a = 1.76 sce. (corresponding to
QST/;I‘:: = QSAk/irzlx ~0.75 < ])

¢ Average time: { = 31.8 see. Meun square deviation:
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From Appendix 2, one has

(= 1) = (B/] by | — 1) = Ak/g

and
(m — 1)? = 5048°/| Ak, |" ~sI/B
Thus TV assumes the familiar value 2Ak/7F: and
®,(C, t — V) is identical to the distribution
®(N, t — t') of Appendix 3 save for the replacement
of neutron lifetime 7, by the effective lifetime or
~eyele time Br,. Iere again, fluctuations in the
buildup of persistent chains is ignorable in the weak
souree ease
Bb'ﬁ’f,[/l-/[‘g << 1
Unfortunately the restriction
W= 1~ ak/B <K 1

is much more limiting than the inequality Ak « 1
which applies in the absence of delayed neutrons. An
indication that fuctuations in the buildup of per-
sistent chains may not be ignorable for AL ~ B
(i.e., near prompt-eritical) in the weak source case
is given by Eqs. (4-3) and (4-1). These equations
give for the asymptotic value of the fractional mean
square deviation in precursor population
3]
(+-7)

Ao 5 3
C':(/ = ol 1[:1+<__f'(’_._

c 1| Ak, | 74 | Ak, |

0< —-Ak, <8

Here, the parenthesized quantity represents the
fractional mean-square deviation in persistent
populations (see footnote 2) and is seen to deviate
markedly from unity as prompt ecritical is. ap-
proached. (The singularity at Ak, = 0 is, of course,
incorrect and is associated with the assumption
employed in Eq. (4-1) that the precursors formed
by prompt neutron linked fission chains are in-
stantaneously produced.) Similarly, from the
precursor C; and neutron n population moments
equations given by Courant and Wallace (11), one

finds for the condition Ak, > (Br/rs)"’
(P(nrt = 0) = an,l
nt—a’ 7 23

N 74 [1 + <1 + AL,,):I (4-8)

Ak > (Bro/ra)™?

I‘"f)r fast systems, with neutron lifetimes of the order
of 107" sec, both Eqs. (4-7) and (4-8) indicate con-

siderable fluctuation in population growth near
prompt critical. Experimental data on fission rate

buildup in Godiva (with ouly the spontancous
fission source present) for Ak/g >~ 103 (/) indieate
that (&' — &3 is comparable to (1/0°8). Addi-
tional data on the fission rate buildup at Ak'8 = 0.7
are summarized in Table I The average time and
mean square deviation in time after the reactivity
step inerease for the power to build up to 2.7 x 10"
fissions/sec are pu,dl( ted by Lq (5a) and Iq (()d.)
to be [ o= 325 see and B — ') =~ 10.9 se¢’ [the
arbitrary fi(lucml of 2.7 x 10" fissions/see entoers
only in the computation of £ : this power level
corresponds, in Godiva, to the neutron population
no = 4.2 X 10°; the value of 4 is determined from a
solution -of the Kinetics equation; e.g., A

afire/(AK[B — AK]) =~ 2.4 x 107° and yields A,
5.1 X 107 thence & =~ 28.1 see]. Thus again Eq.
(6a), applicd in the vicinity of prompt eritical,

2 IR

accounts for ahout one-half of the observed time .

fluctuation (& — F) indicating that here the
growth of a persistent chain is cousiderably more
erratic than anticipated for either Ak << g or AL > 8.
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