

ARCH 1958

87

NUCLEONICS

LUCCUMENTS STREETS AND A

VOLUME 16

NUMBER 3

H. W. Mateer, Publisher

Jerome D. Luntz, Editor

Daniel I. Cooper, Managing Editor Thomas L. Cramer, Associate Editor John E. Kenton, News Editor R. Habart Ellis, Jr., Associate Editor Harold L. Davis, Associate Editor Jesse S. Cook, III, Assistant Editor Robert E. L. Adamson, Assistant Editor Dimitrios Caratzas, Production Editor Carol Williamson, Editorial Assistant Harry Phillips, Art Director Boy Thompsen, Assistant Art Director G. B. Bryant, Jr., Chief, Washington Bureau John Wilhelm, Chief, World News Staff

london-W. J. Coughlin, John Tunstall Paris-Robert E. Farrell Bonn-Morrie Helitzer Tokyo-Dan Kurzman Rio de Janeiro-Peter Weaver Mexico City-John Kearney Melbourne—Alicja Grobtuch Beirut-O. M. Marashian Brussels-A. P. L. Gordon Rombay-Sharokh Sabavala Geneva-Ernest Hediger Johonnesburg---Norman Herd Milan-Richard Lawrence Stockholm----Curt Agren Vienno-F. H. Baer the Menney, Consulting Editor

James Girdwood, Advertising Sales Manager

& & Quint, Assistant Advertising Sales Manager, Buyers' Guide Manager Redaric Stewart, Promotion Manager Frank H. Ward, Business Manager Thomas Vought, Research Philip H. Hubbard, Jr., New York Bobert T. Wood, Boston August T. Hauptli, Philadelphia W. Smith, Chicago Waarten H. Gardner, Cleveland K. H. Carmody, R. C. Alcorn, San Francisco A McMillan, Los Angeles **B. Billion, M.** Miller, Atlanta **Edward E.** Schirmer, Dollas Jost Pattes, Denver Bert Logier, London Michael R. Zeynel, Frankfurt

18 A.

Feature Articles

Tritium Tracing—A Rediscovery	62
Fast-Breeder Power Reactors: Where Does U. S. Program Stand	
	CH
Simulating Nuclear Blast Effects	74
JAMES R. BOHANNON, Jr. and WILFRED E. BAK	ER
Critical-Assembly Booby Traps HUGH C. PAXTO	08 NO
Xenon Spatial Oscillations D. RANDALL and D. S. ST. JOH	in 82

Thermal-Neutron Data for the Elements M. V. DAVIS and D. T. HAUSER

Cross Sections

Neutron Detectors for Operation at 400°C		
	S. G. KAUFMANN and L. E. PAHIS	
Organic-Glass Scintillators	JOHN W. DOWNS and F. L. SMITH	94
Gamma-Dose Enhancement from	Neutron Capture in Cd D. E. KLINE and F. J. REMICK	97

Nuclear Engineering

Boiling-Water Reactor Instability	JOSEPH A. THIE	102
Hazards Evaluation of the Yankee Reactor		
A Simplified P _s Approximation M Utilization	ethod for Calculating Thermal EARL M. PAGE and RAYMOND L. MURRAY	114
Predicting Reactivity at High Bur	NUP BERTRAM-WOLFE	116
Easy Computation of Adjoint Flux	Kes BERTRAM WOLFE	121

Applied Radiation

Radiation Effects in Quartz-A Bibliography R. BECHMANN 122

Departments

ROUNDUP	17	PRODUCTS AND MATERIALS	130
EDITORIAL	61	NEWSMAKERS	139
BOOKS	124	NUCLEAR CAMPUS	141
LETTERS	128	NUCLEAR CALENDAR	142

More about NUCLEONICS on next page

Between this (Godiva I, after accident) . . .

and this (Godiva II), lie many . .

Critical-Assembly Booby Traps

By HUGH C. PAXTON Los Alamos Scientific Laboratory, Los Alamos, N. M.

1. Unanticipated motions in scram can cause burst

A modification to our water-reflected oralloy assembly The Aquarium (below, left) resulted in our first remote, accidental burst. Designed originally for determining the neutron multiplication of a single piece of fissionable metal in water, it included, as one scram, a pneumatic cylinder that raised the unit out of the water. A traveling support and a second unit was added, so that distances between two units could be determined, and a dropping Cd screen was provided as an additional scram. When scrammed, local radiation detectors went off scale and a cloud of steam showed on the monitoring television screen. Reconstruc-

tion showed that the pneumatic scram was the first is effective and led to two types of difficulty: (a) the center reactivity of the left hand cylinder was below that d stationary cylinder, and (b) the rapid lift through water brought the two cylinders together. The burst of $\sim 10^{17}$ fissions probably came from several independent bursts separated by bubbling. The well-known sensitivity of systems like this to separation as the critical value is approached makes it easy to be misled by extra polation of the reciprocal multiplication curve (below right) in evaluating the safety of a next step.

March, 1958 - NUCLEONO

Human error in calculating criticality

at right is Jemima, another assembly which we had trouble-this ome arithmetic. During buildup a delayed critical, indication that an added plate of enriched uranium would make the system supercritical by a certain margin was erroneously interpreted as meaning that it was subcritical by that same margin. A too-rapid assembly (even though controlled increments were available) led to a burst of 7×10^{16} fistions but no damage. A plot of the data (far right), omitted in this ence even though called for by our eperating regulations, could hardly are been misinterpreted, but sure ecough it was.

le Teo-rapid approach Scríticality

ar Lionevcomb assembly (right), a burst for which we still can the clear stopping mechanism than the relatively sluggish Here, the active region ormed by long sandwiches of trad-uranium foil (0.005 in. and graphite that slipped inmetrix tubes. Too large a in the core, and incautious 0.03×10^{16} to a burst of 3×10^{16} The initial part of the why motion was fast, the final ow, and the system became before the slow range was but the foils were not ^{da}aasged

A near miss— Falles'' weren't safe

Exercity innocuous changes in an S can have very surprising In another Honeycomb aswer right), a potentially walton could easily have had we not been feeling arefully and deliberately. a kad led from an assembly with the second se Be and fuel proved tive saleties, to this aswith which the first 6 in. of simultaneous withand fuel rods) gave a 30tods were ineffective be made a positive reactiv-"Southabution.

ere kaldad Terri da serie da s

NIC

, be

r of

the

the

otal

ade

OWB

tical

tra

105