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Foreword 
 
In 1981 the American Nuclear Society published ANSI/ANS-8.15-1981, an 
American National Standard entitled Nuclear Criticality Control of Special 
Actinide Elements. In compliance with Society policy, the ANS-8.15 working 
group is in the process of reviewing and revising the Standard. Although 
Appendix A of the Standard, entitled “Criticality Aspects of Special Actinide 
Elements,” is not formally part of the Standard, its relevance is recognized by the 
criticality safety community. As part of its efforts, the working group invited 
Dr. John Eric Lynn to give a presentation on the relevance and applicability of 
modern fission theory to Appendix A. That presentation is captured in this 
document. 
  

Norman L. Pruvost 
ANS-8.15 Working Group Chair 



x 



xi 

Acknowledgements 
 
This review has been greatly improved and enhanced, chiefly by the enthusiasm 
and many suggestions of Norman L. Pruvost, Chairman of the ANS-8.15 Working 
Group. Charles T. Rombough has greatly contributed in the cover design, figure 
and text editing, and reference checking. Valuable input and comment has come 
from members of Thomas P. McLaughlin's HSR-6 Group at Los Alamos National 
Laboratory and from members of the ANS-8.15 Working Group. 



xii 

 
 



1 

Modern Fission Theory for Criticality 
 

by 
 

J. Eric Lynn 
 
 
 

Abstract 
 
Preparation of this document was inspired by the effort to revise American 
National Standard ANS-8.15, Criticality Aspects of Special Actinide Elements, 
dated 1981. Appendix A of ANS-8.15 is concerned with estimates of fissionability 
for actinides not included in the Standard. These estimates are based on a nuclear 
fission model published in 1958. In the present document, this model is subjected 
to critical analysis and discussion. It is found that its basis, an empirical relation of 
spontaneous fission half-lives to the fissility parameter of the liquid-drop theory 
leading to a relationship of the fission barrier and hence the neutron fission cross 
sections to the same parameter, is much too simplistic.  
 
The current status of nuclear theory and its impact on fission theory is examined 
with the eventual aim of revising Appendix A for the revised Standard. The basis 
of the modern theory of fission is the interlocking of nuclear shell theory with the 
most modern versions of liquid-drop theory. We begin by reviewing nuclear shell 
phenomena and the theory for spherical nuclei. The theory is based on the notion 
of clustering of single-particle nucleon levels in a potential well, leading to energy 
gaps that give extra stability to certain nuclei — the closed shell or magic-number 
nuclei. The idea of single-particle levels in a potential well can be extended to 
deformed nuclei (these have nucleon numbers quite different from the magic 
numbers and are usually elongated — a spheroid in first approximation). Such 
deformed nuclei are also capable of forms of collective motion (vibrations and 
rotations). It is pointed out how these quantum states of nuclei that are deformed to 
the point at which they can overcome the fission barrier can affect the spontaneous 
fission half-lives and the fission cross sections in very specific ways. The basic 
development of the above work was mainly done in the 1950s. 
 
The theories pioneered by Strutinsky, starting in the 1960s, are then described. 
These are based on the discovery that quasi-shell structure can occur in the 
sequences of single-particle levels as a function of elongation of the nucleus (or 
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indeed for other modes of deformation). The relative change in summed energies 
of the occupied single-particle levels can be added to the liquid-drop energy to give 
the total energy of the nucleus at a given deformation. In the actinides it is 
generally found that the total energy as a function of deformation goes through a 
double maximum with increasing elongation, i.e. the fission barrier is double 
humped. The often spectacular consequences of such a barrier are described, with 
special mention of spontaneously fissioning isomers, intermediate structure (a 
second class of resonance structure) in fission cross sections, and effect on the 
gross magnitude of the fission barrier height. The effects and importance of other 
modes of nuclear deformation (such as mass asymmetric and axially asymmetric 
deformations) are briefly reviewed. 
 
The capability of this modern theory of fission to give estimates of fission and 
capture cross sections is then discussed. It is shown how data from reactions 
induced by particles other than neutrons can be used to obtain information on 
fission barrier properties of nuclei for which neutron cross-section measurements 
are limited are unavailable. Interpolation or extrapolation of barrier properties, 
guided by nuclear energy calculations of barrier trends, can lead to fission cross-
section estimates of yet more nuclei. Examples of such calculations are presented. 
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  I. Introduction 
 
Nuclear criticality safety standards for operating with the three major fissile 
nuclides (233U, 235U, and 239Pu) are set in American National Standard for Nuclear 
Criticality Safety in Operations with Fissionable Materials Outside Reactors, 
ANSI/ANS-8.1-1998.1  Safety standards for 14 other important fissile and 
fissionable nuclides are provided in another document, American National 
Standard for Nuclear Criticality Control of Special Actinide Elements, 
ANSI/ANS-8.15-1981.2  These nuclides, ranging from 237Np to 251Cf, do not 
comprise a complete list of all possible nuclides that may become of criticality 
safety concern in the future. For this reason the document ANS-8.15 includes an 
Appendix (Appendix A). In this Appendix, the estimates of fissionability* and 
criticality of a wide range of additional nuclides is based on the nuclear fission 
model described in a single 1958 paper by Vandenbosch and Seaborg.3  The 
apparent intent of the Appendix was only to provide simple qualitative guidance on 
the likelihood of fission for the 14 nuclides addressed therein. However, the 
Vandenbosch and Seaborg paper that served as the basis for the Appendix was 
already outmoded by subsequent developments in fission physics between 1958 
and the issuance of ANSI/ANS-8.15-1981. 
 
Briefly, Ref. 3 is based on some early liquid-drop model calculations of 
penetrability of the liquid-drop fission barrier combined with empirical 
observations of the dependence of spontaneous fission half-lives on the liquid-drop 
fissility parameter (Z2/A) and even-odd character† of the fissioning nucleus. The 
resulting estimates of fission barrier height and even more so, of fission 
“activation” energy, are very crude. Our present-day knowledge and understanding 
of fission physics is far more sophisticated and detailed than that discussed in 
Ref. 3 and should be used for making the best estimates of fissionability in a 
possibly revised Appendix A. 
 
Another key physics statement made in Appendix A is “the key to potential 
criticality is whether the nuclide contains an even or odd number of neutrons, N.” 
This is very much a rule-of-thumb statement. Already one exception (232U) is 
recorded in Table A-1 of Appendix A and others are known or can be expected. 
The even or odd neutron number of the nucleus is only one of many other physics 

                                                 
* In this document, fissionability means the likelihood of a nucleus to fission.  The higher the fissionability, the 

larger is the potential for such a material to achieve criticality. 
† In this context, even-odd character refers to the number of protons (Z) and number of neutrons (N) being even or 

odd integers. 
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characteristics that must be considered in making an estimate of the potential for 
criticality. 
 
The purpose of the present paper is to review our present knowledge and 
understanding of fission physics and thus to illustrate how it can be used to greatly 
improve our estimates of fission cross sections, over the full neutron energy range 
from slow to fast, for nuclear species for which measurements are either 
inadequate or non-existent. We begin with an outline of the liquid-drop model, 
which provides the basic framework for the rest of our understanding. In the 
section following this, we critically review the methods used in Ref. 3 for 
estimating barrier heights and “activation” energies. Because Ref. 3 was the key to 
Appendix A, we go into this topic in some detail. We then proceed to describe the 
rich tapestry of experimental observation and theoretical insight that followed 
publication of Vandenbosch and Seaborg's paper in 1958. 
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II. The Liquid-Drop Model 
 

Underlying all theoretical discussions of nuclear fission is the concept of the liquid 
drop. Stemming originally from Weizsacker's semi-empirical formula4  describing 
nuclear mass and hence mass defect or binding energy, EB as a function of mass 
number A* is given as follows: 

 
                             EB =  -cV A + cS A2/3 + cC (Z 2/A1/3)  ±  δ                               (1) 

 
This recognizes the principal terms respectively as equivalent to volume, surface, 
and Coulomb energy plus an even-odd fluctuation, δ. The coefficients cV, cS , cC  
are established by fitting the mass-defect curve. This formula was enunciated by 
Meitner and Frisch5  as the key to explaining the radiochemical discovery of 
nuclear fission by Hahn and Strassman,6  and was then developed by Bohr and 
Wheeler7  and their successors into a full-blown theory for fission. 
 
The simple physical picture is that of surface energy resisting deformation from the 
spherical shape and the Coulomb energy promoting deformation towards an 
elongated spheroid. If the Coulomb energy is less than twice the surface energy 
then it costs energy to deform and the stable shape is spherical. But if energy is put 
in to force the drop to deform, then at a certain elongation the Coulomb forces 
overcome the surface tension and the drop becomes unstable to further elongation 
and ultimately splits into two smaller drops. The elongation at which this 
instability commences becomes greater as the ratio of Coulomb energy to surface 
energy becomes smaller. This ratio is known as the normalized fissility 
parameter, x:  
 

x = EC  /2ES = (cC  / 2cS) (Z2/A) =  (Z2/A) / (Z2/A)crit                     (2) 
 
The normalized fissility parameter equals unity when 
 

(Z2/A)crit =  2cS /cC                                                                           (3) 
 
and at this value, the sphere is at unstable equilibrium. 
 
Of course the shape of the liquid drop does not have to be a spheroid, and indeed 
beyond small deformations, the minimum energy shape at a given elongation is not 

                                                 
*  In this document, A refers to the mass number which is the sum of the proton number, Z, and the neutron number, 

N, all three being integers. 
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a spheroid. The shape can be generalized by use of a multitude of parameters to 
describe it. One of the earliest sets comprised the coefficients of a representation of 
the surface as an expansion in Legendre polynomials. In this the first order term is 
the 2nd order polynomial P2 , describing quadrupole deformation, the spheroid, and 
its coefficient is denoted by β2. Because this remains such an important term up to 
the instability point (at least for actinides and higher charge nuclides), it is 
generally used to denote the fission deformation variable (usually abbreviated to 
just β). However, other terms must be included. The hexadecapole term β4P4 is 
certainly one of these. This term describes “necking-in” of the distorted drop. It 
follows that the liquid-drop potential energy must be calculated for a range of 
several of these variables. See Figure 1. 

 
 

Figure 1.   Schematic contours of liquid-drop energy as a function of two principal 
deformation parameters. Note: The figure (b) above is the energy on the least path 
(the fission barrier) which is the dashed line in (a). Adapted from Fig. 3 of Ref. 7. 
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The maximum in the minimum energy path to fission (this is the saddle point, 
denoted by col*, in the potential energy diagram) marks the onset of instability to 
further elongation. The one-dimensional representation (Figure 1b) of the fission 
barrier is commonly used in discussions of fission. 

 
 

III. The Fission Model in the Current Version of Appendix A 
 
Appendix A of ANS-8.15 is apparently based partly on the liquid-drop model. The 
key reference is Vandenbosch and Seaborg.3  The first part of this paper is an 
attempt to obtain a global equation for fission barrier heights and, hence, for fission 
“activation” energies. It bases quantitative estimates of barrier height on the papers 
of Frankel and Metropolis8  and Seaborg.9  The second part of the paper is 
concerned with obtaining average† values of the neutron width to fission width 
ratio at high excitation energies from (α,4n) reactions and is irrelevant to the 
problem of barrier heights. In the addendum to this report all the references given 
in Ref. 3 are surveyed and the relevance of each to the barrier height problem is 
noted. 
 
The Frankel and Metropolis paper8  gives liquid-drop model computations of 
barrier height and also calculates the quantal penetrability, using hydrodynamical 
estimates of the inertial tensor based on irrotational flow, for deforming through 
the barrier for a range of excitation energies. The calculations were done for the 
normalized fissility parameter x = 0.74 (appropriate for 238U). From these they 
obtain a formula for the dependence of spontaneous fission half-life on the 
difference between barrier height V and excitation energy E: 
 

τSF = 3×10-29×107.85(V - E) yr  =  10-21×107.85(V - E) sec                     (4) 
 

Seaborg9  builds on an earlier paper (Ref. 10) to obtain an empirical dependence of 
τSF on Z2/A: 
 

Log10 τSF (in yr) = 149.5 - 3.75 (Z2/A)                                 (5) 
 
It has to be observed that this relationship applies only to even-even nuclides. 
Hindrance factors on the order of 103 to 105 apply to nuclides with odd numbers of 
nucleons. Seaborg's formula9  for spontaneous fission dependence on Z2/A was 

                                                 
*  A French word meaning “mountain pass”. 
†  In this discussion, “average” means the average value over all the resonances within a given energy interval. 
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obtained from the very limited and not very accurate data available 50 years ago. 
The greatly improved data base available today (see Ref. 11 and Figure 2) shows 
that (1) the values of the coefficients he obtained for Eq. 5 were somewhat 
ambiguous, because no unique straight line can be drawn through the data of 
Figure 2, and (2) the clusters of data for sets of isotopes of the same element shows 
that parameters other than Z2/A are very important. Data points in Figure 2 can 
deviate as much as 15 orders of magnitude from Eq. 5. Much of this was 
recognized already in Ref. 3 but no changes were made to Eq. 5 in using it for 
deduction of fission activation energies. 
 
By matching Eq. 5 to Eq. 4, Seaborg obtains an estimate for barrier height based 
on Z2/A: 

 
 (22.7 - 0.477 Z2/A)   MeV                                            (6) 

 
Seaborg then remarks that Eq. 4 from Ref. 9 only applies to 238U. Extension to 
other values of Z2/A leads to a more complicated expression. This is reasonable 
because we can expect the barrier “thickness” to depend on Z2/A, but it is puzzling 
to know from where the results for other values of Z2/A came. Frankel and 
Metropolis only made calculations for 238U. But, no matter how the “extension to 
other values of Z2/A” was obtained, his final expression for VF is 

 
 (19 - 0.36 Z2/A)   MeV                                             (7) 

 
This is compared with the Frankel and Metropolis' calculated liquid-drop barrier 
heights in Figure 3. Vandenbosch and Seaborg3  add a final adjustment δ for the 
even-odd character of the nucleus. This is to bring the spontaneous fission half-
lives of odd-neutron, odd-proton, and odd-odd nuclides into line with the 
relationship to barrier height. They find that δ = 0.4 MeV for the odd-mass 
nuclides and δ = 0.7 MeV for the odd-odd nuclides. The final formula for barrier 
height is 
 

VF = 19 - 0.36 Z2/A + δ    MeV                                     (8) 
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Figure 2.   Most recent compilation of data on spontaneous fission half-lives of even-even 

nuclei in the ground state. Note: This data is taken from Ref. 11. The dashed red 
line is Seaborg's relation (Ref. 9). The author is indebted to John A. Miller of HSR-6, 
Los Alamos National Laboratory, for the construction of this graph. 
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We notice in Figure 3 that Eq. 7 (for even nuclides) from Ref. 9 is very different 
from the values of barrier height calculated by Frankel and Metropolis from the 
liquid-drop model. They only agree in the region of uranium (Z2/A ≈ 36), where 
they have been stitched together to obtain Eq. 7.  Eq. 6 gives results for the barrier 
height that differ from Eq. 7 by deficits ranging from 0.35 MeV (226Ra) to 
0.85 MeV (242Cm). The deficit is 0.45 MeV for 238U. However, this adjustment is 
necessary in order to obtain better agreement between Eq. 4 and the observed 
spontaneous fission half-life of 238U. 
  

 
Figure 3.  Comparison of Frankel and Metropolis liquid-drop calculations of fission barrier 

height with Vandenbosch and Seaborg's formula. Note: The indicated curve and 
symbols were extracted from data in Ref. 8. The V & S formula is from Ref. 3. 
 

All this can be summarized by stating that Eq. 8 is an empirical deduction of 
barrier heights from spontaneous fission half-lives using a liquid-drop model 
calculation of barrier penetration. The latter has been calculated for the nucleus 
238U (Z2/A = 35.56). There is no theoretical reason given in Ref. 3 or Ref. 9 for 
assuming that this penetrability factor is valid over a wide range of nuclides. The 
very fact that the liquid-drop model barriers differ so much from the empirical 
values demonstrates that the liquid-drop model cannot be used to support this 
assumption. 
  
The fission half-life at the energy of the barrier is stated in Ref. 3 to be about 
10-21 sec (see also Eq. 4). The “activation energy” is defined as the energy at which 
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the fission half-life equals the compound nucleus radiation decay half-life 
(10-14 sec). This is obtained from the barrier height by increasing the barrier half-
life by the barrier penetration factor of Frankel and Metropolis, Eq. 4. The 107 
increase required is equivalent to a reduction of 0.9 MeV below the fission barrier 
(see also Ref. 3). Thus, the fission “activation energy” is given by  

 
EA = VF  - 0.9  MeV                                                 (9) 

 
According to Ref. 3, the difference between this and the neutron separation energy* 
appears to correlate well with “slow neutron fissionability,” namely, that the 
thermal neutron fission cross section (σth,F ) is greater than one barn. However, this 
definition is rather arbitrary. For criticality purposes, a better choice might have 
been that the ratio of the thermal fission and capture cross sections (σth,F / σth,γ ) is 
greater than one.  
 
An inconsistency in the procedure of the last paragraph derives from the statement 
that the fission half-life at the barrier is 10-21 sec. This is only true in the very 
general sense of unspecified decay of an excitation mode of very simple character 
(e.g., a pure vibrational mode or an independent particle state). Such modes have 
spacing on the order 1 to 10 MeV. The compound nucleus states that we are 
actually discussing here, and which have the radiation decay half-life of order 
10-14 sec, have spacing on the order of 10 to 100 eV. This reduces the unhindered 
fission life from 10-21 sec to about 10-16 sec and consequently raises the fission 
activation energy on the above definition by about 0.6 MeV. This destroys much of 
the correlation with slow neutron fissionability reported in Ref. 3. 
 
All of the above shows that the Vandenbosch and Seaborg formula is really 
empiricism and not the liquid-drop model, even though it contains Z2/A, the 
variable that occurs in the liquid-drop model expression for the normalized fissility 
parameter, Eq. 2. Obtaining these global estimates of barrier heights was very 
important in the 1950s but they have now been superseded by the huge amount of 
knowledge on fission that has been gained since then. It is interesting to note that 
Ref. 3 is not mentioned at all in Vandenbosch and Huizenga's 1973 book on 
Nuclear Fission.12  
 

                                                 
*  The neutron separation energy is the same as the binding energy of the last neutron in the nucleus. 
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So what changed between 1958 and 1973?  
 
In fact there was a whole new set of startling phenomena observed in fission and a 
whole new platform was added to our theoretical understanding of the fission 
process. 
 
Before describing these, we must go back in time and say something about relevant 
developments in nuclear structure modeling before 1958, which were not 
considered in the Vandenbosch and Seaborg paper. 
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IV. Developments in Nuclear Structure Theory (pre-1958) 
 

1.  The shell model 
 

This is based on the observation that “magic number” nuclei are especially 
stable (the binding energy is greater than the liquid-drop estimate — see 
Figure 4). The level spectra of near magic number nuclei are explained as level 
energies of single particles (neutrons or protons) in a spherical potential well 
with spin-orbit coupling. See Figure 5. 
 

2.  The spherical shell model breaks down away from magic numbers. 
  

Broad groups of nuclei, especially the rare earths and actinides, are found to 
have large quadrupole moments, thus indicating that they have a stable 
deformed shape. 

 
3. The even-even members of these large groups were found to exhibit 

collective behavior. 
 

Their level spectra were interpreted by Bohr and Mottelson13  as carrying quanta 
of vibrational and/or rotational energy. Later, the more complex spectra of non 
even-even nuclei were found to have these features as well. 

 
4.  Extension of shell model type spectroscopy to deformed nuclei. 
 

The energy levels of neutrons and protons are calculated as those of particles in 
a deformed potential well (Nilsson diagrams), Figures 6 and 7. These explained 
the spins and parities of ground states and (including rotational and vibrational 
bands) low-lying excited states. In Figures 6 and 7, the origin of the abscissa 
corresponds to the sphere and the ordinate shows the large energy gaps that 
appear in Figure 5. Each of the levels of the sphere is actually a degenerate 
subset. As elongation sets in, this degeneracy is broken and the spreading 
pattern of the Nilsson diagram appears. 
 
Two of the principal quantum numbers are parity and projection of the particle 
spin on the cylindrical symmetry axis of the deformed nucleus.  
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5.  Pairing energy phenomena 
 

a) Even-even (e-e), even-odd (e-o)/odd-even (o-e), and odd-odd (o-o) 
discontinuities in binding energy. The binding energy of the “last” neutron 
is greatest for an e-e nucleus and smallest for an o-o nucleus. Therefore, e-e 
is the most stable, o-o the least. 

 
b) “Energy gap” in level spectra of e-e nuclei. This is a region in which only 

collective levels occur. In e-o/o-e nuclei this region contains only single-
particle levels (spacing ∼ 100 to 200 keV) with associated rotational bands. 
There is a much greater density in o-o nuclei (single-neutron + single-proton 
levels). This leads to the concept of paired particles occupying the same 
orbit, but with opposite spin, having correlated motion and attractive forces 
thus giving extra binding energy. A particle that is not bound in this 
correlated motion is known as a quasi-particle. 
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Figure 4.   Experimental and theoretical nuclear binding energy per nucleon as a function 
of mass number showing magic number effects.  Note: This is Fig. 2-4 of Ref. 13. 
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Figure 5.   Single-particle energy levels in a nuclear potential well with spin-orbit coupling. 
Note: This clearly shows energy gaps corresponding to filling with a magic number of 
particles. This figure is taken from Ref. 14. 
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Figure 6.  Nilsson single-particle proton energy levels versus elongation in a spheroidal 
nuclear potential well of harmonic oscillator form. Note: Deformation is denoted 
by δosc and energy relative to harmonic oscillator frequency by ε/hω. Note the “magic 
number” gaps at certain non-spherical shapes. Each of the levels is labeled with a 
set of quantum numbers in brackets [ ], the last number being the spin projection on 
the axis of cylindrical symmetry. This figure is taken from Ref. 15. 
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Figure 7.  Same as Figure 6, except that these are neutron orbitals. Note: This is taken from 
Ref. 15. 

 
 



19 

V. Effect of Nuclear Structure on Fission 
 

Application of these ideas to fission led to Aage Bohr's concept of “saddle-point 
channels” (also known as transition states).16  The idea is that part of the nuclear 
excitation energy is tied up as potential energy of elongation towards fission, 
leaving at the saddle point only a relatively small amount to divide between kinetic 
energy of elongation and “internal” excitation of other modes (rotation, vibrations 
in orthogonal modes, quasi-particle excitation, etc.). These excitations will 
manifest themselves as quasi-discrete states, and the nucleus will elongate over the 
barrier in one of these states, which defines a saddle-point channel. For 
comparatively low excitation energy of the compound nucleus, such as in slow 
neutron induced fission, only one or a few of these channels will be important. 

 
In 1956, Aage Bohr16  demonstrated the correctness of the concept by using it to 
explain the angular distribution of the fission products from photo-fission and fast 
neutron-induced fission of e-e nuclides. 

 
The implication is that the transition state spectrum is an important consideration 
in making fission rate estimates. We give here two examples: 

 
a) Specialization energy. 

 
The spin and parity of odd-mass and odd-odd nuclei are significant in 
spontaneous fission. Because Nilsson levels form such a spreading, inter-
weaving pattern with increasing deformation, it is almost certain that quantum 
numbers of the ground state (at normal deformation) will not be replicated by 
the lowest transition state, but by a considerably higher state, thus hindering the 
spontaneous fission decay. See Figure 8. 
 

b) Effect of spin and parity on slow neutron induced fission. Here are two 
typical cases: 

 
(1)  233U. This has spin and parity Iπ = 5/2+, which means that the absorption of 

a slow neutron gives a compound nucleus 234U with total angular 
momentum and parity Jπ = 2+ (weight 5/12) and 3+ (weight 7/12). Both 
these occur as collective transition states in the energy gap of the transition 
state spectrum at the saddle point and well below the neutron separation 
energy. 
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Figure 8.  Specialization energy at the fission barrier of an odd-mass nucleus compared to 
an even mass nucleus. Note: Compared to the barrier of an even nucleus (with spin 
zero), an odd-A shape isomer sees an increased barrier because (a) the inertia may 
increase to decrease the hω value, (b) the pairing gap ∆ may be larger at the barrier 
by an amount S∆, compared to the minimum, and (c) the lowest-lying transition state 
with (I,K)π value equal to that of the isomeric state may lie an amount Ss above the 
lowest transition state. This figure is taken from Ref. 17. 

 
(2)  237U. This has Iπ = 1/2+, leading to a compound nucleus 238U with Jπ = 0+ 

(weight 1/4) and 1+ (weight 3/4). The 0+ transition state is of course the 
lowest, so the 0+ resonances have large fission widths on average. However, 
the 1+ transition state is either a 2 quasi-particle state above the energy gap 
or a high-energy combination of two odd-parity vibrations also above the 
energy gap. These transition states are higher than the neutron separation 
energy. Hence, these higher-weighted resonances have much smaller fission 
widths. The average* fission cross section is much lower for 237U than for 
233U (compare Figures 9 and 10 and Figures 39 and 40). 

                                                 
* In this discussion, “average” means the average value over all the resonances within a given energy interval. 
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(1)   233U – Iπ = 5/2+, Compound nucleus — Jπ = 2+ (wgt 5/12) and 
3+ (wgt 7/12) 

 

 
 

Figure 9.  Saddle points for slow neutron induced fission of 233U. 
 
 
(2)   237U – Iπ = 1/2+, Compound nucleus — Jπ = 0+ (wgt 1/4) and 

1+ (wgt 3/4) 
 

 
 

Figure 10.  Saddle points for slow neutron induced fission of 237U. 
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VI. Developments in Fission Physics post-1958 
 

In the discussion above, we already have seen dependence on nuclear properties 
other than Z2/A. Now we turn to the developments between Vandenbosch and 
Seaborg3  in 1958 and the end of the 1960s. 

 
A) Experimental 

 
1) Spontaneously fissioning isomers (first discovered by Flerov and 

Polikanov18) 
 

First let us say something about normal isomers, which are excited states 
with very long half-lives. These had long been known and were of course 
well understood. They are generally characterized by some form of 
electromagnetic decay, normally of very high multipolarity because the 
relevant spin quantum numbers are very different from those of any lower 
state. Usually these isomers are less than 1 MeV in excitation energy. 

 
Spontaneously fissioning isomers decay predominantly by fission (vs. 
electromagnetic decay). Their half-lives are in the range µs to ms, implying 
that they lie ∼ 3 MeV above ground state (cf. ground states ∼ 1010 yr). 
Experiments on the rate of formation of spontaneously fissioning isomers as 
a function of projectile energy confirm this magnitude of excitation energy 
and also demonstrate that these isomers do not have particularly high spin. 

 
2)  Intermediate structure in neutron cross sections 

 
This is best exemplified by the slow neutron cross section of 240Pu. At very 
low neutron energies the fission cross section is very small. The thermal 
value is only 56 mb (capture is 290 b) and the fission width of the enormous 
1.06 eV resonance is only 6 µeV whereas the capture width is 32 meV. In 
the upper part of Figure 11, we see the total cross section from about 500 eV 
to about 3 keV.19  There are many resonances (spacing about 20 eV) 
observable over the whole range. By contrast, significant fission cross 
section only occurs in very narrow, widely spaced groups of these 
resonances.20 
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Figure 11.  Comparison of 240Pu resonances in the total cross section and the fission cross 
section. Note: The total cross section is from Ref. 19 and the fission cross section is from 
Ref. 20. 
 
B)  Theoretical (pioneered by Strutinsky21,22) 

 
Nilsson diagrams had already been used to explain deformed shape stability of 
far-from-magic-number nuclei. The procedure is to fill levels up to the total 
number of nucleons, sum energies of the occupied levels, and obtain a plot as a 
function of deformation. Then, the minimum of the summed energy is the 
stable deformation. 

 
This runs into difficulties when pushed to much higher deformation. 

 
Strutinsky's idea:  Subtract from the above sum a similarly calculated sum over 
energy levels spread out by a broad averaging function (with width on the 
order of the energy gap between major shells). The result is the Shell 
Correction (SC). Then replace the sum over spread levels with the Liquid-Drop 
Energy (LDE) for that deformation. 
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Thus, the total energy of the nucleus at a given deformation is the sum of 

 
LDE  +  SC 

 
A typical result of such a calculation in the actinide region for the shell 
correction is shown in Figure 12. The abscissa is a measure of elongation. The 
oscillating structure of the shell correction indicates that magic number effects 
are not confined to spherical nuclei. This is already shown qualitatively by the 
energy levels of the deformed harmonic oscillator (Figure 13), which show 
shell gaps at certain important axis ratios. Superposition of this shell correction 
on the liquid-drop energy gives (for actinides) the sort of result shown 
schematically in Figure 14. 
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Figure 12.  The dependence of the Strutinsky shell correction on elongation of the nucleus 

and examples of the nuclear shapes considered in these calculations. Note: The 
shell correction is the upper part which is Fig. 6 of Ref. 23 and the lower part shows 
examples of the nuclear shapes (from Ref. 24). 
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Figure 13.  Energy levels of a harmonic oscillator potential for prolate spheroidal 
deformations. Note: The particle numbers of the closed shells are indicated for a 
sphere and a spheroid whose major axis is twice its minor axis. This is taken from 
Ref. 25. 
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Figure 14.  Schematic diagram of the total nuclear deformation energy along the fission 
path for a nucleus in the actinide region. Note: Shell effects are built on the 
underlying liquid-drop (or droplet) reference energy. This is from Ref. 17. 
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VII. The Double-Humped Fission Barrier 
 

The new potential energy curve as a function of deformation immediately affords 
an explanation of spontaneous fission and intermediate structure (Figure 15). 
 

 

Figure 15.  Illustration of the types of levels associated with the double-humped barrier and 
meta-stable shape of an actinide nucleus. Note: The lowest states shown above 
the well II use spectroscopic data from Ref. 26. In addition to prompt fission 
through the intermediate structure (class-II) levels, note the possibility of delayed 
fission following electromagnetic transitions from the highly excited states down to 
the shape isomer in the secondary well. 

 
The spontaneously fissioning isomer is the lowest state in the “secondary 
minimum” of the new potential curve. This secondary well hosts a whole array of 
increasingly complex states. Just above the neutron separation energy they are the 
“class-II states” that lie at the center of the intermediate fission resonance groups 
found in the cross sections of nuclei like 240Pu. These are much more widely 
spaced than the normal fine-structure resonances, which are “class-I” states in the 
primary well, because so much of their energy is tied up in the potential difference 
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between the secondary and primary wells. The class-II states can fission because of 
their proximity to the outer barrier (“barrier B”). The fine-structure resonances can 
only fission by coupling through the inner barrier (A) to an energetically close 
class-II state. 
 
We also see an explanation of the Z2/A dependence of gross fission barrier height, 
which has been shown to be much shallower than the LD model would predict (see 
Figure 24). The shell correction depends qualitatively on long-range changes in 
both neutron and proton numbers unrelated to Z2/A, which governs the liquid-drop 
saddle-point deformation and barrier height. Thus, with increasing Z2/A, the 
dwindling liquid-drop barrier height is increasingly reinforced by the first shell-
correction maximum that constitutes the inner barrier (A). At low Z2/A the outer 
barrier (B) is the higher, and at high Z2/A the inner barrier (A) is dominant 
(Figures 16 and 17). 
 
We now discuss the modifications to the fission reaction rate due to the double-
humped barrier. The transmission coefficient, T, for a quantal system to cross a 
barrier is equal to the number of states, N, of intrinsic excitation available to it at 
the barrier (Bohr and Wheeler7) — see Figure 18: 
 

TC = 2πΓC  / D = NC = ∫ dE'ρ (E' - EF)                         (10) 
 
Here, ΓC is the width for crossing the barrier, D is the level spacing (at its 
equilibrium deformation), and ρ is the 'intrinsic' level density at the barrier 
deformation as a function of excitation energy above the barrier. The integration is 
from the barrier energy EF to the available excitation energy E. This formula was 
later generalized by Hill and Wheeler27  to include barrier tunneling: 
 

TC = 2πΓC  /D = NC,eff = ∫ dE'ρ(E' - EF) {1 + exp[-2π(E - E') / hωC ] }-1  ,     (11) 
 
which introduces a tunneling parameter hωC that depends on the barrier 
penetrability. Following Aage Bohr's introduction of the concept of fission 
channels (i.e., individual transition states),16  the integral in this expression can be 
replaced by a sum over transition states. 
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Figure 16.  Energy versus deformation for low Z2/A actinide nuclides. 

 
 
 

 
Figure 17.  Energy versus deformation for high Z2/A actinide nuclides. Note: The 

deformation and energy of the liquid-drop saddle point decreases with increasing 
Z2/A and since the shell-correction energy is relatively shape independent, the 
barrier height of the outer hump is reduced. 
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Figure 18.  Energetically available 'intrinsic' states at the saddle point used in the Bohr-

Wheeler computation of the single barrier transmission coefficient. Note: This is 
adapted from Fig. 3 of Ref. 7. 

 
When there are two barriers to be traversed, the simple statistical model for the 
overall transition probability breaks this down into two stages (see Figure 19). 
First, there is the transmission coefficient, TA, for crossing the inner barrier A, 
whereupon the system equilibrates into a super-deformed compound nucleus 
(highly excited class-II states). This compound nucleus with meta-stable 
deformation can either cross the inner barrier again or cross the outer barrier B to 
fission for which the transmission coefficient is TB . The probability for the latter is 
TB  / (TA + TB ). Thus, the overall transmission coefficient for fission is:28 
 

TF = TA TB  / (TA + TB )                                          (12) 
 
This expression is valid when the available excitation energy is much greater than 
either or both of the barrier energies (i.e., NA,B,eff  >> 1). The transmission 
coefficient of Eq. 10 is used directly in calculations of average fission cross 
sections at neutron energies of a few keV and higher: 
 

σ f = (π / k2) Tn TF  / T = (2π2/ k2 ) (Γn /D) (ΓF  / Γ )                    (13) 
 
Here k is the neutron wave number, T is the total transmission coefficient, and Γ is 
the average total resonance width. 
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Figure 19.  Schematic of the double-humped fission barrier. Note: This illustrates the ways 

the compound nucleus states can make transitions across the barriers resulting in 
the overall transition coefficient for fission, TF . 

 
At energies close to or near the barriers, this statistical approach breaks down. The 
reason is that the fission strength is clustered into the intermediate resonances. The 
widths of these are governed by the coupling of class-I (fine structure) states to the 
class-II states, which is attenuated by tunneling through the inner barrier, and the 
fission widths of the class-II states, which are attenuated by tunneling through the 
outer barrier. The clustering of fission strength causes a lower average fission cross 
section than the value that would be obtained if the fission strength were spread 
uniformly over the fine-structure resonances. The effect is shown in Figure 20 for a 
case in which the inner and outer barriers are of equal height. The important curves 
to compare in this diagram are the curve marked SP, which is the fission 
probability deduced from the statistical model of Eq. 12, and the curve marked IP, 
which takes into account the intermediate structure. In these contexts the letter P 
indicates prompt fission, meaning that the class-II state decays directly by fission. 
The other possibility is that the class-II state decays by radiation to lower states in 
the secondary well. After cascading to the shape isomer, delayed fission from this 
state can occur. This is denoted by D in Figure 20 and is calculated by assuming 
that the branching ratio for fission from the shape isomer is unity. The other 
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possibility is that it decays radiatively to lower states in the primary well, 
cascading eventually to the ground state. 
 

 

Figure 20.  Probability of fission decay of an even compound nucleus with equal barrier 
heights lying below the neutron separation energy. Note: This is adapted from 
Ref. 17. The fission probabilities are calculated under various assumptions. The 
curve marked SP is the simple formula based on the assumption that the 
intermediate structure resonances are completely washed out. The curve IP takes 
into account the intermediate structure in the fission cross section in a simple way. 
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VIII. Other Data Available on Fission Barriers of Actinide Nuclides 
 
Apart from (n,f) data there are data from fission of nuclides that are reached via 
particle transfer reactions, such as (3He,d,f),* (d,p,f), (t,p,f), etc. These reactions 
and the photo-fission reaction can give information on fission probability at 
excitation energies well below the neutron separation energy and thus give 
valuable information on fission barrier parameters of fissile nuclides as well as on 
nuclides for which samples for (n,f) measurements are not readily available. Some 
examples of this kind of data are shown in Figure 21. 
 

 
Figure 21.  Fission probabilities as a function of excitation energy in the compound nucleus. 

Note: The neutron separation energy is denoted Bn. These probabilities were 
measured by particle transfer reactions followed by fission and competing 
processes. Taken from Ref. 29. 

 
It is possible to analyze data of all these kinds to obtain barrier parameters for a 
wide range of nuclides. Three different ways of plotting the results are shown in 
Figures 22 to 24. The outer barrier height is shown as a function of neutron number 
in Figure 22. Although dependent on neutron number for a given proton number, 
the main characteristic is a strong downward dependence on proton number. In 
Figure 23 the dependence of the inner barrier height on Z2/A is shown. Here, 
neutron effects are apparent but there is no strong dependence on proton number. 
In Figure 24 the inner barrier is plotted as a function of Z2/A relative to the energy 
of a liquid-drop sphere. It can be seen that the difference between the inner barrier 

                                                 
*  In this nomenclature, a helium-3 nucleus is absorbed, a deuterium nucleus is emitted, and the resulting nuclide 

fissions.  For the other reactions,  p means a proton and t means a tritium nucleus. 
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and the ground state energy (the lower set of points) falls relatively gently, while 
the liquid-drop saddle-point energy falls rapidly. It is also clear that the inner 
barrier, which is normally the dominant barrier, falls much less rapidly with 
increasing neutron number than does the neutron separation energy. This leads to a 
breakdown of the even-odd parameter as a reliable indicator of fissionability. 
 

 
 

Figure 22.  Outer barrier heights as a function of Z2/A and deduced from a variety of 
fission-inducing reactions. Note: This is adapted from Ref. 17. Open symbols 
denote e-e nuclides, crossed symbols denote e-o or o-e, and black symbols 
denote o-o. 
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Figure 23.  Inner barrier heights as a function of Z2/A. Note: This is taken from Ref. 17. 

Open symbols denote e-e nuclides, crossed symbols denote e-o or o-e, and black 
symbols denote o-o. 
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Figure 24.  Experimental binding energies for the ground states and for the inner barrier 

plotted relative to the spherical liquid-drop energy (1967) as a function of Z2/A. 
Note: This is taken from Ref. 17. The ground state is denoted by an open symbol 
and the inner barrier is denoted by a filled symbol. Even-Z elements are 
represented by circles, odd-Z elements by triangles. Also shown are the liquid-drop 
deformation energies for two fixed deformations corresponding to the ground-state 
shapes and inner barrier shapes, and the energy of the (variable) saddle-point 
shape. 
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IX.  Multidimensional Aspects of the Fission Barrier 
 
So far we have been discussing the fission barrier as if there were only one 
significant parameter, the elongation variable. But there are other very significant 
parameters in the Potential Energy vs. deformation landscape. 
 
Examples: 
 
1.   The mass asymmetry variable. 
 

This is in fact very important for the main actinides in reducing the height of the 
outer barrier (by a few MeV). See Figures 25 and 26. Figure 25 shows the 
deformation energy (liquid-drop and with shell correction) for elongation 
constrained to mass symmetry, while Figure 26 shows the deformation energy 
at the outer saddle point as a function of mass asymmetry. The reduction in 
energy at smaller deformations is insignificant. 
 

 
 
Figure 25.  The nuclear energy calculated as a function of prolate deformation for axial and 

reflection symmetric shapes for 240Pu using Strutinsky’s prescription. Note: This 
is adapted from Fig. 9 of Ref. 17. Arrows on the outer barrier B shows lowering of 
the barrier calculated from reflection asymmetric deformations. 
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Figure 26.  The energy as a function of mass asymmetry for a fixed deformation at the 
outer barrier. Note: This is adapted from Fig. 9 of Ref. 17. The dashed line 
indicates the liquid-drop deformation energy. 

 
The mass asymmetry effect is even more significant for the thorium nuclides 
because it creates a shallow tertiary well within the outer barrier (Figure 27).30 
This causes a second class of intermediate structure. These tertiary intermediate 
states are often very simple in nature (e.g., a rotational band built on a single 
quasi-particle mode). The nature of the coupling and resulting fission cross 
section is shown schematically in Figures 28 to 30. The fission cross section of 
230Th from 0.6 to 1.5 MeV is shown in Figure 31. The resonance-like structure 
near 700 keV is not, of course, a fine-structure resonance like those found in 
slow neutron cross sections. A higher resolution view of it is shown in 
Figure 32. The substructures apparent within it are individual tertiary-well 
states, each with separate spin and parity quantum numbers, as revealed by the 
fission product angular distribution. The intermediate (class-II) and fine (class-
I) structure shown in the schematic of Figure 29 are on too small an energy 
scale to be revealed by the resolution in Figure 31. In fact the tertiary-well 
states form two very close vibration-rotation bands, the vibrations being the 
zero-point motion and first phonon of a tunneling mode through the potential 
hill separating the two mass-asymmetric valleys shown in Figure 26. 
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Figure 27.  The mass-asymmetric outer fission barrier for 234Th calculated at zero angular 

momentum in a deformed oscillator model. Note: This is taken from Ref. 30. The 
potential energy surface is shown as a function of elongation and asymmetry. 

 
 
 

 
Figure 28.  Schematic illustration of the relative density of states in the primary, secondary, 

and tertiary wells of a triple-humped barrier. 
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Figure 29.  Schematic illustration of the substructure in the fine (Class I), intermediate 
(Class II), and tertiary (Class III) wells of a triple-humped barrier. Note: This is 
adapted from Fig. 25 of Ref. 31. 

 
 
 
 
 
 
 
 

 
 

Figure 30.  Schematic illustration of the fission cross section of Th nuclides. Note: This is 
adapted from Fig. 25 of Ref. 31. 
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Figure 31.  Fast neutron-induced fission cross section of 230Th versus energy of the 

incoming neutron. Note: The scale of the “resonance” is in tens of keV rather than 
the tens of meV associated with fine-structure resonances. This is taken from 
Ref. 32. 
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Figure 32.  High-energy resolution data for the “resonance” shown in Figure 31. Note: This 

shows how the structure can be explained (with the aid of fission product angular 
distribution data not shown here) into rotational bands, one of which is based on a 
low energy, opposite parity, mass-asymmetry tunneling vibration between the two 
shallow tertiary wells of Figure 27. This is based on Fig. 14 of Ref. 33. 

 
2.   Gamma-asymmetry in the inner barrier 
 

Gamma asymmetry is deformation away from axial symmetry of the deformed 
nucleus. According to theory, it appears to become pronounced in the uranium 
isotopes and above. The difference in energy between a strictly axial elongation 
and one in which axial asymmetry is an allowed degree of freedom is shown for 
the inner barrier in Figure 33. Apart from lowering the inner barrier by a 
significant amount, it has the effect of bringing down a denser and more 
complicated structure of rotational bands. This increases fission width and 
fission cross section above the barrier. Axial symmetry is energetically 
preferred for the outer barrier. 
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Figure 33.  Inner barrier height calculated with and without axial asymmetry, compared to 

the experimental inner barrier heights. Note: This is taken from Fig. 6 of Ref. 34. 
The filled squares are experimental values for the gross barrier height, which is 
usually the inner barrier for U and higher Z nuclides. 

 
3.    Potential energy surfaces near proton number 100 and neutron 

number 164 
 

Because of the proximity of particularly strong magic numbers at large 
deformations, the potential energy surfaces of fissioning nuclei approaching the 
mass number 264 can be especially complex. The significance of Z = 100 and 
N  = 164 is that these together form two doubly magic 132Sn nuclei, which are 
spherical nuclei with very strong binding. Hence there is a very strong tendency 
for the parent nucleus, as it becomes sufficiently elongated, to divide nearly 
symmetrically into spherical fragments. In this case, because there is so little 
energy of the original nucleus tied up in deformation of the fragments, the 
fission products have high kinetic energy. However, at a much earlier stage of 
elongation, it is still possible for the nucleus to follow a more traditional path 
akin to that of the lower actinides. In this case the resulting fragments show 
asymmetric division, are highly deformed and have much lower kinetic energy. 
Calculations of the potential energy surface (Ref. 35) show that the situation is 
even more complicated than this.  
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    Figure 34.  Calculated potential energy surface for 258Fm. Note: This is taken from Ref. 35. 

 
The plot of potential energy contours in the plane of the two variables, fragment 
deformation and distance between the mass centers of the two incipient 
fragments (elongation), is shown in Figure 34 for 258Fm. The valleys leading 
from the deepest potential hole (the ground state) in the direction of increasing 
elongation are shown by red, green, and blue curves. A single valley (red curve) 
starts from the ground state and then branches at a secondary minimum. The 
upper branch in the diagram (red curve) moves in the direction of increasing 
fragment deformation. This may be termed the “traditional” path towards 
fission. The other branch (green curve) proceeds towards greater elongation 
before it again branches in front of a small potential hill.  This hill (located at 
the coordinate x = 1.6, y = 0.75) separates two saddle points that lead to two 
well-separated valleys descending to separate scission points. One of these 
rejoins the final descent of the “traditional” path that results in very deformed 
fragments. The other leads to a scission point where the fragments are nearly 
spherical.  
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Calculations that included a third variable, the mass-asymmetry coordinate, 
were made for the shaded area of Figure 34. These show that when the potential 
energy is minimized for mass asymmetry, the saddle points for the green and 
blue curves have very similar heights. Furthermore, the deformed fragment path 
(green) is mass asymmetric, while the blue path is mass symmetric. These 
features of the potential energy surface explain why mass-symmetric and mass-
asymmetric fission of 258Fm have comparable yields.35 

 
In Ref. 35, the behavior of the inertial parameter of the deforming nucleus is 
also studied. Because of the orbital motion of the individual nucleons and its 
continual rearrangement as the nucleus deforms, the inertia is much greater than 
that of irrotational hydrodynamic flow at small elongations. Some of this 
difference is maintained at greater deformations along the “traditional” path, but 
not on the new path towards spherical fragments. Guided by these 
considerations on the inertial parameter, Moller et al.35  made estimates of the 
spontaneous fission half-lives of the isotopes of Fm and other heavy elements. 
These reproduce the neutron dependence with its strong maximum (so very 
different from the linear Z2/A relation) that is such a notable feature of Figure 2. 
 
Some examples of these calculations and comparisons with experimental 
spontaneous fission half-lives are shown in Figures 35 to 37. The calculated and 
experimental half-lives are shown for Cf, Fm, and No isotopes as a function of 
Z2/A. Although there are differences of up to 5 or more orders of magnitude in 
absolute values between theory and experiment (which may be due to error in 
the calculated ground state energies), the trends of the data are well reproduced 
by the new theory that takes shell effects fully into account right up to the 
scission point. The plot against Z2/A reveals the dramatic effect that the neutron 
number has on spontaneous fission half-lives (as well as on the other fission 
properties we have mentioned above). Above N = 158 a new valley to the 
scission point is opened up by the proximity of the 132Sn fission product and this 
new valley lowers the half-life dramatically. The valley leading to the more 
conventional asymmetric mass division of the actinides gives half-lives 11 to 13 
orders of magnitude greater than those of the new valley at the scission point 
magic number of 164 neutrons. 
 
With modern super-computer capabilities, even more comprehensive searches 
of the nuclear energy vs. deformation surface are being explored.36,37 
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Figure 35.  Experimental vs. calculated fission half-lives for Cf. Note: This is taken from 

Ref. 35. 
 

 

Figure 36.  Experimental vs. calculated fission half-lives for Fm. Note: This is taken from 
Ref. 35. 
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Figure 37.  Experimental vs. calculated fission half-lives for No. Note: This is taken from 
Ref. 35. 

 
 



50 

 
 



51 

X. Calculation Capability 
 
With barrier parameters that result from analysis of all available cross-section data 
(as shown in previous diagrams) and with theoretical construction of transition 
state spectra at the barriers, it is possible to calculate barrier transmission 
coefficients, or the equivalent mean barrier widths. Hence from nuclear reaction 
theory we can calculate average fission cross sections with a fair degree of 
confidence. Some examples are shown below. 
 
The first example is the fission cross section of 235U. The 235U (d,p,f)* and 
234U (t,p,f) reactions can be used to excite compound nucleus states of 236U well 
below the neutron separation energy. With barrier heights obtained from the 
analysis of the data from these reactions, we can adjust the transition state spectra 
to fit the fast neutron fission cross section. 235U has a very low energy spin isomer 
at only 78 eV with a half-life of 25 min. Because of the different spins (235U 
ground is Jπ = 7/2-  while the isomer is Jπ = 1/2+ ) a quite different range of spin 
and parity is excited in the compound nucleus especially at low neutron energies. 
Thus, the cross sections shown as ratios of capture cross section to fission cross 
section can be quite different even though the basic barrier heights are the same. 
The comparative cross sections are shown in Figure 38. 
 
The second example is the fission cross section of 233U (Jπ = 5/2+). Using 
essentially the same barrier parameters as 235U, we calculate the cross section 
shown in Figure 39 in comparison with the experimental data. This cross section is 
greater than that of 235U, largely because the neutron separation energy is greater. 
 
In Figure 40 we show the calculated fission cross section of 237U (half-life of 
5 days) together with the very limited and very uncertain data. Like the isomer of 
235U this nucleus has Jπ = 1/2+ . 
 
Finally, in Figure 41, we show the calculated and measured cross sections of 239Pu 
which has Jπ  = 1/2+ . From Figures 22 and 23, the inner barrier is about the same 
as for 235U but the outer barrier is about 0.5 MeV lower.  Also, 239Pu has nearly the 
same neutron separation energy as 235U. Using these parameters, the calculated 
cross section of 239Pu agrees quite well with the data, and we note that because of 
the spin-parity properties, the low energy neutron cross section is somewhat 
suppressed, like 235U (isomer) and 237U compared with 235U (ground) and 233U. 

                                                 
* In this nomenclature, a deuterium nucleus is absorbed, a proton is emitted, and the resulting nuclide fissions. 
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Figure 38.  Ratio of capture to fission cross sections calculated for the 235U ground state and 

for its isomer. Note: This is Fig. 8 of Ref. 38. 
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Figure 39.  Calculated fission cross section of 233U compared with experimental data. Note: 

This is adapted from Ref. 38. 
 

 
Figure 40.  Calculated fission cross section of 237U compared with experimental data. Note: 

This is adapted from Ref. 38. 
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Figure 41.  Calculated fission cross section of 239Pu compared with experimental data. Note: 

This is from Ref. 38. The upper curve is based on the transition state spectrum 
used for fitting the cross section of 235U. The lower curve employs slightly higher 
energy gaps in this spectrum. 
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XI. Conclusions 
 

1) The dependence of Appendix A on Vandenbosch and Seaborg3  is totally 
outmoded. The model is largely empirical, and when it is not, it is based on 
liquid-drop model concepts that only give global outlines of the fission process.  

 
2) Many of the nuclides listed in Appendix A do not require a theoretical estimate 

of barrier height. Data are available from a wide range of reaction processes 
that can be analyzed to give barrier parameter information. Interpolation or 
extrapolation with the aid of modern fission barrier theory can fill the gaps. 
With modern supercomputers, alternative routes ('saddle points') to fission 
through the multidimensional deformation landscape of the nucleus can be 
explored theoretically. 

 
3) With our current understanding of the compound nucleus (i.e., level densities, 

radiation widths, neutron strength functions, and statistics – “quantum chaos”) 
and the fission process, we can compute average* neutron fission cross sections 
from the keV region upwards. The previous examples of neutron fission cross 
sections calculated using current fission models demonstrate the power of these 
models. We also have the potential to compute (using Monte Carlo techniques) 
the probability of thermal neutron fission cross sections lying within a certain 
range, or, alternatively, the probability of the ratio of thermal to capture cross 
sections lying in a certain range. 

 
4) All of the above theory is continually being improved.  Coupled with the 

available experimental data, we can make confident estimates of fission and 
capture cross sections over a wide range of energies for nearly all of the 
nuclides considered in Appendix A of the Standard that is currently under 
revision. 

                                                 
* In this discussion, “average” means the average value over all the resonances within a given energy interval. 
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Addendum 
 

We list here all the papers referenced in Vandenbosch and Seaborg,3 the key paper 
for Appendix A of the Standard, with brief notes on the information used in Ref. 3. 

 
1. Bohr and Wheeler, Phys. Rev. 56, 426 (1939). Key reference to liquid-drop 

model of fission with emphasis on importance of Z2/A parameter. (This paper 
discusses the barrier height problem.) 

2. Huizenga and Duffield, Phys. Rev. 88, 959 (1952). Inferred in Ref. 3 that Z2/A 
is used to determine relative tendency for thermal-neutron induced fission. It is 
not! Only the neutron binding energy is used here. (This paper discusses the 
barrier height problem.) 

3. Seaborg, Phys. Rev. 88, 1429 (1952). Reference for relationship of 
spontaneous fission half-life to Z2/A used in Ref. 3. (This paper was used to 
calculate barrier heights in Ref. 3). 

4. Huizenga, Argonne National Laboratory Report, ANL-5150 (1953). This draws 
attention to the correlation of fast neutron (3 MeV) fission cross sections to 
Z2/A. This is well-above barrier cross-section data, but is indicative of relative 
barrier height. Not further used in Ref. 3. 

5. Batzel, University of California Radiation Lab. Report UCRL-4303 (1954). 
Similar to (4). Describes application and test with 340 MeV proton spallation 
reactions. 

6. Jackson, Proc. Symp. on Physics of Fission, Chalk River, Report CRP-642-A 
(1956). Similar to (4) and (5). Also describes correlation of fast neutron fission 
cross sections with difference between fission barrier and neutron binding 
energy. 

7. Huizenga, Gindler, and Duffield, Phys. Rev. 95, 1009 (1954). Gives 
photofission yield (relative to 238U) for betatron energies of 17 and 20 MeV 
(maximum photon energies well above fission barrier). Shows empirical 
correlation with Z2/A.  

8. Huizenga, Proc. Int. Conf. on Peaceful Uses of Atomic Energy, vol. 2, p. 208 
(United Nations, New York, 1956). Reparametrizes the Frankel and Metropolis 
formula to reproduce the 238U spontaneous fission half-life. The coefficient for 
dependence on barrier height is assumed constant for all heavy nuclides. (This 
paper discusses the barrier height problem.) 
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9. Glass, Carr, Cobble, and Seaborg, Phys. Rev. 104, 434 (1956). Describes 
spallation-fission competition following bombardment by 20-50 MeV He ions. 
Average neutron width to fission width ratios extracted at high excitation 
energies. 

10. Vandenbosch et al., Phys. Rev. 111, 1358 (1958). Similar to (9). Also 
increasing mass symmetry of fission product distribution observed at higher 
energies. 

11. Vandenbosch, Ph.D. thesis, University of California Radiation Lab. Report 
UCRL-3858 (1957). Adds more detail to (10). 

12. Frankel and Metropolis, Phys. Rev. 72, 914 (1947). Numerical calculations on 
liquid-drop model of fission. Gives barrier heights as function of Z2/A, and 
barrier penetrability as function of excitation energy for case of 238U. Key 
reference for (3) and Ref. 3. (This paper was used to calculate barrier heights in 
Ref. 3). 

13. Swiatecki, Phys. Rev. 101, 97 (1956). Alternative approach, based somewhat 
more securely on liquid-drop model, for obtaining barrier heights from Z2/A. 
Not further referenced or used in Ref. 3. (This paper discusses the barrier 
height problem.) 

14. Seaborg, Phys. Rev. 85, 571 (1958). Draws attention to empirical relationship 
between spontaneous fission half-life and Z2/A. Key reference for (3) and 
Ref. 3. (This paper was used to calculate barrier heights in Ref. 3). 

15. Whitehouse and Galbraith, Nature 169, 494 (1952). Draws attention to 
empirical relationship between spontaneous fission half-life and Z2/A. (This 
paper discusses the barrier height problem.) 

16. Ghiorso et al., Phys. Rev. 87, 163 (1952). Adds extra spontaneous fission half-
lives to data base. Incorporated in Ref. 3. (This paper was used to calculate 
barrier heights in Ref. 3). 

17. Footnote about terminology in relation to (3). 
18. Hughes and Harvey, Neutron Cross Sections, Brookhaven National Laboratory 

Report, BNL-325 (1955). Compilation of cross sections used for construction 
of Table I in Ref. 3. (This paper was used to calculate barrier heights in Ref. 3). 

19. Stokes, Boyer, and Northrop, Bull. Am. Phys. Soc. Ser. II, 2, 207 (1957). 
Reference to brand new experimental method for determining fission 
probability below the neutron binding energy. This has been greatly developed 
since 1957 and some experimental results are shown in section VIII of the 
present report. (This paper discusses the barrier height problem.) 
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20. Stokes, Boyer, and Northrop, private communication. Reports preliminary 
results on 235U which were roughly in agreement with conclusions of Ref. 3. 
Otherwise little impact on conclusions of Ref. 3. (This paper discusses the 
barrier height problem.) 

21. Huizenga, Phys. Rev. 94, 158 (1954). Points out that evidence already exists 
for more complicated dependence of spontaneous fission half-life on Z2/A. This 
fact is not used in Ref. 3. (This paper discusses the barrier height problem.) 

22. Ghiorso, Proc. Int. Conf. on Peaceful Uses of Atomic Energy, vol.7, p.15 
(United Nations, New York, 1956). Notes change in spontaneous fission rate for 
neutron number > 152. (This paper discusses the barrier height problem.) 

23. Swiatecki, Phys. Rev. 100, 937 (1955). Discusses deviations of spontaneous 
fission half-lives from simple Seaborg relationship. Not used in Ref. 3. (This 
paper discusses the barrier height problem.) 

24. Harvey et al., Phys. Rev. 104, 1315 (1956). Discusses experimental techniques 
for (α,4n) reactions. 

25. Appendix II of (9). Deduction of branching ratios in (α,4n) reactions. 

26. John, Phys. Rev. 103, 704 (1956). Information on total cross section for (α,4n) 
reactions. 

27. Fujimoto and Yamaguchi, Prog. Theor. Phys. Japan 5, 76 (1950). Theoretical 
estimation of neutron to fission width ratio at high excitation energies. 

28. Hyde and Seaborg, Handbuch der Physik, Vol. 39. Reference for table of 
neutron binding energies. 

29. Meadows, Phys. Rev. 98, 744 (1955). Discusses level densities in relation to 
(p,α) and other proton reactions. 

30. Lindner and Osborne, Phys. Rev. 102, 378 (1956). Experiments with 340 MeV 
proton spallation reactions. Finds neutron to fission width ratio essentially 
independent of excitation energy. 

31. Allen and Henkel. Review of fast neutron (10 keV to 10 MeV) reactions. Gives 
estimates of neutron to fission width ratio at excitation energies of 10 MeV. 
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