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Abstract 

A SIMPLE, PRACTICAL METHOD FOR CALCULATING INTERACTION. A review is given of a simple 
practical method for computing the interaction within an assemblage of fissile units, each of which would be 
subcritical by itself. The assemblage is not restricted to regular arrays of identical units, but may consist of 
dissimilar, irregularly spaced units, and may be surrounded by or in proximity to a reflector. Several approxi- 
mations are necessarily made, which have been shown to be reasonable. Absolute accuracy is not essential, 
however, because of the large body of data now in existence that provides normalization for the method, Several 
comparisons of the method with experiment are presented. The problem is divided into the calculation of the 
nuclear properties of individual units and the purely geometrical calculation of the interchange of neutrons 
between units, The required nuclear properties can be obtained quite simply from critical experiments performed 
with units composed of the same materials or from calculations normalized to experiment. The calculation of the 
interchange of neutrons between units provides a boundary condition at the surface of a unit that can be expressed 
as the ratio of the neutron current entering the unit to the current leaving the unit, a ratio that depends on 
relative dimensions and spacings of the units and on the albedo of any surrounding reflector. Some of the 
integrals involved in calculating the interchange can be evaluated analytically, and several results of this type 
are presented. Others require numerical evaluation. For the latter integrals and for large arrays computing 
machinery is necessary, but calculations can be made once and for all in the range of interest and curves can 
be plotted which obviate the need for a computer in future calculations, A number of tables are presented from 
which such curves can be constructed. 

INTRODUCTION 

Fissile material encountered in operations performed outside reactors 
usually exist in the form of discrete units. In some cases, for example 
in storage, units may be identical and may be regularly spaced. In other 
cases, for example in a process line, units may have different sizes, shapes 
and compositions, and may be irregularly spaced. In all cases reflectors 
may be actually or potentially present. A survey of normal and credible 
abnormal conditions, such as is required to establish the nuclear safety of an 
operation, therefore generally requires reliable estimates of the interaction 
within groups of units and reflectors. 

The general calculation of interaction is a complicated problem. Any 
exact solution is impracticable without the use of a modern high-speed computer, 
and even then is time-consuming and hence expensive. A few reasonable, 
simplifying approximations can be made, however, which greatly reduce the 
complexity of the problem. Absolute accuracy is not of prime importance 

* Theinformation contained in this article was developed during the course of workunder contract 
AT (07-2) with the USAEC. 
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since, regardless of the complexity of the method, its reliability should be 
established by comparison with experiment, land discrepancies’between 
experiment and calculation can be factored into the calculations as a normali- 
zing parameter. The present paper reviews a simple, practical method 
that has been in use for several years [ 11. Tables are presented, and from 
these curves may be plotted, allowing simple hand calculations to be made 
to estimate the interaction in many cases of practical interest, Numerous 
comparisons are made with experiment to indicate the accuracy that can 
be expected. 

DESCRIPTION OF METHOD 

The problem is divided into: 
(a) The purely geometrical calculation of the probabilities of neutron trans- 

mission from each unit in a group to each of the other units (including 
reflectors); 

(b) The calculation of the “criticality factor” of a unit from a boundary 
condition expressed in terms of the ratio of the neutrons entering the 
unit to the neutrons leaving the unit, as determined by the above 
probabilities. 
This division of the problem can always be made without introducing 

any approximation, but it results in a simplification only if approximations 
are made regarding (1) distribution of neutron current over transmitting and 
receiving surfaces, and (2) angular distribution of neutrons transmitted from 
an element of surface. 

Two approximations made here for performing the geometrical calcu- 
lation of probability of transmission from one unit to another are: 
(i) Transmitted current is treated as though it were uniform over the entire 

surface of a sphere or cylinder and over either of the two principal 
surfaces of a slab. 

(ii)’ The fraction of neutrons transmitted from an element of surface per 
unit solid angle is assumed to be cos e/n, where 8 is the angle between 
the direction of neutron travel and the normal to the element of surface. 
The reasonableness of these approximations has been discussed else- 

where [l]. For a slab and along the length of a cylinder the assumption of 
a uniform current tends to compensate for ignoring the actual skewness of 
the angular distribution, 

Criticality calculations are made in one dimension only, i. e. radial for 
a sphere or cylinder, or perpendicular to the two principal surfaces for a 
slab. If a slab is so oriented that neutrons are transmitted to an end as 
well as to its principal surfaces, the neutrons are treated as though they 
all enter the principal surfaces; neutrons transmitted from the end to other 
units are treated as though they were transmitted from the principal sur- 
faces. Separability is assumed in slabs and cylinders; transmitted and 
received currents are treated as though their distributions were the same 
as the distribution of current transmitted from an isolated unit, i. e. uniform 
for a sphere, proportional to (cos B,z) along the length of a cylinder, and 



SM- ‘lo/30 89 

proportional to (cos B,z)(cos Byy) across the surface of a slab, where 

Bz2 = 7r2 2 lr2 
(H+2Sd2 By = (L+~SL)~’ 

and SH and SL are appropriate extrapolation distances. 
Some care must be exercised in applying these approximations. For 

closely spaced units, the current is clearly greater on portions of surfaces 
facing each other than elsewhere. Conservative approximations (such as 
subdividing units) could be introduced to allow for this effect. There are, 
however, sufficient experimental data now available to permit estimates 
to be made of its magnitude. 

GEOMETRICAL CALCULATION 

On the basis of these approximations, the probability, pjk , that neutrons 
emitted from a surface k reach a surface j, is 

Pjk = 
cos 8j cos ok dAj dAk 

rR2 Ak 0) 

where Ak is the entire area of transmitting surface and dAj cos ej is the 
R2 

element of solid angle subtended by an element of receiving surface dAj, 
at dAk. Integration is carried out over the entire transmitting and receiving 
surfaces. This integral has been evaluated for a number of eases either 
analytically or numerically by quadrature, 

Analytical results [l] 

For two infinitely-long, parallel, rectangular surfaces having height, 
h, and separation, s, 

p =,/m - s/h (2) 

For two parallel coaxial discs having transmitter and receiver radii 
a and b, and separation s, 

p =i { 1 t (b/a)2 t (s/a)2 - ,/[l - (b/a)2 - (~/a)~]~ t 4 (s/a>2} (3) 

For two perpendicular rectangular surfaces having transmitter height 2a, 
and length 2h; having receiver width 2d, and length 2g; having a separation b 
between the lower edge of the transmitter and the plane of the receiver; 
having a separation f between the centres of the transmitter and receiver 
measured in the common direction of 2h and 2g; and having a separation e >I- 
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between the projection of the transmitter on the plane of the receiver and 
the centre of the receiver 

-3 G (z, z’) G (z, z’) H (x,y’) tan 
H (x~Y’) 

+ G(z,z’)~ log G(z,z’)~ + H(x,~‘)~ 
4 G (z,z’)’ 1 

(4) 

where 

G(z,z’)= z+f- z’ 

H(x,y’) = (x+e)2 + (y’+a+b)2 

Summation (with proper regard to sign) is over the 16 terms resulting from 
evaluating this quadruple integral at the limits 

-a and a for y1 
-h and h for z* 
-e (or -d if e >d) and d for x 
-g and g for z 

The probability of neutrons being transmitted from a rectangular surface 
having height 2a, and length 2h, to an identical parallel rectangular surface 
separated from it by a distance 2d, is clearly obtained by subtracting from 
unity twice the sum of the probabilities of reaching perpendicular rectangular 
surfaces, one having a heigth 2a, and a width 2d, and the other a width 2d, 
and a length 2h. For each case Eq. (4) reduces to only three terms. Table I 
gives probabilities for parallel rectangular surfaces as a function of the 
ratio of the shorter to the longer side and of the ratio of the separation to 
the shorter side. 

Evaluation of Eq. (1) by subtracting from unity the probabilities of 
neutrons reaching surfaces other than the receiving surface of interest is 
frequently useful. For example, the probability of transmission from the 
inner surface of a cylinder to itself is obtained by subtracting from unity 
twice the probability of reaching the disc capping either end. From the 
reciprocity inherent in Eq. (l), this latter probability is obtained by sub- 
tracting from unity the probability of transmission from one disc to the 
other and multiplying the result by the ratio of the areas of the disc and 
cylinder. The resulting self-transmission probability for the inner surface of 
a cylinder of height, h, and diameter, d, is 

P =lt$- l+$ 
\i 

(5) 
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TABLE I 

Probability of Transmission, p, Between 
Two Identical Parallel Rectangular Surfaces of 

Height, H, and Length, L, at Separation, S 

p at H/L of 
s/H 1.0 0.8 0.6 0.4 0.2 

0.20 0.6902 0.7151 0.7407 0.7667 0.7932 
0.40 0.4892 0.5230 0.5591 0.5972 0.6367 
0.60 0.3545 0.3896 0.4289 0.4720 0.5182 
0.80 0.2630 0.2958 0.3344 0.3788 0.4282 
1.00 0.1998 0.2291 0.2651 0.3086 0.3592 
1.25 0.1464 0.1709 0.2027 0.2436 0.2939 
1.60 0.0998 0.1187 0.1447 0.1806 0.2288 
2.00 0.0686 0.0527i 0.1031 0.1333 0.1779 
2.50 0.0461 0.0562 0.0714 0.0955 0.1351 
4.00 0.0191 0.0236 0.0309 0.0436 0.0700 
6.25 0.0080 0.0100 0.0132 0.0192 0.0341 

10.00 0.0032 0.0039 0.0052 0.0078 0.0147 

A similar approach can be used when a reflector surrounds an array. 
The probability of reaching the reflector is unity minus the sum of the 
probabilities of reaching other units; the probability of transmission from 
the reflector to the unit is the product of this probability and the ratio of the 
area of the unit to that of the reflector. 

Quadrature results 

For a pair of identical spheres Eq. (1) has been reduced [2] to a double 
integral which has been evaluated by Gaussian quadrature with the results 
given in Table II. For a pair of identical cylinders having height, h; dia- 
meter, d; and axis-to-axis separation, s; a double integral has also been 
obtained, 

tar? 
1 

1 1 

P =- 
27r2 ss 

du dv 
1 -1 ,/4sZ/d2 - (u+v)2 (6) 

which has been evaluated by Gaussian quadrature with the results given in 
Table III. 

TABLE II 

Probability of Transmission, p, 
Between Two Identical Spheres 

TABLE III 

Probability of Transmission, p, 
Between Two Identical Cylinders 

Diameter/Pitch p 
p at Diameter/Height Ratio of: 

Diameter/Pitch 0 0.5 1.0 --___ 
1.0 0.0782 1.0 0.1817 0.1753 0.1692 
0.9 0.0461 0.8 0.1360 0.1193 0.1041 
0.6 0.0247 0.6 0.0987 0.0741 0.0555 
0.4 0.0106 0.4 0 .o646 0.0359 0.0221 
0.2 0.0026 0.2 0.0319 0 .oogo 0.0048 

Approximation 

In cases where evaluations of Eq. (1) are not available, various approxi- 
mations can be made, From symmetry considerations the probability of 
transmission (a) from a sphere to another surface must be at least as great 
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as the fraction of 4r steradians subtended by the other surface at the centre 
of the sphere and (b) from an infinite cylinder, at least as great as the 
fraction of 2n radians subtended at the axis. Spheres can be approximated 
to by cubes and circular cylinders by square parallelepipeds, and Eq. (4) 
can be used to obtain the transmission probabilities, For pairs of identical 
cylinders or spheres at small separations this procedure over-estimates [l] 
the probabilities given in Tables II and III. 

In arrays, nearer neighbours may partially block the path to more 
distant neighbours. Various schemas can be used to estimate the resulting 
reduction in transmission probability. The scheme used here is to extend the 
array conceptually to infinity and to assume no blockage for successively more 
distant neighbours (except for those completely blocked from view) until 
the sum of the probabilities totals unity, after which more distant neighbours 
are assumed to be totally blocked from view. A reduction of the last 
probability incorporated in the sum is generally required to make the sum 
exactly unity. 

CRITICALITY CALCULA,TIONS 

There is no restriction on the number of neutron energy groups that may 
be employed in the calculations. In view of the approximations being made, 
however, use of many groups can hardly be justified. Where reflectors 
that alter the energy spectrum are involved there would be some advantage 
in using at least two groups. In the present treatment a single group is 
used, i, e. the spatial shape of the flux is assumed to be the same for all 
energies. 

The total current Ji- (i.e., the current integrated over the surface) 
received by each surface, i, is given i,n terms of total transmitted currents 
Jj+, and transmission probabilities pij , by 

N 
Ji- = 

Pij Jjt i= l,N (7) 

where N is the number of surfaces involved. (Unless the surface is concave, 
pii is zero. ) 

For a unit to be critical the ratio of Ji- to Jit must have a definite value 
depending on the composition and dimensions of the unit. A reasonable 
approximation (11 is 

J- = -7 J (8) 

where 4 and V$ are the flux and its gradient at the surface and C is the 
transport cross-section. It is convenient to express C in terms of the bare 
extrapolation distance, SO, by making use of the fact that J’ = 0 for an 
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isolated surface and to introduce the critical extrapolation distance, S, to 
obtain a symmetrical expression for pi q Ji- /Jit (where for a sphere S = 
(n/Br) - R, for a cylinder S = (2.4048/Br)- R, and for a slab S1 = (n/Bx)- T- 532, 
and where R is the critical radius, T the critical slab thickness, and Sz the 
extrapolation distance at the opposite surface. The resulting expressions 
for slab, cylinder, and sphere are: 

Pi = 

Pi = sin Bx(Sl- So) 
sin Bx(Sl+S o) 

Jo(2.4048-BrS) - Jq(2.4048-BrSo) 

Pi = 
JT(2.4048-BrS) J1(2.4048-E&So) 
Jo (2.4048-BrS) Jo (2.4048-Br So) 
J1(2.4048-BrS)’ J1(2.4048-BrSo) 

TIT- BrS a - BrSo 

(94 

1 t (n- BrS)-cot BrS - 1 t (n- BrSb)-cot BrSo 
TT - BrS 1~ - BrSo 

I+ (n-BrS) cot BrS ’ 1 t (a - BrSo) cot BrSo 

(94 

For a slab the pi at its two surfaces are necessarily related so that if 81 
is specified p2 is given by 

I32 = 
sin 2Bx(S-So ) - /3l sin 2BxS 
sin 2BxS - /31 sin 2B,(StSo ) (10) 

where 2$=:- T. 

With the introduction of pi, Equations (7) become 
N 

c 
(pi bij -Pij ) Jjt = 0 i= l,N 

j=l 
(11) 

which are homogeneous in the Jj’ ; hence a solution is obtained by finding 
the appropriate values ofPi that make the determinant of the coefficients 
of the Ji’ zero, When identical units occupy symmetrically equivalent po- 
sitions, their Jit are all equal, as are their Ji-; hence the number of 
equations can be reduced to the number of symmetrically different positions. 
If all units are different, the pi for all units except one can be evaluated 
from their compositions and sizes by Eq. (9) and the value that p must have 
for this unit in order that the group be critical is determined from the re- 
quirement that the determinant be zero. For a group of identical spheres, 
cylinders, or slabs treated as though they are symmetrical by, setting 

P1=P2= 
sin Bx (S-So ) 
sin BX ($ t So )’ 

the pi are all the same; pi is then the maximum 

eigenvalue of the matrix of coefficients. 
By definition, /3i is the albedo that the med$m surrounding a surface 

must have if the unit is to be critical and ai = /3i is the albedo of the surface 
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as determined by the size and composition of the unit. For reflectors the 
appropriate albedo may be difficult to calculate. If, however, the extra- 
polation distance is known when the reflector is in contact with a unit, the 
albedo of the reflector can be obtained from the relation 

Although extrapolation distance is insensitive to the radius of curvature of 
the reflector, the albedo is not, and corrections for changes in curvature 
should be made. Where a reflector surrounds an array, it is simplest to 
assume a flat surface and to use Eqs. (9a) and (12) to determine its albedo. 

TABLE IV 

Average Probability of Transmission, B, 
to Other Spheres in a Bare Cubic Array 

B in a Cubic Array of: 
Diameter/Pitch 8 27 64 125 ---- 

1.0 0.3536 0.5811 0.7132 0.7933 
0.8 0.2178 0.4227 0.5732 0.6773 
0.6 0.1178 0.2347 0.3503 0.4573 
0.4 0.0507 0.1016 0.1523 0.2023 
0.2 0.0124 0.0248 0.0373 0.0497 

TABLE V 

Average Probability of Transmission, !3, 
to Other Cylinders In a Bare Square Array 

$ in a Square Array of: 
Diameter/Pitch Dismeter/Ht 4 A-- 16 25 

1.0 0 0.4317 0.6505 0.7668 0.8343 
0.5 0.4070 0.6085 0.7148 0.7763 
1.0 0.3846 0.57og 0.6684 0.7246 

0.8 0 0.3647 0.5853 0.7138 0.7924 
0.5 0.3056 0.4791 0.5771 0.6360 
1.0 0.2568 0.3961 0.4733 0.5193 

0.6 0 0.2661 0.4777 0.6214 0.7170 
0.5 0.1882 0.3127 0.3911 0.4413 
1.0 0.1363 0.2202 0.2713 0.3036 

0.4 0 0.1744 0.3156 0.4458 0.5530 
0.5 0.0901 0.1485 0.1902 0.2204 
1.0 0.0544 0.0884 0.1118 0.1285 

0.2 0 0.0864 0.1566 0.2214 0.2823 
0.5 0.0225 0.0370 0.0472 0.0549 
1.0 0.0118 0.0193 0.0245 0.0285 

In Tables IV and V eigenvalues are given for bare arrays of identical 
spheres and cylinders, For reflected arrays the different locations within 
the array are affected somewhat differently by the reflector, but a reasonable 
approximation is to consider the eigenvalue given in the tables as the average 
probability, p, of transmission from a unit to all the other units. The proba- 
bility of reaching a surrounding reflector is then 1 - p, and the probability 
of neutrons being transmitted from the reflector to a unit is (1 - p) Au/Ar . 
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For a reflected array of N units then 
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Comparison of several values of /3 as calculated from Eq. (13) with the 
corresponding maximum eigenvalues calculated for reflected cubic arrays 
of spheres [3] shows that Eq. (13)overestimates /3 by less than 1%. 

In general, fi as obtained by Eq. (11) will not equal /3 ,as calculated by 
Eq. (9) from the size and composition of the unit, i. e. S as obtained from 
Eqs. (9) and (11) will not be consistent with the actual size of the unit. It 
is convenient to calculate a geometric buckling from this S and the actual 
dimensions and to calculate k,ff as 

keff = 
1tM2B2 
1tM2Bi 

where Bm2is the material buckling and M2 is an appropriate migration area. 
By comparing the k,ff so calculated for a unit within a group with 

values calculated for units in similar groups found experimentally to be 
critical, a judgment can be made as to whether the group would be sub- 
critical. Dimensions, spacings and compositions can be adjusted until 
k,ff has the desired value. 

COMPARISON WITH EXPERIMENT 

A large number of critical experiments have been performed with groups 
of interacting units and most of the data have been compiled in a recent 
publication [4]. Comparison is made here (Tables VI-XVI) in terms of 
calculated and experimental critical separations (taken in some cases from the 
original reference rather than from the compilation) and in terms of k,ff 
calculated for the experimentally critical group. 
what dependent on the value of M2 used. 

The value of k,ff is some- 

would give a different k:ff , 
A different migration area, M12, 

(15) 

but for k,ff near unity the dependence on M2 is small. 
Calculations are of course dependent on the reactivities assumed for 

individual units. A careful attempt was made to choose G2 and So consistent 
with experiments performed with bare isolated units [4]. The choice is 
not a unique one, however. Once SO is selected, Bm2 is determined; but 
various S, may be chosen. One would hope to choose SO such that Bm2 would 
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TABLE VI 

Parallel 15.1 and 7.6 cm Thick Slabs of 
Solution Containing 76 g 235U/l [4] 

h2 = 0.023306 cm-', M2 = 32 cm2, So = 3.0 cm 

Configuration 

l- 3 

t-1-4 

l-1 

4-3-6 

Ht, cm 

24.9 
32.4 
44.6 
58.6 
65.8 
86.7 
92.5 

113.8 
lg.6 
44.2 
62.5 
81.5 
25.4 
32.8 
44.9 
50.3 
59.7 
73.2 
82.1 

25.5 
34.4 
58.8 
85.5 

107.4 
120.4 

Separation, cm 
Exptl. Calc. 

0.6 0.4 
5.7 7.1 

15.9 20.9 
31.1 39.8 
38.7 50.7 
76.8 88.6 
76.8 99.8 

107.3 163.2 
0.6 0.1 

26.0 32.4 
51.4 63.9 
81.9 102.1 

5.7 
15.9 
38.7 
51.4 
76.8 

122.6 
168.3 

0.6 

8’:; 
12.1 
14.6 
15.9 

8.0(8.2fa' 
21.5(21.3) 
51.4(50.7) 
67.5(66.5) 
99.6(98.1) 

155.5(151.8) 
201.9(201.9) 

;.;g.;;'" 

i6(9:9) 
15.7(14.4) 
18.8(17.1] 
20.3(18.4] 

k eff 

0.997 
1.010 
1.017 
1.014 
1.014 
1.004 
1.008 
1.007 

0.994 
1.019 
1.015 
1.010 
1.016(1.021 
1.023(1.024 
1.020(1.020 
1.018(1.017 
1.014(1.013 
l.oog(l.oo8 
1.005(1.005 
o.gg8(l.ool 1’ 
1.006(1.007 
1.016(1.014 
1.020(1.015 
1.020(1.015 
1.020(1.014 

(a) Values In parentheses calculated with So = 2.5 Cm, 

B,,,' = 0.025585 cm-s 

TABLEVII 

Parallel 7.6 cm Thick Slabs of 
Solution Comfainlng 450-g "e51J/1-[4L 

B,~ = 0.031330 Cm-‘, bf =  32 ems, so = 2.5 Cm 

Separation, cm 
Configuration Ht, cm Exptl. Calc. keff 

*-?I 33.4 0.9 0 a.988 
44.5 3.2 2.3 0.992 
59.4 5.7 4.8 0.993 

-67.0 7.0 5.8 0.992 

(al 

(a) 

be independent of shape, but this is probably an impossible goal. The de- 
pendence on SO is fairly small, however, as can be seen from Tables VI and XV. 

In calculations for solutions the actual separations between solutions were 
used and vessel walls were ignored (i. e. treated as vacuum). Groups in- 
volving thick and thin slabs were assumed to contain slabs of a particular 
thickness and slabs of exactly half this thickness. No comparisons of 
calculations and experiments with three dimensional arrays of units are 
included since such comparisons have recently been published [2,3]. Not all 
the data on pairs of cylinders are included since results do not differ 
significantly from those reported here. The cylinders of solution in Table XIV 
were all assumed to have diameters of 15.24 cm although in the experiments 
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TABLE VIII 

Perpendicular 15.1 and 7.6 cm Thick Slabs of 
Solution Containing 79 g 235U/1 [4] 

' Brn = 0.023438 cme2, p = 32 cti, So = 3.0 cm 

Separation, 
Confla;uration 

cm 
Ht, cm Exptl. Calc. keff 

1 - 1 (T) 45.2 
53.8 
67.4 
82.8 
84.1 
87.8 

8 - 1 (T) 79.3 
94.9 

105.7 
1 - 1 (L) 56.9 

71.3 
76.6 
i9.6 
84.6 
88.9 

a - 1 (L) 97.9 
102.4 

3.4 4.9 1.003 
9.1 20.1 1.015 

24.4 48.6 1.017 
47.2 89.7 1.014 
52.3 94.3 1.013 
62.5 107.8 1.010 

9.1 6.0 0.998 
24.4 24.4 1.000 
47.2 47.2 1.000 

1.5 
16.8 
29.5 
37.1 
57.4 
77.7 

1.5 
16.8 

25.7 
go.0 

129.6 
168.7 
285.3 

1.020 
1.026 
1.023 
1.022 
1.018 
1.015 

28.3 1.006 
40.8 1.004 

TABLE IX 

Parallel Slabs of Uranium Metal [4] 
B$ = 0.08258, ff = 15.7, So = 2.1 cm 

Surface 
Dimensions, cm Thickness, cm 

20.3 x 25.4 4.76 
(Two slabs) 5.08 

5.40 
5.71 
6.03 
6.67 
6.98 
7.30 
7.62 
7.94 

Separation, cm 
Exptl. Calc. k eff 

0.3 
1.0 
1.6 
2.4 
3.2 
5.2 
6.4 
8.0 
9.9 

12.5 
38.1 (dla) 
(Two slabs) 

4.15 1.2 
4.46 2.5 
4.77 3.9 
5.08 5.6 
5.38 7.4 
5.72 9.6 
6.00 12.3 
6.34 15.7 

27.94 (dla) 
(Two slabs) 

4.46 
4.77 
5.08 
5.38 
5.74 
6.00 
6.34 
6.69 
7.00 
7.31 

0.3 
1.2 
1.9 
2.9 
3.9 

2:: 
8.2 

10.2 
12.9 

17.78 (dia) 
(Two slabs) 

6.69 0.3 
6.95 0.6 
7.31 0.9 
7.61 1.2 
7.92 1.5 
8.28 1.9 

38.1 (dla) 
(Three slabs) 

3.17 2.2 
3.81 4.5 
4.44 7.2 
4.75 8.8 
5.08 10.7 

0.5 1.003 
1.4 1.008 
2.4 1.014 
3.4 1.018 
4.6 1.022 

i:; 1.026 
1.027 

10.6 1.026 
12.8 1.024 
15.7 1.020 

::; 
1.009 
1.017 

Z:‘, 1.023 
1.028 

10.5 1.032 
13.5 1.035 
16.3 1.032 
20.6 1.031 

0.6 1.005 
1.8 1.011 
3.1 1.018 
4.3 1.022 

7:: 
1.029 
1.028 

9.1 1.031 
11.3 1.032 
13.7 1.030 
16.7 1.025 

0.5 1.004 
0.9 1.005 
1.4 1.010 
1.8 1.012 
2.2 1.013 
2.8 1.016 

22 
1.017 
1.032 

10.3 1.042 
12.3 1.043 
14.6 1.045 



TABLE X 

15.1 cm Thick Slab of Solution 
Containing 79 g *aY~/1 Parallel to a Reflector [5,6] 

Bm2 = 0.023451, fl = 32, So = 3.0 

Reflector Separation, cm 
Albedo Ht, cm Rxptl. Calc.(l)(a' CalC.(9)(b) keff(l)'a' keff(9)(b) 

0.475 32.3 0 0 0 1.000 1.000 
(concrete) 47.8 15.2 13.2 14.1 0.995 0.997 

69.6 45.7 40.5 47.6 0.997 1.001 
80.3 63.6 58.7 72.8 0.997 1.001 
92.2 106.7 83.5 114.3 0.997 1.001 

107.2 228.6 - 228.6 0.999 1.000 , 
0.154 55.3 0 1.000 
(1.27 cm 63.2 

y.6 
8.2 1.001 

thick steel) 70.5 15.2 17.7 1.002 
81.3 30.5 36.6 1.002 
92.3 61.0 73.2 1.001 
97.1 91.4 109.7 1.001 

(a) E'or (1), reflector surface dimensions assumed the same as those of 
solution surface: 

(b) For (9), reflector assumed to consist of 9 such rectangles forming a 
rectangle 3H x 3L; neutrons reflected to the ends were ignored. 

TABLEXI 

Groups of Cylinders of Solution 
Containing about 500 g *‘%/I 141 

B,~ = 0.030367 cm-', M2 = 32 cti, So = 2.7 cm 
L = Linear, T = Triangular, S = Square 

Conf lg- Pitch, cm 
Dia. cm uration Ht, cm Exptl. Calc. keff 

12.7 7-T 28.7 13.6 12.7(a) 0.924 
66.3 15.9 14.1 0.947 

15.2 7-T 22.6 15.9 15.2(") 0.935 
33.0 13.1 16.6 o .958 
51.6 20.6 19.1 0.973 
83.8 23.2 21.7 0.981 

20.3 2-L 68.3 21.0 2O.3(a) 
21.0 20.3(a) 

0.979 
3-L 45.7 0.981 

124.5 28.2 26.9 0.995 
4-L 41.9 21.0 20.3(a) 0.988 

96.5 28.2 28<0 0.999 
5-L 40.1 21.0 20.4 0.992 

78.7 28.2 27.6 0.996 
20.3 3-T 27.2 21.0 20.3(a) 0.938 

35.1 23.2 20.31a1 0.967 
45.2 25.7 23.5 0.982 
55.9 28.2 26.3 0.988 
68.8 30.8 28.9 0.991 

106.7 35.9 33.9 0.993 
(S, 42.4 87.4 21.0 28.2 20.3(a) 26.1 0.969 

3-s 36.1 21.0 ;;.;(a) z96; 
71.4 28.2 . 0.992 

20.3 7-T 18.3 21.0 20.3ca) 0.943 
21.6 23.2 21.1 0.962 
25.7 25.7 24.1 0.977 
29.7 28.2 27.1 0.988 
33.5 30.8 30.1 0.994 
41.9 35.9 35.4 0.997 
55.9 43.5 42.7 0.996 

25.4 2-L 25.5 26.0 25.4(a) 0.977 
29.9 35.7 31.8 0.993 
32.6 55.8 47.8 0.996 
33.6 - 0.992 

(a) Calculations indicate cylinders would be 
subcritical at Contact. 

co 
co 



TABLE XII 

Groups of Cylinders of Solution 
Containing 84 g *s5U/1 [4] 

Bm2 = 0.024394 cm-*, M* = 32 cm2, So = 3.0 cm 

Pitch, cm 
Dla, cm Configuration Ht, cm Exptl. Calc k eff -A - 

l5.2(a' Q  .947 
17.2 0.978 
20.0 0.991 

21.0 
23.2 ;;:$:1 

15.2 7-T 31.0 16.3 
56.9 18.1 

195.6 20.6 
20.3 3-T 41.4 

79.3 
0.945 
0.978 
0.982 
1.006 
1.015 
1.014 

20.3 7-T 28.7 
45.2 
89.9 

119.1 

23.2 
28.2 

22.2 
28.8 
37.9 
40.6 

(a) Calculations indicate cylinders would be subcritical 
at contact. 

TABLE XIII 

Groups of 24.1 cm Diameter Cylinders of 
Solution Containing 87 g *e5U/1 [4] 

&,,* = 0.024483 cm-*, M2 = 32 cm2, so = 3.0 cm 
L = Linear, T = Triangular, S = Square 

Configuration 
2-L 

3-L 

4-L 

5-L 

6-L 

2x2-s 

3-T 

7-T 

Pitch, cm 
Ht, cm Exptl. Calc. 

61.2 27.0 
80.5 32.1 

113.0 39.7 
137.2 44.8 

56.6 29.5 
84.3 39.7 

111.3 49.8 
152.7 62.5 

57.7 32.1 
76.2 39.7 
97.8 49.8 

55.1 32.1 
71.9 39.7 
92.0 49.8 
54.1 32.1 
88.4 49.8 
40.1 32.1 
69.1 49.8 

120.4 80.3 
158.8 100.6 

34.0 27.0 
51.6 34.6 
71.4 44.8 
92.2 54.9 

126.2 70.2 
152.7 80.3 

30.7 32 .l 
51.1 49.8 
83.6 80.3 

26.4 
32.8 
42.1 
47.5 

keff 

0.998 
1.002 
1.003 
1.002 

30.9 1.005 
43.4 1.006 
53.7 1.004 
66.3 1.002 
34.1 
43.6 
53.6 
34.2 
43.4 
53.5 

34.5 
53.3 
32.4 
53.7 
85.9 

104.0 
24.1(a) 
35.2 
47.4 
59.1 
74.9 
84.7 

32.7 
53.7 
85.9 

1.007 
1.007 
1.004 
1.008 
1.007 
1.004 
1.009 
1.004 
1.002 
1.007 
1.003 
1.001 
0.981 
1.002 
1.005 
1.004 
1.003 
1.002 
1.005 
1.011 
1.005 

(a) Calculations Indicate cylinders would be 
subcritical at contact. CD 

co 
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TABLE XIV 

Groups of 15.24 cm Diameter Cylinders of 
Solution Containing 380 g es5U/1 [4,7] -. 

* Bm = 0.026822 cm-*, M* = 35 cm2, S = 3.1 cm 
T = Triangular, S = Square 

Pitch, cm 
Configuration Ht, cm Exptl. Calc. keff 

2x2-s 66.9 
108.7 

3x3-s 51.5 
55.0 
77.9 

101.6 
126.0 

4x4-s 50.1 
76.2 

101.8 
129.0 

7-T 24.8 

15.9 15.2(a' 
16.5 15.2(a' 
19.4 19.6 
19.9 20.0 
21.4 21.8 
22.4 23.0 
23.2 23.8 
22 .l 23.4 
25.1 27.2 
27.0 29.2 
28.2 30.6 
15.9 l5.2(a' 

0.942 
Q  .954 
1.006 
1.003 
1.007 
1.009 
1.009 
1.025 
1.035 
1.035 
1.033 
o .9+8 

39.1 18.1 17.2 0.978 
69.8 20.6 20.2 0.994 
99.5 21.9 21.8 0.999 

19-T 50.1 24.5 26.5 1.041 
76.2 29.1 30.8 1.038 

101.6 30.6 33.7 1.035 
127.0 32.4 35.4 1.035 

(a) Calculations indicate cylinders would be 
subcritical at contact. 

TABLE XV 

Groups of 24.13 cm Diameter Cylinders of 
Solution Containing about 890 g U(4.9)/1 [8_l 

h2 = 0.011970 cm-*, M* = 31 cm2, So = 3.00 cm 
T = Triangular, S = Square 

cm Pitch, 
Configuration Ht, cm Exptl. Calc. k eff 

3x3-s 61.0 26.1 24.1fa' o.g64(o.g42)Lb' 
122.0 29.6 27.3(24.3)'b' 0.978(0.955) 
142.2 30.3 28.1(24.9) 0.977lo.954 1 

4x4-s 61.0 28.3 28.2(26.3) 0.-998(0.979 1 
122.0 33.9 33.9l31.6) 1.002(0.979) 
142.2 35.1 35.1(32 -5) 1.000(0.979) 

5x5-s 61.0 30.0 30.7t29.41 1.008(0.991) 
122.0 37.1 39.5C36.5) l.o15(o.g96) 
142.2 38.9 41.3(38.2) l.o15(o.g96) 

7-T 61.0 26.6 24.1ca1 o.g49(o.g26) 
122.0 29.2 25.4(24.l)'a' o.g62(o.%g) 
142.2 29 .a 25.g(24.1)'a' o.g63(0.939) 

19-T 122.0 37.9 39.4c37.2 1 1.013(0.994) 
142.2 39.5 40.7(38.4) 1.010(0.989) 

(a) Calculations indicated cylinders would be subcritical 
at contact. 

(b) Values in parentheses calculated with So = 2.50 cm, 
Bm2 = 0.012536. 

this was the outer diamter of some of the containers. In the calculations 
for the interaction between a slab and a cylinder (Table XVI), the cylinder 
was treated as a square cylinder having the same volume in computing the 
probability of transmission to the slab; this probability was multiplied by the 
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TABLE XVI 

Cylinder (25.4 cm dia) and 
Slab (15.1 cm thick, 120.6 cm long) 

of.Solution Cdntalnirq 78-g """U;/l.[4] 

B,* = 0.024793 cmm2, M* = 32 cm', So = 2.70 cm 

Ht, cm 

30.7 
47.3 
58.2 
66.5 
79.3 
89.2 

115.9 
147.3 

Separation, cm 

0.7 
15.7 
31.0 
46.2 
76.7 

107.2 
m 
m 

psc PCS 8, ~-- 

0.355 0.235 0.360 
0.246 0.163 0.169 
0.183 0.121 0.113 
0.140 0.093 o.bS5 
0.087 0.058 0.056 
0.059 0.039 Oh039 
Isolated slab 
Isolated cylinder 

BS keff -- 
0.231 0.934 
0.237 1.001 
0.196 1.010 
0.153 1.010 
0.089 1.006 
0.058 1.004 

1.000 
1.000 

ratio of the actual slab and cylinder areas in computing the probability of 
transmission from slab to cylinder. 

CONCLUSIONS 

In general, agreement between calculations and experiment is quite 
satisfactory for nuclear safety work. For cylinders the trend towards low 
k,ff values and toward underestimates of critical separations at small 
spacings is expected and is easily aflowed for. The trend toward high k,ff 
values for large groups probably results in part from the conservative 
manner in which account is taken of partial shielding of units and again can be 
allowed for, It must be emphasized that accurate or conservative estimates 
of the reactivities of individual units are required in any application of this 
method. 
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DISCUSSION 

P. B. SUHR: You say that this method of calculating interaction can 
be extended to more than one energy group. However, it strikes me that 
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even with only two energy groups a solution of the equations set out in formula 
(7) of your paper would become much more complicated as a result of the 
coupling between the energy groups, Could you tell us how ‘you would calculate 
this coupling ? Would you use ordinary two-group constants (slowing-down 
cross-sections, resonance escape probabilities and so on)? 

H. K. CLARK: I would use ordinary two-group constants but would 
adjust them in such a manner as to give agreement with critical experiments 
performed on bare, isolated units. It is, of course, perfectly true that the 
extension of the method to more than one energy group makes it more 
complicated, This problem is described in Ref. [l] of the paper. 


