J. K. FOX AND L. W. GILLEY, "CRITICAL PARAMETERS OF UNREFLECTED ARRAYS OF INTERACTING CYLINDERS CONTAINING AQUEOUS SOLUTIONS OF ${ }^{235}, "$ IN "NEUTRON PHYSICS DIVISION ANNUAL PROGRESS REPORT FOR PERIOD ENDING SEPTEMBER 1, 1959," OAK RIDGE NATIONAL LABORATORY REPORT ORNL-2842 (NOVEMBER 1959), PP. 82-84.

ORNL-2842
Physics and Mathematics TID. 4500 (15 th ed.)

Printed in USA. Price \$4000 Available from the

Office of Technical Services
Department of Commerce
Washington 25, D.C.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person aeting on behalf of the Commission:
A. Makes any warronty or representarion, expressed or implied, with respect to the accuracy, comploteness, or usofulness of the information contained in this report, or that whe use of eny information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilitios with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this repart.
As used in the above, "person ecting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such controctor, to the extent that sueh employee or contractor of the Commission, or employee of such contractor propares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contracter.

3.7. CRITICAL PARAMETERS OF UNREFLECTED ARRAYS OF INTERACTING CYLINDERS CONTAINING AQUEOUS SOLUTIONS OF U ${ }^{235}$

J. K. Fox L. W. Gilley

A study of the critical parameters of aqueous solutions of $93.2 \% \mathrm{U}^{235}$-enriched uranyl fluoride in arrays of interacting cylinders was initiated several years ago. Experiments have been performed recently which extend these studies to include various unreflected arrays of aluminum cylinders containing solutions with $\mathrm{H}: \mathrm{U}^{235}$ atomic ratios of 297 and 309. (Previous work' with more than two cylinders was limited to an $\mathrm{H}: \mathrm{U}^{235}$ ratio of about 45.) The cylinders, which were coated on the inside with Heresite for protection against corrosion, had 6-, 8-, and 9.5-in. diameters and

[^0]$1 / 16$-in.-thick walls. They were assembled in triangular, hexagonal, or line arrays that were isolated as far as possible from any reflecting material. In this respect, they differ from earlier unreflected experiments which were performed in a 9.5 -ft-dia steel tank.

The results of measurements with 6 - and 8 -in.dia cylinders for solutions with an $\mathrm{H}: \mathrm{U}^{235}$ atomic ratio of 309 are given in Table 3.7.1 and Fig. 3.7.1. Since single 6 - or 8 -in.-dia cylinders are not critical, the critical heights of arrays of these cylinders increase rapidly as the edge-to-edge spacings of the cylinders are increased. Because an isolated 8-in.-dia cylinder is more nearly critical than a 6 -in.-dia cylinder, arrays of 8 -in.-dia cylinders require wider spacings to approach an infinite critical height.
Interacting arrays of unreflected 9.5-in.-dia cylinders containing solutions with on $\mathrm{H}: \mathrm{U}^{235}$

Table 3.7.1. Critical Parameters of an Aqueous Solution of $93.2 \% \mathrm{U}^{\mathbf{2 3 5}}$. Enriched Fluoride Contained in Unreflected 6-and 8-in.-dia Aluminum Cylinders in Hexagonal and Triangular (Equilateral) Arrays

Solution concentration: 0.0812 g of U per g of solution; 0.0836 g of U^{235} per ce of solution $\mathrm{H}: \mathrm{U}^{235}$ atomic ratio: 309
Specific gravity: 1.105

Edge-to-Edge Cylinder Spacing (in.)	Cylinder Diameter (in.)	Critical Values		
		Height (in.)	Volume (liters)	Mass (kg of U^{235})
Seven-Cylinder Hexagonal Array				
0.3	6	12.2	39.5	3.30
1.0	6	22.4	72.4	6.05
2.0	6	77*	~ 250	~ 21
1.0	8	11.3	65.1	5.44
3.0	8	17.8	103	8.62
6.0	8	35.4	205	17.1
7.0	8	46.9	271	22.6
Three-Cylinder Triongular Array				
0.15	8	16.3	40.5	3.39
1.0	8	31.2	77.2	6.46
2.0	8	**		

[^1]atomic ratio of 297 have been studied in a variety of configurations. The data are shown in Table 3.7.2. Figure 3.7 .2 presents a plot of critical height as a function of edge-to-edge spacing for various in-line arrays of these cylinders. The graph demonstrates that the effect obtained by adding a cylinder decreases as the total number of cylinders in line increases, as expected. The addition of a sixth cylinder to an existing row of

Table 3.7.2. Critical Parameters of an Aqueous Solution of $93.2 \% U^{235}$. Enriched Uranyl Fluoride Contained in Unreflected 9.5-in.-dia Cylinders in Line, Triangular, Square, and Hexagonal Arrays

Solution concentration: 0.0841 g of U per g of solution; 0.0868 g of U^{235} per cc of solution
$\mathrm{H}: \mathrm{U}^{235}$ atomic ratio: 297
Specific gravity: 1.109

Edge-to-Edge Cylinder Spacing (in.)	Critical Values		
	Height (in.)	Volume (liters)	$\begin{gathered} \text { Mass } \\ \left(\mathrm{kg} \text { of } U^{235}\right) \end{gathered}$
Two-Cylinder Line Array			
1.0	24.1	56.1	4.87
3.0	31.7	73.9	6.41
6.0	44.5	104	9.03
8.0	54.0	126	10.9
Three-Cylinder Line Array			
2.0	22.3	78.1	6.78
6.0	33.2	116	10.1
10.0	43.8	153	13.3
15.0	60.1	211	18.3
Four-Cylinder Line Array			
3.0	22.7	106	9.20
6.0	30.0	138	12.0
10.0	38.5	180	15.6
Five-Cylinder Line Array			
3.0	21.7	127	11.0
6.0	28.3	165	14.3
10.0	36.2	211	18.3
Six-Cylinder Line Array			
3.0	21.3	149	12.9
10.0	34.8	243	21.1

Three-Cylinder Triangular Array

1.0	13.4	47.0	4.08
4.0	20.3	70.8	6.15
8.0	28.1	98.2	8.52
12.0	36.3	127	11.0
18.0	49.7	174	15.1
22.0	60.1	211	18.3

Four-Cylinder Square Array

3.0	15.8	73.8	6.40
10.0	27.2	127	11.0
22.0	47.4	220	19.1
30.0	62.5	292	25.3

Seven-Cylinder Hexagonal Array

3.0	12.1	98.6	8.56
10.0	20.1	164	14.2
22.0	32.9	268	23.3

Fig. 3.7.1. Critical Solution Height as a Function of Edge-to-Edge Spacing of Unreflected Triangular and Hexagonal Arrays of 6 - and 8 -in.-dia Aluminum Cylinders Containing Aqueous Solutions of $93.2 \% \mathrm{U}^{235}$. Enriched Uranyl Fluoride ($\mathrm{H}: \mathrm{U}^{235}$ Atomic Ratio $=309$).
five increased the over-all reactivity by approximately 26 cents. The effect of the addition appears to be insensitive to the edge-to-edge spacing.

Fig. 3.7.2. Critical Solution Height as a Function of Edge-to-Edge Spacing of Unreflected Straight-Line Arrays of 9.5-in.-dia Aluminum Cylinders Containing Aqueous Solutions of $93.2 \% \quad U^{235}$-Enriched Uranyl Fluoride ($\mathrm{H}: \mathrm{U}^{235}$ Atomic Ratio $=297$).

Figure 3.7.3 shows the variation in critical height as a function of the cylinder edge-to-edge spacing for the triangular, square, and hexagonal arrays of 9.5 -in.-dia cylinders. In this figure, as opposed to the data in Fig. 3.7.1 for smaller cylinders, the variation is linear out to a spacing of about 20 in .

Fig. 3.7.3. Critical Solution Height as a Function of Edge-to-Edge Spacing of Unreflected Triangular, Hexagonal, and Square Arrays of 9.5-in.-dia Aluminum Cylinders Containing Aqueous Solutions of $93.2 \% \mathrm{U}^{235}$. Enriched Uranyl Fluoride ($\mathrm{H}: \mathrm{U}^{235}$ Atomic Ratio $=297$).

[^0]: 1J. K. Fox, L. W. Gilley, and D. Callihan, Critical Mass Studies, Part IX, Aqueous U^{235} Solutions, ORNL2367 (Feb. 5, 1958); see also J. K. Fox and L. W. Gilley, Appl. Nuclear Phys. Ann. Prog. Rep. Sept. 10, 1956, ORNL-2081, p 63.

[^1]: *Extrapolated from fuel height of 63 in .
 **Extrapolation indefinite (probably not critical at any height).

