REFERENCE 20

H. C. PAXTON, "LOS ALAMOS CRITICAL MASS DATA," LOS ALAMOS SCIENTIFIC LABORATORY REPORT LA-3067-MS, REV. (DECEMBER 1975).

LA-3067-MS, Rev.

Informal Report

UC-46 Reporting Date: November 1975 Issued: December 1975

Los Alamos Critical-Mass Data

by

H. C. Paxton

An Affirmative Action/Equal Opportunity Employer

UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION CONTRACT W-7405-ENG. 36 In the interest of prompt distribution, this report was not edited by the Technical Information staff.

> Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22151 Price: Printed Copy \$5.50 Microfiche \$2.25

This report was prepared as an account of work sponsored by the United States Government. Neither the United States one the United States Genergy Reaserch and Development Administration, nor any of their employees, nor any of their contractors, subcostractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy. Completensas, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

TABLE OF CONTENTS

		Page
ABSTRA	СТ	. 1
INTROD		• 2
	TABLES	
IAl	Highly Enriched U Metal, Unreflected	• 4
IA2	U(93.4) - U(N) Metal Cylinders, Unreflected	• 5
IA3	U(93.3) – U(N) Metal Cylinders, 15.00" Diameter, Unreflected	• 6
IA4	U(93.3) - U(N) Metal Cylinders, 21" Diameter Unreflected	, . 7
IB1	Enriched U Metal Sphere or Pseudosphere, U(N) Reflector	. 8
IB2	Enriched U Metal Cylinder, Pseudocylinder or Parallelepiped, U(N) Reflector	. 9
IB3	Miscellaneous Enriched U Metal, U(N) Reflector	. 10
ICl	Highly Enriched U Metal, Reflector of Th, W, WC, Mo or Mo ₂ C	. 11
IC2	Highly Enriched U Metal, Reflector of Zn, Cu, Ni, Co, or Fe	. 12
IC3	Highly Enriched U Metal, Reflector of Ti, Al, Al_2O_3 , Mg, Be, or BeO	. 13
IC4a	Highly Enriched U Metal, Complete Graphite Reflector	. 14

TABLES (Continued)

IC4b	Highly Enriched U Metal, Partial Graphite Reflector
IC5	Highly Enriched U Metal, Reflector of $D_2^{O}(99.8\%)$
IC6a	Highly Enriched U Metal, Complete Reflector of H_2O or Polyethylene
ICGD	Highly Enriched U Metal, Complete Reflector of Paraffin
IC6c	Highly Enriched U Metal, Partial Reflector of H_2O , Polyethylene, Lucite, or Paraffin 19
IC7	Highly Enriched U, Mixed Reflector 20
IIVI	U(93.3) Metal Cylinders Diluted with Fe, Ni, Cu, or Zn, $15''$ Diameter, Unreflected 21
IIA2	U(93.3) Metal Cylinders Diluted with Mo, Ta, or W, 15" Diameter, Unreflected 22
IIA3	U(93.3) Metal Cylinders Diluted with Al, Zr, or Hf, 15" Diameter, Unreflected 23
IIBl	U(93.3) - Graphite Cylinders, Unreflected 24
I I B2a	Graphite-Moderated Highly-Enriched U, Reflector of Graphite
I IB2b	Graphite-Moderated Highly-Enriched U, Reflector of Be (Plus some Graphite) 26
IICl	Lucite Moderated U(93.16), Unreflected 27
IIC2a	Lucite Moderated U(93.16), ≥ 6 " Thick Lucite Reflector
IIC2b	Lucite Moderated U(93.16) Slabs, 6" Thick Lucite Reflectors on Two Large Surfaces Only 29
11C3	Polyethylene Moderated U(93.15) Parallel- epipeds, Beryllium Reflector

IID1	Lucite-Graphite Moderated U(93.16), Unreflected
IID2a	Lucite-Graphite Moderated U(93.16), Lucite Reflected
IID2b	Lucite-Graphite Moderated U(93.16) Slabs, 6" Thick Lucite Reflectors on Two Large Surfaces Only
IIE1	Diffuse U(93.1) Reflected by Thick D ₂ O or Be (Cavity Assemblies)
IIE2	U(93.65)O ₂ F ₂ -D ₂ O Solutions, Bare, D ₂ O or Graphite Reflected
IIFla	$U(14.67) O_2 SO_4 - H_2 O$ Solution, Sphere
IIFlb	U(93.5)-Phosphate Aqueous Solution Cylinders, 3.0" Thick Fe Reflector
IIF2	Enriched-Uranium Hydride Composition 38
IIF3	Lattices of U(94) Metal Units, H ₂ O Moderated, H ₂ O Reflected
IIIAl	Plutonium-Metal Spheres 40
IIIA2	Plutonium in Metal-Polyethylene Reflector, Spherical Geometry 41
IIIA3	Plutonium-Metal Cylinders 42
IIIB1	Diluted Pu Cylinders, 6.0" Diameter, Unreflected
IIIB2	Diluted Pu Cylinders, 6.0" Diameter, 2.0" Thick U(\sim 0.3) Reflector 44
111B 3	Diluted Pu Cylinders, 6.0" Diameter, 4.5" Thick U(~0.3) Reflector 45
IIIB4	Diluted Pu Cylinders, 6.0" Diameter, 7.5" Thick $U(\sim 0.3)$ Reflector 46
IIIB 5	Diluted Pu Cylinders, 6.0" Diameter, 2.0" Thick Th Reflector 47
IIIB6	Diluted Pu Cylinders, 6.0" Diameter, 4.5" Thick Th Reflector

TABLES (Continued)

		Page
IIIB7	Diluted Pu Cylinders, 6.0 Diameter 7.5" Thick Th Reflector	. 49
IV	U-233 Metal Spheres	• 50
VA	Pu or U-233 Metal Spheres Within U(~93) Metal Spheres	• 51
VВ	Pu Metal Cylinder Within U(93.2) Metal Cylinder, Thick U(N) Reflector	• 52
REFERE	NCES	• 53

LOS ALAMOS CRITICAL-MASS DATA

by

H. C. Paxton

ABSTRACT

The original version of this report tabulates critical masses of simple systems, which have been measured through the year 1963. This revision adds data through October 1975, and modifies some of the old critical specifications that have been reevaluated. The old format and symbolism are retained to simplify reproduction.

1

INTRODUCTION

Numerous Los Alamos critical mass data have been published only as points on curves, frequently after adjustment to "standard" conditions (e.g., to uniform values of U^{235} enrichment and density), and usually without indication of reliability. Under these conditions, original data tend to become lost. It is the purpose of this compilation to retrieve original critical masses and to give some means of judging the quality of measurements.

Indexes of accuracy are probable error, if it has been estimated, the maximum mass of fissile material used in the measurement, or the maximum central-source neutron multiplication attained. For nonhydrogenous systems a multiplication of 10 usually corresponds to a core mass that is 70% to 80% of critical, 20 corresponds to 85% to 90% of the critical mass, 50 corresponds to 93% to 97%, and 100 corresponds to 96-1/2% to 98-1/2%. Generally, the probable error in critical mass is about one-quarter of the difference between the critical mass value and the maximum mass employed. This estimate may be valid down to an indicated probable error of 1% to 2%, beyond which the probable error is usually controlled by the precision with which the composition and geometry of the system can be described. Maximum multiplication is not a reliable index of accuracy for hydrogen-moderated assemblies because of the severe influence of neutron-spectral distortion.

Not included in this compilation are numerous critical assemblies such as reactor mockups, which cannot be described adequately by simple entries in tables. Also omitted are a few critical mass estimates for which the maximum mass used

was less than three-quarters of the critical value. The following symbolism appears in the tables of critical masses. m_c - critical mass of core m_{max} - maximum mass used, in same units as m_c M - maximum central source neutron multiplication attained h_c - critical height of cylindric core d - diameter of core L x H x W - length times height times width of parallelepiped ρ - density w/o ~ weight percent v/o - volume percent U(93) - enriched uranium containing 93 w/o U^{235} U(N) - uranium with natural isotopic composition

HIGHLY ENRICHED U METAL, UNREFLECTED

Corrected empirically for influence of supports and small (~0.4") source cavity unless noted otherwise

reference	shape	components	material	ρ (total U) (g/cm ³)	h _c /d	^m c (kg U ²³⁵)	^m max (kg U ²³⁵)	Mmax
(1)(55)	sphere ^a	thick sections	U(93.71)	18.74	-	49.12 ± 0.15	critic	al
(2)(55)	sphere	thick shells	U(93.86)	18.81	-	48.75 ± 0.15		142
(3)	pseudosphere	$\sim 0.4"$ rings ^b	U(93.9)	18.5 ± 0.1	-	50.9	49.8	150
(4)	psuedosphere	~ 0.4 " rings ^b	U(93.9)	18.5 ± 0.1	-	50.6	50.0	180
(4)	cyl 4.75" dia	~ 0.4 " rings ^b	U(93.8)	18.5 ± 0.1	-	>94	70.8	13
(4)	cyl 5.50" dia	~ 0.4 " rings ^b	U(93.8)	18.5 ± 0.1	1.76	66.2	61.4	96
(4)	cyl 6.37" dia	~ 0.4 " rings ^b	U(94.0)	18.5 ± 0.1	0.95	55.3	52.6	85
(4)	cyl 7.00" dia	~ 0.4 " rings ^b	U(94.0)	18.5 ± 0.1	0.72	55.6	54.0	76
(4)	cyl 7.50" dia	~ 0.4 " rings ^b	U(94.0)	18.5 ± 0.1	0.61	58.2	55.9	54
(5)	cyl 15.00" dia	0.3 cm plates	U(93.3)	17.9	0.214	155.3 ± 0.6	151	67
(5)	cyl 21.00" dia	0.3 cm plates	U(93.2)	17.9	0.141	281.2 ± 0.7	270	68

^a Corrected for slight asphericity

^b Uncorrected for 0.06 in.³ central source cavity; corrected empirically for effect of supports

U(93.4) - U(N) METAL CYLINDERS, UNREFLECTED

Indicated layers are combinations of 10.5" diameter, 0.8 cm thick U(93.4), and 0.6 cm thick U(N)

Corrected from partial terminating sandwich to fractional sandwich of proper composition

Corrected for reflection effect of support

All systems critical

References (6), (55)

average composition	repeated thicknes U(93.4)	layers, s (cm) <u>U(N)</u>	ρ (total U) (g/cm ³)	diameter (in.)	h _c (in.)	h _c /d	^m c (kg U ²³⁵)
U(53.6)	0.8 ^a	0.6	18.7	10.50	6.10	0.581	86.8 ± 1/2%
U(37.7)	0.8	1.2 ^b	18.75	10.50	10.04	0.956	$100.7 \pm 1/2\%$
U(29.0)	0.8	1.8 ^b	18.8	11.42 av ^C	13.45	1,178	$123.0 \pm 1\%$

^a Starts with 0.8 cm U(93.4) at base of stack

^b Starts with 0.6 cm U(N) at base of stack

^C Basic stack of plates extended by blocks of U(94) and U(N) in proper proportion

U(93.3) - U(N) METAL CYLINDERS, 15.00" DIAMETER, UNREFLECTED

Indicated layers, combinations of 0.3 cm thick U(93.3) and U(N), 0.6 cm U(N) or 1.5 cm U(N), start with U(N) at bottom and end with portion of sandwich at top

Average composition is that of final stack

Corrected for influence of supports of split stack

Communicated by G. A. Jarvis

average	repeated thickne:	layers, ss (cm)	P(total U)	^h c	N / 4	^m c	max
composition	U(93.3)	U(N)	<u>(g/cm³)</u>	<u>(in.)</u>		$(kg U^{235})$	(kg U^{235})
U (93.3)	0.3	0	18.06	3.18	0.212	155,2 ^a	151
U (86.4)	3.6	0.3	18.08	3.36	0.224	152.1	146
U (83.4)	2.4	0.3	17.95	3.50	0.233	151.6	146
U (80.5)	1.8	0.3	17.98	3.60	0.240	150.8	146
U (77.7)	1.5	0.3	17.98	3.70	0.247	149.8	146
U (75.1)	1.2	0.3	18.19	3.77	0.252	149.1	146
U (70.5)	0.9	0.3	18.16	4.00	0.266	148.2	146
U (65.5)	3.6	1.5	18.33	4.05	0.270	140.8	136
U (64.4)	0.6	0.3	18,21	4.34	0.289	147.6	142
U (56.6)	2.4	1.5	18.37	4.60	0.306	138.5	136
U (57.1) ^C	2.1	1.5	18.34	4.66	0.311	141.2	137
U (50.5)	1.8	1.5	18.35	5.25	0.350	140.9	137
U (50.7) ^C	1.5	1.5	18.44	5.25	0.350	142.2	141
U (47.0)	0.6	0.6	18.42	5.53	0.369	138.8	134
U (47.1)	0.3	0.3	18.25	5.61	0.374	139.8	134
U (44.2)	1.2	1.5	18.49	5.92	0.394	140.1	137
U (38.0)	0.9	1.5	18.49	7.02	0.468	142.9	140
U (31.6)	0.3	0.6	18.51	8.23	0.548	139.2	135
U (28.9)	0.6	1.5	18.32	9.63	0.642	147.5	144
U (23.9)	$\begin{pmatrix} 0.3\\ 0.3 \end{pmatrix}$	$\begin{pmatrix} 1.5\\ 0.3 \end{pmatrix}^{b}$	18.65	11.73	0.782	151.6	149
U (21.3)	$\begin{pmatrix} 0 & .3 \\ 0 & .3 \end{pmatrix}$	$\begin{pmatrix} 1 & 5 \\ 0 & 6 \end{pmatrix}^{\mathbf{b}}$	18.62	14,15	0.943	162.6	155
U (19.3)	$\begin{pmatrix} 0 & . 3 \\ 0 & . 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 5 \\ 0 & 9 \end{pmatrix}^{b}$	18.66	17.85	1.190	185.8	175

^a Corrections not as detailed as those for next-to-last item in Table IA1

 $^{\rm b}$ The 1.5 cm U(N) plate was at base of stack; it alternates with the thinner U(N) in successive sandwiches

^C Extra U(93.3) plates at top of stack

7

U(93.3)-U(N) METAL CYLINDERS, 21" DIAMETER, UNREFLECTED

Repeated layers of interleaved U(93.3) and U(N)

References (55), (57)

average composition	repeated layers, thickness (in.)	mass/layer (kg U)	$\overline{\rho}(\text{total U})$ (g/cm ³)	(kg U ²³⁵)	^m max (kg U235)
U(16.01)	0.591 U(N) 0.118 U(93.3)	76.1	18.68	232 ± 2	224
U(14.11)	0.709 U(N) 0.118 U(93.3)	87.0	18.41	258 ± 2	252
U(12.32)	0.591 U(N) 0.118 U(93.3) 0.236 U(N)	100.4	18.64	312 ± 2	307
U(10.90)	0.709 U(N) 0.118 U(93.3) 1.182 U(N) 0.118 U(93.3)	224.8	18.63	540 ±13	412

TABLE IB1 ENRICHED U METAL SPHERE OR PSEUDOSPHERE, U(N) REFLECTOR

		core							
				0 (total U)		reflector		m C	
reference	shape	components	material	(g/cm ³)	shape	(in.)	$\overline{\rho}$ (g/cm ³)	$(kg U^{235})$	M _{max}
(7)(55)	sphere	hemispheres	U(93.24)	18.62	sphere	7.09	19.0	16.63 ± 0.04	critical
(2)(55)	sphere	nesting shells	U(93.9)	18.69	sphere	3.93	19.00	18.61 ± 0.09	167
(2)	sphere	nesting shells	U(93,9)	18.75	sphere	3,52	19.0	19.2 ± 0.2	53
(2)(55)	sphe re	nesting shells	U(93.99)	18.67	sphere	1.742	18.67	24.96 ± 0.12	141
(2)(55)	sphere	nesting shells	U(93.91)	18.70	sphere	0.683	19.00	34.31 ± 0.17	156
(4)	pseudosphere	~0.4" rings	U(93.8)	18.5 ^a	pseudosphere	1.87	18.7	24.6	160
(4)	pseudosphere	~0.4" rings	U(93,8)	18.5 ^a	pseudosphere	0.99	18.7	32.4	34
(8)	pseudosphere	1/2" min blocks	U(94)	18.7	pseudosphere	ll av	19.0	16 .2	critical
(9)	pseudosphere	1/2" min blocks	U(94.13)	18.7	pseudosphere	9 av	19.0	16.39 ± 0.07	critical
(9)	pseudosphere	1/2" min blocks	U(80.5) ^b	18.7	pseudosphere	8-3/4 av	19.0	18.3	critical
(9)	pseudosphere	1/2" min blocks	U(67.6) ^b	18.75	pseudosphere	8-1/2 av	19.0	20.8	critical
(9)	pseudosphere	1/2" min blocks	U(66.6) ^b	18.75	pseudosphere	8-1/2 av	19.0	21.2	critical
(9)	pseud osphere	1/2" min blocks	U(47.3) ^b	18.8	pseudosphere	7-3/4 av	19.0	27.1	critical
(9)	pseudosphere	1/2" min blocks	U(94)	16.0 ^c	pseudosphere	8-3/4 av	19.0	19.7	critical
(9)	pseudo s phere	1/2" min blocks	U(94)	15.8 ^C	pseudosphere	8-3/4 av	19.0	20.1	critical
(9)	pseudosphere	1/2" min blocks	U(94)	13.1 ^c	pseudosphere	8-1/4 av	19.0	25.3	critical
(9)	pseud osphere	1/2" min blocks	U(94)	9.35 [°]	pseudosphere	7-1/4 av	19.0	37.0	critical
(10)	pseudosphere	1/2" min blocks	U(78.7)	~17.8	sphere	19 o.d.	19.0	21.9	critical

^a Uncorrected for 0.06 in.³ central source cavity

^b Average concentration of mixed 1/2" cubic units of U(94) and U(N)

^C Average density with 1/2" cubic voids distributed throughout core; corrected experimentally for effect of tubular Al spacers within voids

TABLE IB2 ENRICHED U METAL CYLINDER, PSEUDOCYLINDER OR PARALLELEPIPED, U(N) REFLECTOR (LAST ITEM DEPLETED U)

		core				reflector				
reference	shape	dimensions (in.)	material	户(total U) (g/cm ³)	shape	av thickness (in.)	₽ (g/cm ³)	^m c (kg U ²³⁵)	^m max (kg_U ²³⁵)	M _{max}
(8)	pseudocylinder ²	4.00 x ~4.5 av dia	U(94)	18.7	pseudosphere	~9 av	19.0	16.9	critic	a 1
(8)	parallelepiped ⁸	4.00 x 4.00 x ~3.5	U(94)	18.7	pseudosphere	~9 av	19.0	16.9	critica	al
(8)	parallelepiped ^a	5.00 x 5.00 x ~2.5	U(94)	18.7	pseudosphere	~8-3/4 av	19.0	18.2	critica	a 1
(8)	parallelepiped ^a	7.50 x 7.50 x ~1.5	U(94)	18.7	pseudosphere	~8-1/4 av	19.0	25.4	24.3	
(8)	parallelepiped ^a	7.50 x 3.00 x ~3.0	U(94)	18.7	pseudosphere	~8-1/2 av	19.0	19.6	critics	81
(8)	parallelepiped ²	6.00 x 3.50 x ~3.0	U(94)	18.7	pseudosphere	~8-3/4 av	19.0	18.2	critica	.1
(4)	cylinder ^b	3.98 dia, $h_c/d = 3.51$	U(93.7)	18.5	cylinder	1.12	18.7	49.5	~43	67
(4)	cylinder ^b	3.98 dia, h _c /d = 2.15	U(93.7)	18.5	cylinder	1.87	18.7	30.4	~30	200
(4)	cylinder ^b	4.75 dia, $h_c/d = 1.38$	U(93.8)	18.5	cylinder	1.12	18.7	33.0	~31.5	59
(4)	cylinder ^b	4.75 dia, h _c /d - 1.03	U(93.8)	18.5	cylinder	2.00	18.7	24.6	~24	100
(4)	cylinder ^b	5.50 dia, h _c /d = 0.84	U(93.8)	18.5	cylinder	1.12	18.7	31.3	~31	96
(4)	cylinder ^b	5.50 dia, h _c /d = 0.67	U(93.8)	18.5	cylinder	2.00	18.7	25.0	~24	96
(4)	cylinder ^b	6.37 dia, $h_c/d = 0.565$	U(94.0)	18.5	cylinder	1.12	18.7	32.4	~31.5	66
(4)	cylinder ^b	6.37 dia, h _c /d = 0.47	U(94,0)	18.5	cylinder	2.00	18,7	27.4	~26	43
(4)	cylinder ^b	7.00 dia, $h_c/d = 0.46$	U(94.0)	18.5	cylinder	1.12	18.7	35.3		38
(4)	cylinder ^b	7.50 dia, h _c /d = 0.41	U(94.0)	18.5	cylinder	1.12	18.7	38.0		107
(4)	pseudocylinder ^a	3.0 av dia, $h_c/d = 3.08$	U(94)	18.7	pseudosphere	~8 av	18,9	21.3	20.7	
(4)	pseudocylinder ^a	4.0 av dia, $h_c/d = 1.00$	U(94)	18.7	pseudosphere	~9 av	18.9	16.66	critica	11
(4)	pseudocylinder ^a	6.5 av dia, h _c /d = 0.31	U(94)	18.7	pseudosphere	~8-1/2 av	18.9	20.3	19.6	
(4)	pseudocylinder [®]	8.3 av dia, h _c /d = 0.18	U(94)	18.7	pseudosphere	~7-3/4 av	18.9	25.7	24.9	
(11)	cylinder ^C	5.25 dia, h _c /d = 1.25	U(93.3)	18.75	cylinder	0.500	18.8	40.7 ± 0,1		1000
(11)	cylinder ^C	5.25 dia, h _c /d = 0.965	U(93.3)	18.75	cylinder	1.000	18.8	31.4 ± 0,1		500
(12)	cylinder ^d	15.00 dia, $h_c/d = 0.91$	U(93.4)	17.7	cylinder	3.00	18.9	65.4 ± 1.0		52
(12)	cylinder ^e	3.24 dia, $h_c/d = 8.6$	U(93.2)	18.7	cylinder	2.75	18.9	65.5 ± 1.0		52
(13) (55)	cylinder ^f	15.00 dia x 12.75	U(16.19)	18,75	cylinder	3.00	19.0	110.6 ± 0.6	critica	11

^a Core of 1/2" min blocks

^b Core of ~0.4" nesting rings; uncorrected for 0.06 in.³ central source cavity

^C Core of discs 1.20" to 0.075" thick; m_c corrected empirically for incidental reflection, diaphragm supporting part of assembly, and 0.05 in.³ central cavity

 $^{
m d}$ Core of 0.3 cm discs of U(93.4), m $_{
m c}$ corrected for influence of support structure

^e Core of thick plates; reflector U depleted to $\sim 0.3\%$ U²³⁵

f Core of alternating 0.3 cm discs of U(#3.36) and 1.5 cm discs of U(N)

TABLE IB3

MISCELLANEOUS ENRICHED U METAL, U REFLECTOR^a

reference	core	reflector	^m c _kg U ²³⁵
(14)	annulus, 12.25" o.d. x 6.00"	1.00" thick, $U(N)$, $\overline{p} = 19.0$	77.2 ± 0.3
	1.d. x 3.01" high, stack of	g/cm ³ , completely envelops core	$(m_{max} > m_{c})^{b}$
	1/2" and $1/4$ " thick rings		
	$U(93.4), \bar{p}(U) = 18.7 \text{ g/cm}^3$		
(14)	annulus, 12.25" o.d. x 6.00"	3.00" thick, U(N), $\overline{\rho} = 19.0$	52.2 ± 0.3
	i.d. x 2.03" high, stack of	g/cm ³ , completely envelops core	(m _{max} = 51.6)
	1/2" and $1/4$ " thick rings		
	U(93.4), p(U) - 18.7 g/cm ³		
(15)	pseudocylinder, 13.74" av	pseudocylinder 5.0" av thickness,	93.0
	diam x 12.00", av compo-	$\overline{\rho} = 18.9 \text{ g/cm}^3$	(M _{max} = 225)
	sition: ^C 18.1 v/o U(93.6),		
	p = 3.38 g/cm ³ ; 13.6 v/o		
	$U(N), \bar{\rho} = 2.58 \text{ g/cm}^3; 11.8$		
	v/o Fe, $\overline{\rho}$ = 0.92 g/cm ³ ;	·	
	52.3 v/o Al, $\overline{\rho}$ = 1.40 g/cm ³ ;		
	4.2 v/o void		
(56)	cylinder, 21.00" diam x 22.00"	U(0.30), 6.00" thick	238 ± 1
	long, av composition U(10.15),	on periphery, 8.00"	(critical)
	$\overline{\rho}(U) = 18.78 \text{ g/cm}^3$ (homogeneous	thick on ends	
	metal on axis surrounded by		
	interleaved 0.118" thick		
	U(93.3) and U(N) to average		
	same U ²³⁵ enrichment)		

²Unlisted, is a nonuniform assembly of mixed plates and rings of U(93.4) and U(N) that enclose a near-central cylindrical cavity, 15.0" diam x 11.8"; outside dimensions of the assembly are 21.0" diam x ~21" high (S. J. Balestrini, G. A. Jarvis, J. D. Orndoff, December 1961). Average composition bounding cavity is U(27), ~4-1/2" thick U(N) rings form top and bottom of cylinder. At critical, the total mass is ~1400 kg U(N) and 339 kg U(93.4). Uncorrected for 1/4" thick steel plate supporting portion above cavity.

^bCorrected for small gap between assembly halves.

 $^{\rm C}Average$ thickness of core discs, blocks, and shaped Al fillers: U(93.6) ~0.4", U(N) ~0.3", Fe ~0.25", Al ~0.9".

HIGHLY ENRICHED U METAL, REFLECTOR OF Th, W, WC, MO OR NO2C

		core			reflector						
ref	shape	dimensions (in.)	material	<pre> vector (total U) (g/cm³) </pre>	material	shape	thickness (in.)	p (total) (g/cm ³)	^m c (kg U ²³⁵)	(kg U ²³⁵)	Mmax
(11)	sphere	(nesting shells)	U(93.9)	18.6	Th	sphere	1.81	11.48	34.7 ± 0.2	34.2	162
(16) (57)	cylinder	5.967 dia, h _c /d = 0.59	U(93.16)	18.75	Th	(21.0" equi- lateral cyl)		11.58	28.0 ± 0.3	26.9	
(11)	sphere	(nesting shells)	V(93.9)	18.75	W-alloy ^a	sphere	2.00	17.39	24.1 ± 0.2		159
(11)	sphere	(nesting shells)	U(93.9)	18,75	W-alloy ^a	sphere	4.00	17.39	19.4	18.3	44
(11)	cylinder	5.25 dia, h _c /d = 1.25 ^b	U(93,3)	18.75	W-alloy ^C	cylinder	0.500	17.3	40.6 ± 0.1		1250
(11)	cylinder	5.25 dia. h _c /d = 0.97b	U(93.3)	18.75	W-alloy ^C	cylinder	1.000	17.3	31.75 ± 0.1		128
(17)	cylinder	4.25 dia	V(93.5)	18.7	W-alloy ^d	cylinder	2.00, but one end 3.00	17.3	27.36	critica	al I
(8)	sphere	(shells) 0.83 i.d.	U(93.9)	18.45	WC	pseudosphere	2.9 av	~14.7	18.7	15.1	13
(8)	sphere	(shells) 0,83 i.d.	U(93.9)	18.45	WC	pseudosphere	4.5 av	~14.7	16.6	15.1	29
(8)	sphere	(shells) 0.83 i.d.	U(93.9)	18.45	WC.	pseudosphere	6.5 av	~14.7	16.3	15.1	36
(10)	pseudosphere	(1/2" min blocks)	U(78.3)	17.8	WC	(14" cube)		14.7	20.8 ^e	critics	1
(17)	cylinder	4.25 dia	U(93.5)	18.7	WC	cylinder	2.00	~14.7	24.4	23.6	80
(11)	cylinder	5.25 dia, h _c /d = 1.29 ^b	U(93,3)	18.75	No (99.8 w/o)	cylinder	0.500	10.53	41.7		210
(11)	cylinder	5.25 dia, h _c 'd = 1.01 ^b	U(93.3)	18.75	No (99,8 w/o)	cylinder	1.000	10.53	32.9		141
(11)	cylinder	5.25 dia. h _c /d - 1.23 ^b	U(93,3)	18.75	No2Ct	cylinder	0.500	9.57	39.9		27 0
(11)	cylinder	5.25 dia, h _c /d = 0.95 ^b	U(93.3)	18.75	Mo2Ct	cylinder	1.000	9.57	30.9		110

* Composition 90 w/o W, 7 w/o Ni, 3 w/o Cu

b Core of discs 1.20" to 0.075" thick; m_c corrected empirically for incidental reflection, diaphragm supporting part of assembly, and 0.05 in.³ central cavity

^C Composition 91.3 w/o W, 5.5 w/o Ni, 2.5 w/o Cu, 0.7 w/o 7r

 $^{\rm d}$ Composition 92 w/o W, 5.5 w/o Ni, 2.5 w/o Cu

^e For cylinders in this reflector, m_c/m_c (sphere) = 0.98, 0.96, 0.93 when h_c/d = 0.92, 0.63, 1.60, respectively

^f Composition 95 to 96 w/o Mo_2C , 4 to 5 w/o Ni

HIGHLY ENRICHED U METAL, REFLECTOR OF Zn, Cu, Ni, Co, OR Fe

		core			reflector						
ref	shape	dimensions (in.)	material	<pre>p (total U) (g/cm³)</pre>	material	shape	thickness (in.)	ρ̃(total) (g/cm ³)	^π c (kg υ ²³⁵)	max (kg U ²³⁵)	M _{max}
(11)	sphere	(nesting shells)	U(93.9)	18,7	7.n	sphere	2.00	7.04	30.0	28.5	52
(11)	sphere	(nesting shells)	U(93.9)	18,5	Zn	sphere	4.075	7.04	25.4 ± 0.3	23.9	46
(11) (55)	sphere	(nesting shells)	U(9 3,8)	18.38	Cu	sphere	1,980	8.88	26.4 ± 0.2		118
(11) (55)	sphere	(nesting shells)	U(9 4.0)	18,43	Cu	sphere	4,158	8,88	20.8 ± 0.2		141
(11)	cylinder	5.25 dia, h _c /d - 1.29 ^a	U(93.3)	18.75	Cu ^b	cylinder	0.500	8.87	42.16 ± 0.1		330
(11)	cylinder	5.25 dia, h _c 'd = 1.03 ^ª	U(93.3)	18.75	പം	cylinder	1.000	8.87	33.44 ± 0.1		190
(8)	pseudosphere	(1/2" min blocks)	U(94.0)	18.7	"A"-Ni	pseudosphere	8-3/4 av	8.88	19.9	critic	n 1
(11) (55)	sphere	(nesting shells)	U(9 3,8)	18,38	"A"-H1	sphere	1.945	8,90	27.5 ± 0.4	25.9	42
(11)	cylinder	5.25 dia, h _c /d = 1.29 ⁸	U(93.3)	18.75	Ni (elect)	cylinder	0.500	8.79	42.0		170
(11)	cylinder	5.25 dia, $h_c/d = 1.04^a$	U(93.3)	18,75	Ni (elect)	cylinder	1.000	8.79	34.0		190
(11)	cylinder	5.25 dia, h _c /d = 1.27 ^a	U(93.3)	18.75	Co (reag)	cylinder	0.500	8.72	41.5		102
(11)	cylinder	5.25 dia. $h_c/d = 1.02^a$	U(93.3)	18.75	Co (reag)	cylinder	1.000	8.72	33.3		117
(11)	sphere	(nesting shells)	U(93.9)	18.6	Fe (cast)	sphere	2.00	7.16	29.7 ± 0.3	28.5	59
(11)	sphere	(nesting shells)	U(93.9)	18.4	Fe (cast)	sphere	4.00	7.16	26.0 ± 0.2		143
(18)	sphere	(thick shells)	U(93.9)	18.52	steel	(60" cube)		~7.7	23.4		64
(11)	cylinder	5.25 dia, h _c /d - 1.42 ⁸	U(93.3)	18.75	Fe ^C	cylinder	0.500	7.78	46.3 ± 0.2		105
(11)	cylinder	5.25 dia, h _c /d = 1.18 ²	U(93.3)	18.75	Fe ^C	cylinder	1.000	7.78	38.38 ± 0.1		340
(17)	cylinder	4.25 dia	U(93.5)	18.7	Fe ^c	cylinder	4.00	7.78	33.6	26.9	13

^a Core of discs 1.20" to 0.075" thick; m_c corrected empirically for incidental reflection, diaphragm supporting part of assembly, and 0.05 in.³ central cavity

^b Cast Cu, 1/2 to 1 w/o impurity

^C Steel, SAE 1020

		core	core		reflector					
ref	shape	dimensions (in.)	material	<pre>p (total U) (g/cm³)</pre>	material	shape	thickness (in.)	<pre>F (total) (g/cm³)</pre>	^m c (kg U ²³⁵)	Mmax
(11)	cylinder	5.25 dia, h _c /d - 1.61 ⁸	U(93.3)	18.75	тı ^b	cylinder	0.500	4.50	52.4 ± 0.6	16
(11)	cylinder	5.25 dia, $h_c/d = 1.38^{a}$	U(93.3)	18.75	Ti ^b	cylinder	1.000	4.50	45.0 ± 0.1	125
(19)	sphere	(nesting shells)	U(93.18)	18.40	Al (2014)	sphere	2.610 ± 0.03	2.82	34.71 ± 0.1	170
(11)	cylinder	5.25 dia, $h_c/d = 1.59^{a}$	U(93.3)	18.75	A1 (25)	cylinder	0.500	2.70	52.0 ± 0.6	17
(11)	cylinder	$5.25 \text{ dia,} \\ h_c/d = 1.35^{a}$	U(93.3)	18.75	A1 (25)	cylinder	1.000	2.70	44.1 ± 0.1	200
(11)	cylinder	5.25 dia, $h_c/d = 1.40^{a}$	U(93.3)	18.75	^{^12} 03	cylinder	0.500	2.76	45.5	~ 100
(11)	cylinder	5.25 dia, $h_c/d = 1.14^a$	U(93.3)	18.75	^{^120} 3	cylinder	1.000	2,76	37.2	~150
(11)	cylinder	5.25 dia, $h_c/d = 1.66^a$	U(93.3)	18.75	Mg (FS-1)	cylinder	0.500	1.77	54.2 ± 0.7	13
(11)	cylinder	5.25 dia, h _c /d = 1.46 ⁸	U(93.3)	18.75	Mg (FS-1)	cylinder	1.000	1.77	47.7 ± 0.3	34
(11)	sphere	(nesting shells)	U(93.9)	18.5	Be	sphere	1.85	1.84	22.2 ± 0.2	100
(11)	sphere	(nesting shells)	U(93.9)	18.75	Be	sphere	1.89	1.84	21.6	24
(11)	sphere	(nesting shells)	U(93.6)	18.6	Be	sphere	4.64	1.84	13.1 ± 0.2^{c}	143
(11)	cylinder	$\frac{5.25 \text{ dia}}{h_c/d} = 1.19^8$	U(93.3)	18.75	Be (∩MV)	cylinder	0.500	1.84	38.89 ± 0.1	480
(11)	cylinder	$5.25 dia, h_c/d = 0.90^a$	U(93.3)	18.75	Be (QMV)	cylinder	1.000	1.84	29.28 ± 0.1	210
(12)	cylinder	15.00 dia, h _c /d = 0.131	U(93.4)	17.7	Be	cylinder	1.00	1.80	93.9 ± 0.9	25
(12)	cylinder	15.00 dia, h _c /d = 0.090	U(93.4)	17.7	Be	cylinder	2.00	1.80	64.9 ± 1.0	23
(12)	cylinder	15.00 d1a, h _c 'd = 0.068	U(93.4)	17.7	Be	cylinder	3.00	1.80	49.0 ± 1.0	35
(12)	cylinder	15.00 dia, h _c /d = 0.053	U(93.4)	17.7	Be	cylinder	4.00	1.80	37.8 ± 0.5	13
(12)	cylinder	15.00 dia, h _c /d = 0.042	U(93.4)	17.7	Ве	cylinder	5.00	1,80	30.4 ± 0.5	15
(11)	pseudosphere	(1/2" min blocks) ^d	U(94)	18.7	BeO	pseudosphere	2.35 av	2.69	19.7	85
(11)	pseudosphere	(1/2" min blocks) ^d	U(94)	18.7	BeO	pseudosphere	3.5 av	2.69	16.5	105
(10)	pseudosphere	(1/2" min blocks)	U(82.7)	17.8	BeO	(24" cube)		~ 2.69	10.3	critical

TABLE IC3 HIGHLY ENRICHED U METAL, REFLECTOR OF T1, A1, A1203, Mg. Be. OR BeO

^a Core of discs 1.20" to 0.075" thick; m corrected empirically for incidental reflection, diaphragm supporting part of assembly, and 0.05 in.³ central cavity

TABLE IC4a

HIGHLY ENRICHED U METAL, COMPLETE GRAPHITE REFLECTOR Graphite is grade CS-312 except as noted

		core			r	eflector			
ref	shape	dimensions (in.)	material	<pre>F (total U) (g/cm³)</pre>	shape	thickness (in.)	ہ (g/cm ³)	$\frac{m_c}{(kg U^{235})}$	M_max
(20)	sphere	(nesting shells) ²	U(93.9)	18.7	sphere	2.00	1.67	29.6 ± 0.3	58
(20)	sphere	(nesting shells) ²	U(93.9)	18.7	sphere	4.00	1.67	24.3 ± 0.2	150
(20)	sphere	(nesting shells) ^a	U(93.9)	18.45	sphere	6.00	1.67	21.5 ± 0.2	150
(20)	sphere	(nesting shells) ^a	U(93.9)	18.75	sphere	8.00	1.67	19.5 ± 0.3	42
(20)	sphere	(nesting shells) ²	U(93.9)	18.5	pseudosphere ^b	17 av	1.66	17.0	48
(20)	cylinder	$3.25 \text{ dia,} h_c/d = 2.95^{C}$	U(93.7)	18.5	pseudosphere ^b	17 av	1,66	22.5	17
(20)	pseudocylinder	$3.62 \text{ av } d1a, h_c/d = 1.85^d$	U(94)	18.7	pseudosphere ^b	17 av	1,66	20.1	40
(20)	cylinder	3.98 dia, h _c /d = 1.30 ^C	U(93.7)	18.5	pseudosphere ^b	17 av	1.66	18.3	109
(20)	cylinder	$4.75 \text{ dia,} h_2/d = 0.815^{\circ}$	U(93.7)	18.5	pseudosphere ^b	17 ev	1.66	17.5	82
(20)	cylinder	5.50 dia, h ₂ /d = 0.495 ^C	U(93.8)	18.5	pscudosphere ^b	17 av	1.66	18.5	78
(20)	cylinder	$6.375 \text{ dia}, h_2/d = 0.345^c$	U(94.0)	18.5	pscudosphere ^b	17 av	1.66	20.0	107
(20)	cylinder	7.50 dia. h_/d = 0.235 ^c	U(94.0)	18.5	pseudosphere ^b	17 av	1.66	22.7	150
(20)	pseudocylinder	h = 1.50, $h_{\rm p}/d = 0.177^{\rm d}$	U(94.0)	18.7	pseudosphere ^b	17 av	1.66	24.6	90
(20)	pseudocylinder	h = 1.00, $h_{1}/d = 0.081^{d}$	U(94.0)	18.7	pscudosphere ^b	17 av	1,66	34.8	200
(11)	cylinder	5.25 dia, h_/d = 1.42 ^e	U(93.3)	18.75	cylinder	0.500	1.67	46.35 ± 0.2	51
(11)	cylinder	$5.25 dia, h_2/d = 1.16^e$	U(93.3)	18.75	cylindor	1.000	1.67	37.71 ± 0.1	>500
(12)	cylinder	c 3.24 dia, h_/d = 6.79	U(93.2)	18.7	cylinder	4.85	1.60	51.7 ± 0.9	233
(12)	cylinder	3.24 dia, h_/d = 4.97	U(93.2)	18.7	cylinder	5.75	1.60	37.9 ± 0.7	1350
(12)	cylinder	c 3.24 dia, h_/d = 4.41	U(93.2)	18.7	cylinder	6.25	1.60	33.6 ± 0.7	460
(12)	cylinder	$15.00 \text{ dia}, \text{ h}/\text{d} = 0.073^{\text{f}}$	U(93.4)	17.7	cylinder	7.00	1.60	52.1 ± 1.0	20
(21)	cylinder	c 10.50 dia, h /d = 0.192^{g}	U(93.4)	18.7	cylinder	2.00	1.68	50.0	18
(14)	annulus	12.25 o.d. x 6.00 i.d. x 2.86	U(93.4)	18.7	(envelops core)	2.00	~1,67	73.3 ± 0.3	(m _{max} = 71.0)

^a Uncorrected for 0.05 in.³ central source cavity

^b Pile-grade graphite surrounds $\sim 5^{\circ}$ thick CS-312

^C Interlocking rings; uncorrected for 0.06 in.³ central source cavity

d Formed of 1/2" min blocks

^e Core of discs 1.20" to 0.075" thick; m_corrected empirically for incidental reflection, diaphragm supporting part of assembly, and 0.05 in.³ central cavity

 $^{\rm f}$ Core of 0.3 cm thick plates: empirical correction for diaphragm supporting part of assembly

^g Core of 0.315" thick plates; empirical correction for diaphragm supporting part of assembly

TABLE IC4b

HIGHLY ENRICHED U METAL, PARTIAL GRAPHITE REFLECTOR

Reflector same diameter as core where on ends only

Corrected empirically for diaphragm supporting part of assembly, for incidental reflection, and for small source cavity (no correction required for last item)

		co	re		r	eflector			
ref	shape	dimensions (in.)	material	<pre></pre>	surfaces reflected	thickness (in.)	⊽ (g/cm ³)	^m c (kg U ²³⁵)	M _{max}
(5)	cylinder	15.00 dia	U(93.3)	17.9 ± 0.2	top plane	1.00	1.79	135.5 ± 0.5	123
(5)	cylinder	21.00 dia	U(93,2)	18.2 ± 0.2	top plane	1.00	1.73	242.3 ± 0.7	60
(5)	cylinder	15.00 dia	U(93.3)	17.9 ± 0.2	top plane	2.00	1.79	125.4 ± 0.5	46
(5)	cylinder	21.00 dia	U(93.2)	18.2 ± 0.2	top plane	2.00	1.73	222.3 ± 0.6	140
(5)	cylinder	15.00 dia	U(93.3)	17.9 ± 0.2	top plane	6.00	1.70	114.9 ± 0.4	135
(5)	cylinder	21.00 dia	U(93.2)	18.2 ± 0.2	top plane	6.00	1.76	192.3 ± 0.6	98
(5)	cylinder	15.00 dia	U(93,3)	17.9 ± 0.2	both planes	6.00	1.7	75.4 ± 0.3	37
(5)	cylinder	21.00 dia	U(93.2)	18.2 ± 0.2	both planes	6.00	1.7	103.5 ± 0.3	46
(5)	cylinder	15.00 dia	U(93.3)	17.9 ± 0.2	top plane	7.00	1.71	113.9 ± 0.4	43
(5)	cylinder	21.00 dia	U(93.2)	18.2 ± 0.2	top plane	7.00	1.76	190.2 ± 0.6	95
(5)	cylinder	15.00 dia	V(93.3)	17.9 ± 0.2	both planes	7.00	1.7	73.0 ± 0.3	107
(5)	cylinder	21,00 dia	U(93.2)	18.2 ± 0.2	both planes	7.00	1.7	99.4 ± 0.3	48
(5)	cylinder	15.00 dia	U(93.3)	17.9 ± 0.2	top plane	8.00	1.72	113.2 ± 0.4	55
(5)	cylinder	21.00 dia	U(93.2)	18.2 ± 0.2	top plane	8.00	1.75	188.4 ± 0.6	101
(5)	cylinder	15.00 dia	U(93.3)	17.9 ± 0.2	top plane	12.00	1.70	113.4 ± 0.4	52
(5)	cylinder	21.00 dia	U(93.2)	18.2 ± 0.2	top plane	12.00	1.76	185.7 ± 0.6	67
(5)	cylinder	15.00 dia	U(93.3)	17.9 ± 0.2	top plane	14.00	1.71	113.3 ± 0.4	54
(5)	cylinder	21.00 dia	U(93.2)	18.2 ± 0.2	top plane	14.00	1.76	185.3 ± 0.6	76
(21)	cylinder	10.50 dia, h _c /d = 0.226	U(93.4)	18.7	both planes	2.00	1.68	58.7	20
(22)	annulus	21.00 o.d. x 15.00 i.d. x 3.44	U(93.16)	17.9	(across both planes)	6,00	1.7	164.6	330
(23)	annulus	6.14 o.d. x 3.85 i.d. x 6,36	U(93.15)	18.7	top, bottom, wall (none inside)	9.5 8.9	1.67	32.7 ± 0.3	28

TABLE IC5

HIGHLY ENRICHED U METAL, REFLECTOR OF D₂O (99.8%)⁽²⁴⁾

	core						
shape	dimensions (in.)	material	<pre>p (total U) (g/cm³)</pre>	reflecto thickness (in.)	r (sphere) container	^m c (kg U ²³⁵)	M max
sphere	(nesting shells)	U(93.9) ^a	18.5	3.28	0.04" ss	23.3	36
sphere	(nesting shells)	U(93.9) ^a	18.5	4.59	0.10" A1	20.5	22
sphere	(nesting shells)	U(93.9) ^a	18.5	5.50	0.04" ss	19.0	55
sphere	(nesting shells)	U(93.9) ^a	18.5	6.84	0.04" ss	17.1	40
sphere	(nesting shells)	U(93.7) ^a	18.5	15.3	0.2" ss	13.4	>400
sphere surrou nded by 0.010" Cd	(nesting shells)	U(93.9) ^a	18.5	6.7	0.0 4 " ss	20.9	m _{max} = 18.0
sphere surrounded by 0.010" Cd	(nesting shells)	U(93.9) ^a	18.5	15.1	0.2" ss	20.2	m = 18.0 max
hollow sphere, filled with D ₂ O	3.60 i.d.	U(93.9)	18.5	14.9	0.2" ss	16.4	16
hollow sphere, filled with D ₂ O	4.08 i.d.	U(93.7)	18.5	14.7	0,2" ss	17.2	32
hollow sphere, filled with D ₂ O	4.97 i.d.	U (93. 7)	18.5	14.4	0.2" ss	18.3	18

^a Empirical correction for small central source cavity

TABLE ICS.

HIGHLY ENRICHED U METAL, COMPLETE REFLECTOR OF H_2O or polyethylene See also first item of Table IIF3

		core			reflector				_		
ref	shape	dimensions (in.)	material	<pre>p (total U) (g/cm²)</pre>	material	shape	thickness (in.)	ρ (g/cm ³)	ⁿ c (kg U ²³⁵)	Max	
(25)	sphere	(shells) 0.83 i.d.	U(93.9)	18.5	н ₂ 0	cylinder	>12	1.00	23.4	49	
(25)	sphere surrounded by 0.010" Cd	(shells) 0.83 i.d.	U(93.9)	18.4	н ₂ 0	cylinder	>12	1.00	32.9	32	
(20)	sphere	(nesting shells) ^a	U(93.9)	18.5	^н 2 ⁰	cylinder	>12	1.00	23.2	154	
(24)	sphere	(nesting shells) ^a	U(93.9)	18.5	^н 2 ⁰	sphere	3.25	1,00	23.5	35	
(24)	hollow sphere, filled with H ₂ O	3.60 1.d.	U(93.9)	18.5	н ₂ 0	sphere	14.6	1.00	25.1	40	
(24)	hollow sphere, filled with H ₂ O	4.08 1.d.	U(93.9)	18.5	н ₂ 0	sphere	14.4	1.00	26.3	80	
(24)	hollow sphere, filled with H ₂ O	4.68 i.d.	U(93.8)	18.5	н ₂ 0	sphere	14.3	1.00	27.7	19	
(20)	cylinder	3.98 dia. h _c /d = 1.90 ^a	U(93.7)	18.5	H20	cylinder	>12	1.00	26.7	200	
(20)	cylinder	4.75 dia, h_/d = 0.98 ²	U(93.8)	18.5	^н 2 ⁰	cylinder	>12	1.00	23.7	101	
(20)	cylinder	5.50 dia, h_/d = 0.66 ^ª	U(93.8)	18.5	^н 20	cylinder	>12	1.00	24.4	200	
(20)	cylinder	6.375 dia, h_/d = 0.46 ^a	U(94.0)	18.5	^H 2 ^O	cylinder	>12	1.00	25.9	150	
(20)	cylinder	7.00 dia, h_/d = 0.365 ^a	U(94.0)	18.5	^н 2 ⁰	cylinder	>12	1.00	27.7	108	
(20)	cylinder	7.50 dia, h _c /d = 0.300 ^a	U(94.0)	18.5	^H 2 ^O	cylinder	>12	1.00	29.0	53	
(23)	annulus	6.14 o.d. x 3.85 i.d. x 5.75 ⁵	U(93.15)	18.75	H20	cylinder	>12	1.00	29.6 ± 0.5	35	
(26)	hemishell, segmented	12.0 o.d., 10.0 i.d.	U(93.5)	18.75	н ₂ 0	cylinder	>6	1.00	56	20	
(12)	cylinder	3.24 dia. h _c /d = 12.2	U(93.2)	18.7	н ₂ 0	cylinder	>12	1.00	93.2 ± 5	43	
(12)	cylinder	$15.00 \text{ dia}, h_c/d = 0.082^{C}$	U(93.4)	17.7	н ₂ 0	cylinder	>12	1.00	59.0 ± 0.5	170	
(11)	cylinder	5.25 dia, h_/d = 1.34^{d}	V(93.3)	18.75	polyethylene	cylinder	0.500	0.921	43.7	140	
(11)	cylinder	5.25 dia, h_/d = 1.00 ^d	U(93.3)	18.75	polyethylene	cylinder	1.000	0.921	32.7	140	
(12)	cylinder	3.24 dia, h_/d = 8.0	U(93.2)	18.7	polyethylene	cylinder	4.00	0.92	61.3 ± 0.9	161	
(12)	cylinder	- 15.00 dia, h_/d = 0.095 ^c	U(93.4)	17.7	polyethylene	cylinder	2.00	0.92	68.4 ± 0.9	79	
(14)	annulus	12.25 o.d. x 6.00 i.d. x 2.20	U(93.4)	18.7	polyethylene	(envelops core)	3.00	0.92	56.6 ± 0.3	Maa >¤c	

.

^a Uncorrected for 0.05 in.³ central source cavity

b Water fills annulus

^C Core of 0.3 cm plates; empirical correction for small source cavity and diaphragm supporting part of assembly (not used with H₂O reflector)

d Empirical correction for small central cavity and support effects

^e Corrected for small gap in final configuration

TABLE IC6b

HIGHLY ENRICHED U METAL, COMPLETE REFLECTOR OF PARAFFIN Paraffin reflector cylindrical, >8" thick, $\overline{\rho} = 0.89 \text{ g/cm}^3$

		CO				
ref	shape	dimensions (in.)	material	<pre> p (total U) (g/cm³) </pre>	$\frac{m_c}{(kg U^{235})}$	Mmax
(20)	sphere	(nesting shells) ^a	U(93.9)	18.5	22.2	62
(25)	sphere	(shells), 0.83 i.d.	U(93.9)	18.5	22.8	69
(20)	cylinder	3.25 dia, h _c /d = 4.4 ^b	U(93.7)	18.5	35	11
(20)	cylinder	3.98 dia, h _c /d - 1.80 ^b	U(93.7)	18.5	25.0	77
(20)	cylinder	4.75 dia, h _c /d = 0.915 ^b	U(93.8)	18.5	22.2	108
(20)	cylinder	5.50 dia, h _c /d = 0.605 ^b	U(93.8)	18.5	22.4	123
(20)	cylinder	6.375 dia, h _c /d = 0.45 ^b	U(94.0)	18.5	24.5	200
(20)	cylinder	7.50 dia, h _c /d = 0.280 ^b	U(94.0)	18.5	26.9	86

^a Uncorrected for 0.05 in.³ central source cavity

 $^{\rm b}$ Interlocking rings ${\sim}0.4^{\prime\prime}$ thick, uncorrected for 0.05 in, 3 central source cavity

TABLE IC6c

HIGHLY ENRICHED U METAL, PARTIAL REFLECTOR OF H,0, POLYETHYLENE, LUCITE, OR PARAFFIN (5)

Reflector same diameter as core

Core of 0.3 cm plates and rings; m_c corrected empirically for diaphragm supporting part of assembly, for incidental reflection, and for small central source cavity

	core			reflector				
cylinder dia (in.)	material	<pre>p (total U) (g/cm³)</pre>	material	surfaces reflected	thickness (in.)	ρ (g/cm ³)	^m c (kg U ²³⁵)	Max
15.00	U(93.3)	17.9 ± 0.2	н ₂ 0 ^а	top plane	6.00	1.00	109.6 ± 0.4	250
21.00	U(93.2)	18.2 ± 0.2	н ₂ 0 ^а	top plane	6.00	1.00	188.5 ± 0.7	99
15.00	U(93.3)	17.9 ± 0.2	polyethylene	top plane	1.00	0.925	128.2 ± 0.5	167
21.00	U(93.2)	18.2 ± 0.2	polyethylene	top plane	1.00	0.925	228.4 ± 0.6	125
15.00	U(93.3)	17.9 ± 0.2	polycthylene	top plane	2.00	0.925	113.6 ± 0.4	57
21.00	U(93.2)	18.2 ± 0.2	polyethylene	top plane	2.00	0.925	198.5 ± 0.6	35
15.00	U(93.3)	17.9 ± 0.2	polyethylene	both planes	2.00	0.925	73.1 ± 0.3	73
21.00	U(93.2)	18.2 ± 0.2	polyethylene	both planes	2.00	0.925	117.4 ± 0.3	90
15.00	U(93.3)	17.9 ± 0.2	polyethylene	top plane	3.00	0.925	109.3 ± 0.4	77
21.00	U(93.2)	18.2 ± 0.2	polyethylene	top plane	3.00	0.925	190.3 ± 0.6	280
15.00	U(93.3)	17.9 ± 0.2	polyethylene	top plane	4.00	0.925	108.5 ± 0.4	75
21.00	U(93.2)	18.2 ± 0.2	polycthylene	top plane	4.00	0.925	188.5 ± 0.6	160
15.00	U(93.3)	17.9 ± 0.2	polyethylene	top plane	6.00	0.925	108.7 ± 0.4^{b}	99
21.00	U(93.2)	18.2 ± 0.2	polyethylene	top plane	6.00	0.925	187.9 ± 0.6 [°]	195
15.00	U(93.3)	17.9 ± 0.2	polyethylene	top plane	8.00	0.925	108.5 ± 0.4	110
21.00	U(93.2)	18.2 ± 0.2	polyethylene	top plane	8.00	0.925	187.8 ± 0.6	245
15.00	U(93.3)	17.9 ± 0.2	polyethylene	top plane	10.00	0. 92 5	108.5 ± 0.4	120
21.00	U(93.2)	18.2 ± 0.2	polyethylene	top plane	10.00	0.925	187.6 ± 0.6	102
15.00	U(93.3)	17.9 ± 0.2	lucite	top plane	6.00	1.18	106.4 ± 0.4	52
21.00	U(93.2)	18.2 ± 0.2	lucite	top plane	6.00	1.18	182.1 ± 0.6	74
15.00	U(93.3)	17.9 ± 0.2	paraffin	top plane	6.00	0.87	109.2 ± 0.4	130
21.00	U(93.2)	18.2 ± 0.2	paraffin	top plane	6.00	0.87	188.5 ± 0.6	49

 $^{\rm a}$ Empirical correction for effect of 1/16" Al tank containing water, via influence of the tank containing lucite

^b Critical mass 129.0 \pm 0.5 (M_{max} - 170) when 0.015" Cd between core and reflector

^c Critical mass 228.4 \pm 0.6 (M_{max} = 38) when 0.015" Cd between core and reflector

TABLE IC7

HIGHLY ENRICHED U, MIXED REFLECTOR⁸

		c	Dre							
ref	shape	dimensions (in.)	material	<pre>p (total U) (g/cm³)</pre>	shape	thickness (1n.)	material	ρ (g/cm ³)	^m c (kg U ²³⁵)	Max .
(27)	sphere	(nesting shells) ^b	U(93.9)	18.4	sphere	1.88	40 w/o Cu 32 w/o Ni 28 w/o Zn	8.55	26.7	89
(27)	sphere	(nesting shells) ^b	U(93.9)	18.75	sphere	2.02	40 w/o Cu 32 w/o Ni 28 w/o Zn	8.55	25.7	46
(28)	sphere	(shells) 0.83 i.d.	U(93.9)	18.45	inside: sphere outside: sphere	(9.00 o.d.) (18.5 o.d.)	U(N) Al	19.0 2.7	20.2	22
(29)	sphere	(shells) 0.83 i.d.	U(93.9)	18.5	inside: sphere outside: sphere	(9.00 o.d.) (13,7 o.d.)	U(N) Al	19.0 2.7	21.8	65
(29)	sphere	(shells) 0.83 i.d.	U(93.9)	18.5	inside: sphere outside: sphere	(9.00 o.d.) (13,7 o.d.)	U(N) Be	19.0 1.84	17.7	300
(30)	sphere	(thick shells)	U(93.2)	18.4	inside: sphere outside: sphere	0.50 1.30 ₅	U(N) Be	19.0 1.84	23.0	••••
(11)	sphere	(nesting shells)D	U(93.5)	18.8	inside: sphere Outside: sphere	2.00 2.00	W-alloy ^C cast iron	17.39 7.16	21.0 ± 0.5	20
(11)	cylinder	5.25 dia, h _c /d = 0.99	U(93.3)	18.75	inside: cylinder outside: cylinder	0.500 0.500	Be Fe	1.84 7.78	32.4	102
(14)	annulus	12.25 o.d., 6.00 i.d., h _c = 1.98	U(93.4)	18.7	inside: (envelops outside: core)	1.00 2.00	U(N) polyethylene	19.0 0.92	50.9	"max >■c
(31)	cylinder	15.00 dia	U(93.3)	17.7	(cyl, top plane only)	2.0 (31 1b)	concrete ^e	~2.3	127.9 ^f	96
(31)	cylinder	15.00 dia	U(93.3)	17.7	(cyl, top plane only)	4.0 (58 lb)	concrete ^e	~2.3	119.5 ^f	10
(31)	cylinder	15.00 dia	U(93.3)	17.7	(cyl, top plane only)	6.0 (89 1b)	concrete ^e	~2.3	117.5 ^f	20
(31)	cylinder	15.00 dia	U(93.3)	17.7	(cyl, top plane only)	8.0 (116 1b)	concrete [®]	~2.3	116.4 ^f	29
(31)	cylinder	15.00 dia	U(93.3)	17.7	(cyl, top plane only)	12.0 (178 lb)	concrete ^e	~2.3	116.1 ^f	35
(31)	cylinder	15.00 dia	U(93.3)	17.7	(cyl, top plane only)	28.0 (406 1b)	concrete ^e	~2.3	115.8 ^f	40

^a Note: Hansen, G. E., Wood, D. P., Geer, W. U., "Critical Masses of Enriched-Uranium Cylinders with Multiple Reflectors of Medium-Z Elements," Nuclear Sci. and Eng. 8, 588-594 (1960). Reported critical masses are not included in this tabulation.

^b Uncorrected for 0.05 in.³ central source cavity

^c Composition 90 w/o W, 7 w/o Ni, 3 w/o Cu

d Corrected for small gap in final configuration

e Class A concrete: 1548 lb 3/4" rock, 1563 lb sand, 517 lb Portland cement, 40.3 gal water

f Unreflected, m_{C} = 152.8 (M_{max} = 168); curves of 1/N vs mass paralleled for this series

U(93.3) METAL CYLINDERS DILUTED WITH Fe, Ni, Cu, OR Zn, 15" DIAMETER, UNREFLECTED Thickness of U(93.3) plates 0.3 cm Plate of diluent at base, portion of sandwich at top, unless noted otherwise Average composition is that of final stack Corrected for influence of supports of split stack

Communicated by G. A. Jarvis

		repeated	layers,	-	-			^m c	max
diluent (A)	vol % U(93.3)	U(93.3)	<u>s (cm)</u> A	p(U) (g/cm ³)	$\rho(A)$ (g/cm ³)	$\frac{h_c}{(in.)}$	h _c /d	(kg U ²³⁵)	(kg U ²³⁵)
Fe	72.8	2.4	0.95	13,28	2.08	4.33	0.289	155.3	151
Fe	62.3	1.5	0.95	11.36	2.88	5.21	0.347	159.9	157
Fe	49.0	0.9	0.95	8.97	3.91	7.02	0.468	170.0	169
Fe	49.0	0.9 ^a	0.95	8.97	3.91	7.00	0.467	169.6	163
Fe	39.1	0.6	0.95	7.18	4.68	9.84	0.656	190.8	187
Fe	38.4	0.6 ^a	0.95	7.01	4.70	9.96	0.664	188.7	182
Ni	72.4	2.4	0.95	13,15	2.35	4,33	0.288	153.7	151
Ni	61.8	1.5	0.95	11.33	3.29	5.14	0.343	157.5	157
Ni	48.1	0.9	0.95	8.82	4.47	6.82	0.455	162.6	157
Ni	39.1	0.6	0.95	7.28	5.26	9.20	0.614	178.8	175
Ni	38.3	0.6 ^a	0.95	7.07	5,34	9.28	0,619	177.3	169
Cu	79.4	3.6	0,95	13.96	1.775	3.85	0.256	150.2	145
Cu	72.3	2.4	0.95	12.56	2.40	4.26	0.284	151.8	145
Cu	66.4	1.8	0.95	12.13	2.92	4.68	0.312	153.4	151
Cu	61.2	1.5	0.95	11.21	3.37	5.06	0.338	153.5	151
Cu	57.4	1.2	0.95	10.50	3.70	5.54	0.369	157.1	151
Cu	50.9	0.9	0.95	9.33	4.28	6.39	0.426	161.1	157
Cu	39.2	0.6	0.95	7.22	5.33	8.33	0.555	162.5	157
Cu	31.8	0.9	1.90	5,93	6.03	10.92	0.728	175.0	169
7.n	38.5	0.6	0.95	7.09	4.32	9,43	0.629	180.7	175

^a U(93.3) plate at base of stack (sandwiches inverted)

U(93.3) METAL CYLINDERS DILUTED WITH Mo, Ta, OR W, 15" DIAMETER, UNREFLECTED

Thickness of U(93.3) plates 0.3 cm

U plate at base, portion of sandwich at top

Average composition is that of final stack

Corrected for influence of supports of split stack

Communicated by G. A. Jarvis

diluent (A)	vol % U(93.3)	repeated thicknes U(93.3)	layers, s (cm)	₽(U) (g/cm ³)	ρ(A) (g/cm ³)	hc (in.)	h _c /d	$\frac{m_c}{(kg U^{235})}$	hax (kg U ²³⁵)
No	89.2	0.6	0.08	16.18	1.080	3.56	0.238	155.8	151
No	79.1	0.3	0.08	15.15	2.09	3,96	0.264	155.1	151
Та	74.5	0.3	0.1	13.43	4.08	4.43	0.295	160.7	151
Та	59.4	0.3	0.2	10.77	6.52	5.73	0.382	166.7	157
Та	49.2	0.3	0.3	8.94	8.16	7.31	0,487	176.5	169
W	73.1	0.3	0.1	13.21	4.92	4.33	0.288	154.4	151
W	57.4	0.3	0.2	10.40	7.83	5.55	0.370	155.8	151
W	47.3	0.3	0.3	8.63	9.72	6.74	0.480	157.2	151
W	40.2	0.3	0.4	7.29	10.99	8.31	0.554	163.7	157
W	35.0	0.3	0.5	6.46	12.15	9,85	0,656	171.9	169
W	30.9	0.3	0.6	5.64	12.80	12.23	0.815	186.5	181

22

U(93.3) METAL CYLINDERS DILUTED WITH A1, Zr, OR Hf, 15" DIAMETER, UNREFLECTED

Thickness of U(93.3) plates 0.3 cm

U plate at base, portion of sandwich at top

Average composition is that of final stack

Corrected for influence of supports of split stack

Communicated by G. A. Jarvis

diluent (A)	vol % U(93.3)	repeated thicknes U(93.3)	layers, s (cm) A	₽(U) (g/cm ³)	$\overline{\rho}(A)$ (g/cm ³)	hc (in.)	h _c /d	^m c (kg U ²³⁵)	m _{max} (kg U ²³⁵)
A1	78.6	0.3	0.08	14.20	0.555	4.14	0.276	159.0	157
A1	64.8	0.3	0.16	11.68	0.912	5.22	0.348	164.9	163
A1	55.2	0.3	0.24	9.97	1.166	6.39	0.426	172.2	169
A1	48.0	0.3	0.32	8.70	1.358	7.67	0.512	180.4	175
A 1	42.6	0.3	0.40	7.75	1.502	9.23	0.615	193.2	1 87
Zr	71.3	0.3	0.1	13.18	1.810	4.44	0.296	158.2	157
Zr	56.6	0.3	0.2	10.31	2.70	5.84	0.389	162.5	157
Zr	46.5	0.3	0.3	8.45	3.32	7.42	0.495	169.4	163
Zr	39.6	0.3	0.4	7.18	3.74	9.22	0.614	178.7	175
Hf	97.3	$\begin{pmatrix} 3 & 6 \\ 3 & 9 \end{pmatrix}^{a}$	0.1	17.55	0.349	3.27	0.218	155.1	151
Hf	93.4	1.5	0.1	16.80	0.837	3.45	0.230	156.6	151
Hf	85.1	0.6	0.1	15.31	1.904	3.82	0.255	158.1	157
Hf	74.1	0.3	0.1	13.30	3.30	4.48	0.299	161.2	157

^a The two thicknesses of U alternate in successive sandwiches

U(93.3) - GRAPHITE CYLINDERS, UNREFLECTED

Thickness of U(93.3) plates 0.3 cm

U plate at base, portion of sandwich at top

Average composition is that of final stack

Corrected for influence of supports of split stack

Communicated by G. A. Jarvis

		•					1. 	. <u>1</u> .
vol % U(93.3)	repeate thickne U(93.3)	d layers, ess (cm) graphite	۵(U) (و/cm ³)	₽ (C) (g/cm ³)	h _c (in.)	h _c ∕d	■ _c (kg U ²³⁵)	$(kg U^{235})$
15" diame	ter cylinder	s:			<u> </u>			
86.0	2.4	0,40	15,56	0.222	3.67	0.245	154.5	145
82.2	1.8	0.40	14.78	0.282	3.88	0.258	155.0	145
79.2	1.5	0.40	14.28	0.330	4.00	0.267	154.7	150
75.5	1.2	0.40	13.97	0.399	4.14	0.276	156.3	150
69.7	0.9	0.40	12.70	0.485	4.54	0.303	156.0	145
60.7	0.6	0.40	11.06	0.631	5.23	0.349	156.5	150
53.6	0.9	0.80	9,97	0.758	5.86	0.390	157.7	153
43.5	0.3	0.40	8.07	0.921	7.48	0.499	163.1	157
33.8	0.6	1.20	6.22	1.075	10.24	0.683	172.3	169
28.0	0.3	0,80	5,26	1,188	13.61	0.908	193.6	187
21" diamet	ter cylinder:	s:						
47.7	0.3	0.32	8.94	0.830	5.46	0.260	267	259
31.8	0.3	0,64	5.97	1.123	7.81	0.372	26 0	247
23.7	0.3	0.95	4.44	1.248	10.48	0.499	258	247
19.00	0.3	1.27	3,56	1.345	13.08	0.623	258	247
15.79	0.3	1,59	2,96	1.392	16.49	0.785	263	259
13.53	0.3	1.90	2.54	1.434	20.1	0.958	274	270
11.89	0.3	2.22	2.23	1.467	23.9	1.138	292	282
10.47	0.3	2.54	1.965	1.540	28.3	1.345	303	294
9.44	0.3	2.86	1.770	1.551	36.4	1.734	350	341
32" square	cross secti	lon, U(93.2)	toil(0.002",	0.003", 0.	005" thic	knesses):		
2.93	0.021 av	0.71	0.539	1.573	35.9	-	303	285
48" cube	in Al matri	x at p - 0.1	65 g/cm ³ , U	(93.15) foil	(0.002".	0.004" th	nicknesses).	Ref. (58):
0,0083	0.0076	av 0.74 sv	0.1558	1.348	48.0	-	263 ± 1	critical

TABLE IIB2a

GRAPHITE-MODERATED HIGHLY-ENRICHED U, REFLECTOR OF GRAPHITE

	<u></u>		core				1	reflector			
ref	dimensions (in.)	U spec	layer t <u>U (total)</u>	hickness graphite	ন (U) (g/cm ³)	₽ (C) (g/cm ³)	surfaces reflected	thickness (in.)	ρ (g/cm ³)	m _c (kg U ²³⁵)	^m max (kg U ²³⁵)
(22)	21.00 dia, h _c /d = 0.112	U(93.3) (47.7 v/o)	0.30 cm	0.32 cm	8.94	0,83	both planes (21.0" dia)	6.00	1.7	112.1 ^a	105,8
(22)	21.00 d1a, $h_c/d = 0.185$	U(93.3) (31.8 v/o)	0.30 см	0.64 cm	5,97	1.12	both planes (21.0" dia)	6.00	1.7	123.3 ^a	117.5
(22)	21.00 dia, $h_c/d = 0.373$	U(93,3) (19.0 v/o)	0.30 см	1.27 cm	3,56	1,34	both planes (21.0" dia)	6.00	1.7	148.4 ^ª	141.1
(22)	21.00 dia, h _c /d = 0.64	U(93.3) (13.5 v/o)	0.30 cm	1.91 cm	2.54	1.43	both planes (21.0" dim)	6.00	1.7	182.7 ⁸	176.3
(22)	21.00 dia, $h_c/d = 1.04$	U(93.3) (10.47 v/o)	0.30 cm	2.54 cm	1,96	1.54	both planes (21.0" dia)	6.00	1.7	228.5 [*]	222.7
(22)	21.00 dia, h _c /d - 1.39	U(93.3) (9.44 v/o)	0.30 cm	2.86 cm	1.77	1.55	both planes (21.0" dia)	6.00	1.7	276.0 ^ª	258.6
(22)	$\frac{21.00 \text{ dia}}{h_c/d} = 2.10$	U(93.3) (8.76 v/o)	0.30 см	3,18 cm	1,62	1,57	both planes (21.0" dia)	6.00	1.7	377.6 ^ª	364.4
(21)	10.50 dia, h _c /d = 0.402	U(93.4)	0.63"	0,50"	10.43	0.72	complete	2.00	1.68	58.4 ^b	(M _{max} - 29)
(32)	48.0 x 48.0 x 48.0	U(93.2)	0.001"	$(C/U^{235} =$	7135)	1.50	complete	12.00	1.55	7.44 [°]	critical
(32)	48.0 x 39.0 x 42.0	U(93.2)	0.001"	(C/U ²³⁵ -	5297)	1.50	complete	12.00	1.55	7.11 ^c	critical
(32)	40.0 x 36.0 x 36.0	U(93.2)	0.001"	(C/U ²³⁵ -	3369)	1.50	complete	12.00	1.55	7.38 [°]	critical
(32)	40.0 x 33,0 x 33.0	U(93.2)	0.001"	(C/U ²³⁵ -	2538)	1.50	complete	12.00	1,55	8.24 ^C	critical
(32)	48.0 x 48.0 x 45.6 ^d	U(93.2)	0,001"	(C/U ²³⁵ -	4685)	1.34	complete	12.00	1.55	9.07 ^c	critical
(32)	42.0 x 39.0 x 40.0	U(93.2)	0.001"	(c/U ²³⁵ =	2972)	1,34	complete	12.00	1,55	9.52 [°]	critical

^a No correction for 0.020" thick ss diaphragm across median plane of assembly

^b Empirical correction for 0.063" ss diaphragm supporting part of assembly

^C Core and reflector contain 0.061 v/o Al (1100F) as matrix of 3" square tubes

^d Three extra 3" square tubes are averaged into this dimension of core

TABLE IIB2b

GRAPHITE-MODERATED HIGHLY-ENRICHED U, REFLECTOR OF Be (PLUS SOME GRAPHITE) Core and reflector contain Al (1100) at $\overline{\rho} = 0.165$ g/cm³ as matrix of 3" square tubes; forms are pseudocylinders One-inch thick unloaded graphite across face 1 of core Core uranium is U(93.2); $\overline{\rho}$ (Be) = 1.66 g/cm³ U foil in core 0.002" thick up to 16.3 kg U²³⁵, beyond which 0.005" thick foil intermixed

All assemblies critical

	Core	e		reflector		
ref	dimensions (in.)	$\frac{\overline{\rho} (C)}{C/U^{235}} \frac{\overline{\rho} (C)}{(g/cm^3)}$	Be thicknes wall	s (in.) face 1 face 2	graphite thickness against core face 2 (in.)	(kg U ²³⁵)
(33)	24.6 av dia x 30.6	125 1.42	4.88 av	4.00 8.00	0.40	53,6
(33)	24.6 av dia x 30.6	125 1.42	5.39 av	4.00 4.00	0.40	53.6
(33)	31.9 av dia x 31.0	395 1.42	5.10 av	4.50 3.20	0.00	28.7
(33)	36.3 av dia x 31.0	395 1.29	5.51 av	3.00 3.00 (1.27" C outside faces of Be)	0.00 both	33.5
(33)	38.4 av dia x 31.0	398 1.30	5.04 av	3.35 3.35	0.00	37.6
(33)	38.4 av dia x 30.0	1022 1.48	4.72 av	3.85 0.00 9.1 C	1.00	16.2
(33)	38.4 av dia x 30.0	1022 1.48	4.72 av	3,85 3,85	1.00	16.2
(34)	55.0 av dia x 52.0	1350 1.17	inside: C, 2.00 av outside: Be, 6.50 av	0.00 0.00 (no C on face)	0.00	32.0

26

TABLE IIC1

LUCITE MODERATED U(93.16), UNREFLECTED

Al matrix throughout core and as incidental reflector, $\overline{\rho}$ (A1) - 0.165 g/cm³

ţ

Probable error in m about \pm 1% for critical systems

Communicated by J. C. Hoogterp

thicknesses of alternating layers (in.)	₽ (U ²³⁵) (g/cm ³)	av atom: H/U ²³⁵	1000000000000000000000000000000000000	dimensions (in.)	(kg U ²³⁵)	M max
0.012 U, 1/16 lucite	2.12	5.99	3.74	23.5 x 12 x 10.87	106.5	critical
0.012 U, 1/16 lucite	2.31	5.99	3.74	23.5 x 12 x 9.26	98.8	critical
0.006 U, 1/16 lucite	1.317	12.12	7.57	15 x 11.4 x 12	44,2	critical
0.002 U, 1/16 lucite	0.491	35.4	22.1	15 x 12 x 11.46	16,61	critical
0.004 U, 1/8 lucite	0.476	35.6	22.3	15 x 12 x 12	16.83	128
0.008 U, 1/4 lucite	0.477	35.4	22.1	15 x 12 x 12	16.89	critical
0.012 U, 3/8 lucite	0.489	35.3	22.2	15 x 12 x 11.65	16.78	critical
0.016 U, 1/2 lucite	0.484	35.2	22.0	15 x 12 x 12.06	17.22	critical
0.022 U, 11/16 lucite	0.494	35.1	22.0	15 x 12 x 12	17.48	critical
0.030 U, 15/16 lucite	0.495	35.1	22.0	15 x 12 x 12.47	18.22	critical

TABLE IIC2a

LUCITE MODERATED U(93.16), ≥ 6 " THICK LUCITE REFLECTOR Al matrix throughout core and reflector, \overline{n} (A1) - 0.165 g/cm³ Probable error in m_c about ± 1 % for critical systems Communicated by J. C. Hoogterp

	r	eflector						
thicknesses Of alternating layers (in.)	ο (U ²³⁵) (g/cm ³)	av atomi H/U ²³⁵	c ratio C/U ²³⁵	critical size (L x H x W-in.)	<pre>P (lucite) (g/cm³)</pre>	thickness/face (L ^a x H x W-in.)	^m c (kg U ²³⁵)	Max
0.006 U, 1/16 lucite	1,311	12.2	7.6	15 x 6 x 8.23	1.007	8.25 x $\binom{6}{9}$ x 9	15.90	critical
0.006 U, 1/16 lucit e	1.213	13.3	8.3	15 x 6 x 8	1.048	8.25 x 6 x 6	14.32	critical
0.006 U, 1/16 lucite	1.109	12.1	7.6	15 x 9 x 7.5	1.037	8.25 x 6 x 6	18.41	critical
0.006 U, 1/16 lucite	0.950	12.0	7.5	15 x 9 x 10.5	1.036	8.25 x 6 x 6	22,06	critical
0.002 U, 1/16 lucite	0.363	35.6	22.3	15 x 9 x 10.5	1.036	8,25 x 6 x 6	8.43	critical
0.002 U, 1/16 lucite	0,452	35,3	22.0	15 x 6 x 10.5	1.044	8.25 x 6 x 6	7.00	critical
0.002 U, 1/16 lucite	0.517	34.3	21.5	15 x 6 x 8	1.040	8,25 x 6 x 6	6.10	254
0.004 U, 1/8 lucite	0.518	34.3	21.5	15 x 6 x 8.03	1.040	8.25 x 6 x 6	6.14	725
0.008 U, 1/4 lucite	0.518	34.3	21.4	15 x 6 x 8.10	1.048	8.25 x 6 x 6	6,19	critical
0.012 U, 3/8 lucite	0.518	34.3	21.5	15 x 6 x 8.13	1.048	8.25 x 6 x 6.12	6.21	critical
0.016 U, 1/2 lucite	0.521	34.3	21.5	15 x 6 x 8.39	1.050	8.25 x 6 x 6.06	6,45	critical
0.0 24 U, 3/4 lucite	0.532	33.5	20.9	15 x 6 x 9.11	1.035	8.25 x 6 x 6.06	7.14	critical
0.030 U, 15/16 lucite	0.509	35.3	22.0	15 x 6 x 10.26	1.031	8.25 x 6 x 6.09	7.70	critical
0.030 U, 13/16 lucite	0.582	30.6	19.1	15 x 6 x 9.48	1.031	8.25 x 6 x 6.26	8.13	519
0.030 U, 11/16 lucite	0.685,	26.0	16.2	15 x 6 x 8.04	1.030	8.25 x 6 x 6.98	8.12	893
0.030 U, 9/16 lucite	0.818	21.2	13.2	15 x 6 x 8.34	1.031	8.25 x 6 x 6.83	10.06	critical
0.030 U, 7/16 lucite	1.021	16.6	10.4	15 x 6 x 7.89	1.030	8.25 x 6 x 7.05	11,89	170
0.008 U, 15/16 lucite	0.138	133.3	83.2	15 x 6 x 17.09	1.001	8.25 x 6 x 6.04	3.47	critical
0.008 U, 11/16 lucite	0.186	97.8	61.1	15 x 6 x 12.35	1.000	8.25 x 6 x 8.33	3.38	critical
0.008 U, 9/16 lucite	0.229	79.4	49.6	15 x 6 x 10.79	1.000	8.25 x 6 x 9.11	3.65	28

^a Reflector thickness on ends averaged to allow for 1/2" irregularity

TABLE IIC2b

LUCITE MODERATED U(93.16) SLABS, 6" THICK LUCITE REFLECTORS ON TWO LARGE SURFACES ONLY

Alternating layers of 0.002" U and 1/16" lucite in core

Al matrix throughout core and reflector, $\overline{\rho}$ (A1) - 0.165 g/cm³

Probable error in m_c about ± 1% for critical systems

Communicated by J. C. Hoogterp

		core		reflector		
<pre></pre>	$\frac{av atom}{H/U^{235}}$	ic ratio C/U ²³⁵	dimensions (in.)	<pre>p (lucite) (g/cm³)</pre>	^m c (kg U ²³⁵)	M _{max}
0.488	35.3	22.1	15 ^a x 6 x 14.53	0.977	10.45	2320
0.422	36.0	22.5	32 x 6 x 13.06	1.007	17.34	critical
0.372	35.7	22.3	32 x 6 x 17.03	1.006	19.96	2320
0.478	36.0	22.5	32 x 5.24 x 12	1.022	15.79	102
0.491	35.9	22.4	32 x 5 x 12	1.022	15.44	18 2 1
0.479	37.3	23.3	32 x 3 x 23.03	1.041	17.37	critical
0,479	35.6	22.2	32 x 3 x 28.5	1.002	21.5	critical
0.431	35.7	22.3	32 x 3 x 54	1.041	36.6	critical
0.474	36.2	22.6	32 x 2.71 x 48	1.040	32.4	187
0.473	36.1	22,6	32 x 2.69 x 52.8	1.037	35.2	critical
0.498	36.2	22.6	32 x 2.50 x 58.9	1.041	38.5	38.6

^a Reflector overhangs fuel 1/2" on both sides

TABLE IIC3

POLYETHYLENE-MODERATED U(93.15) PARALLELEPIPEDS, BERYLLIUM REFLECTOR

CORE: U(93.15) foil interleaved with polyethylene slabs Reflector: Brush QMV S-200-C beryllium, $\overline{\rho} = 1.85 \text{ g/cm}^3$ Reference (59)

		core		-	_
	nominal L x W x H (:	in.)	atomic ratio H/U ²³⁵	$\frac{(kg U^{235})}{(kg U^{235})}$	$\frac{[max]{235}}{[kg]}$
Be	reflector 12.5"	thick,	0.0012" thick	U, polyethyle	ne $\overline{\rho}$ = 0.961 g/cm ³ :
	6.0 x 6.125 x	5.75	375 ^a	0.299	0,291
	6.0 x 6.125 x	4.75	316 ^a	0.292	0.291
	6.0 x 6.125 x	3.75	242 ^a	0.301	0.297
Be	reflector 12.0"	thick,	0.0012" thick	U, polyethyle	ne $\overline{\rho}$ = 0.947 g/cm ³ :
	6.5 x 6.625 x	4.75	340	0.313	0.311
Be	reflector 11.5"	thick,	0.0020" thick	U, polyethyle	ne $\bar{\rho} = 0.883 \text{ g/cm}^3$:
	8.0 x 8.125 x	7.75	540	0.456	0.451
	8.0 x 8.125 x	6.50	489	0.422	0.414
	8.0 x 8.125 x	5.00	411	0.386	0.376
	8.0 x 8.125 x	3.63	318	0.360	0.339
	8.0 x 8.125 x	2.75	248	0.352	0.339
	8.0 x 8.125 x	2.25	190	0.376	0.339

^aU foil on all six sides of core

TABLE IID1

LUCITE-GRAPHITE MODERATED U(93.16), UNREFLECTED

Lucite thickness 1/16" per indicated thicknesses of U and graphite

Al matrix throughout core and as incidental reflector, $\overline{\rho}$ (Al) = 0.165 g/cm³

Probable error in m_c about \pm 1% for critical systems

Communicated by J. C. Hoogterp

thicknesses of layers with 1/16" lucite (in.)	₽ (U ²³⁵) _(g/cm ³)	av atom H/U ²³⁵	ic ratio C/U ²³⁵	dimensions (in.)	^m c (kg U ²³⁵)	M max
0.012 U, 0.120 graphite	0.916	6.02	24.1	23.5 x 18.14 x 18	115.2	critical
0.012 U, 0.280 graphite	0.518	6.04	48.7	23.5 x 28.02 x 24	134.2	317
0.006 U, 0.280 graphite	0.258	12.41	98.2	32 x 24.70 x 24.70	82.4	critical
0.006 U, 0.280 graphite	0.258	12.41	98.2	32 x 13.61 av radius ^a	78.6	critical
0.006 U, 0.280 graphite	0.258	12.27	98.7	23.5 x 28.5 x 28.79	81.4	critical
0.002 U, 0.120 graphite	0.337	35.2	51.8	15 x 15 x 15.69	19.51	critical
0.002 U, 0.120 graphite	0.337	35.2	48.2	15 x 15 x 16.69	20.7	critical
0.002 U, 0.280 graphite	0.224	35.0	101.5	15 x 21 x 21	24.2	critical

a Pseudocylinder with 3" module

TABLE IID2a

LUCITE-GRAPHITE MODERATED U(93.16), LUCITE REFLECTED

U thickness 0.006" and lucite thickness 1/16" per indicated thickness of graphite in core

Al matrix throughout core and reflector, $\overline{\rho}$ (Al) = 0.165 g/cm³

All systems critical, probable error in m_ about ± 1%

Communicated by J. C. Hoogterp

·		_	reflector				
graphite thickness (in.) per 0.006" U, 1/16" lucite	<pre></pre>	av atomic ra H/U ²³⁵ C/U	235 critical size (L x H x W-in.)	00ends	(g/cm ³) sides	thickness/face (L ^a x H x W-in.)	^m c (kg U ²³⁵)
0.280	0.255	12.46 100	.3 23.5 x 24 x 24	1.021	0.938	~6 x 1.50 x 1.50	43.2
0,280	0.223	12.48 100	.6 23.5 x 21 x 21	1.021	0.969	~6 x 4 x 4	37.8
0.280	0.252	12.12 101	.2 23.5 x 18 x 18	1.042	0,984	~6 x 3.75 x 3.75	31.5
0,280	0.244	12.12 101	.2 23.5 x 18 x 18	1.042	1.021	~6 x 7,50 x 7,50	30.5
0,280	0.252	12.05 101	.5 23.5 x 17.25 x 17.4	1.042	0,982	~6 x 6.38 x 6.32	29.0
0.280	0.251	12.10 101	.6 23.5 x 9.57 av radius ^t	1.042	0.980	~6 x 7,10 av ^b	27.8
0.004 av ^C	0.934	12.05 8	.89 15 x 9 x 10.5	1.036	1.036	8.25 x 6 x 6	21.7

^a Low-density 1.5" extension of 6" thick reflector; 8.25" end reflector thickness is averaged over 1/2" irregularity

^b Pseudocylinder with 3" module

^C Average of nonuniformly-distributed 0.120"-thick graphite

TABLE IID2b

LUCITE-GRAPHITE MODERATED U(93.16) SLABS, 6" THICK LUCITE REFLECTORS ON TWO LARGE SURFACES ONLY

Core consists of the successive layers: 0.006" U, 1/16" lucite, 0.280" graphite Al matrix throughout core and reflector, $\overline{\rho}$ (Al) = 0.165 g/cm³ All systems critical, probable error in m_c about ± 1%

Communicated by J. C. Hoogterp

		core		rofloctor	
ρ (U ²³⁵) (g/cm ³)	$\frac{av atom}{H/U^{235}}$	ic ratio C/U^{235}	dimensions (in.)	<pre>Perfector P (lucite)(g/cm³)</pre>	^m c (kg U ²³⁵)
0.239	13.0	106.2	32 x 13.5 x 29.8	1.001	50.4
0.239	13.2	105.4	32 x 12 x 35.4	1.032	53.3
0.239	13.2	106.9	32 x 9 x 110	1.029	124.0
0.254	12.4	99.1	64 x 9 x 39.1	1.042	93.8
0.254	12.5	99.2	64 x 8.25 x 52.6	1.033	115.9

TABLE IIE1 DIFFUSE U(93.1) REFLECTED BY THICK D_2^0 OR Be (CAVITY ASSEMBLIES) U^{235} enrichment of all uranium is 93.15 w/o; detailed descriptions in Ref. (60)

		core	cv	lindric reflector		n	
	cavity cylinder			thickness	interior	(ke 11235)	Mmex
rei	dimensions (in.)	IUEI	Material	(14.)		<u>`````````````````````````````````````</u>	
(35)	40 dia x 40	0.003" U foil covering cavity surface, on av 0.05" Al support	D ₂ 0 (99.2 w/o)	20	1/8" Al, av	6.00	critical
(35)	same except 4" di	a axial channel through b	ottom reflector			6.06	critical
(35)	same except 6" di	a axial channel through b	ottom reflector			6.09	oritical
(35)	same except 8" di	a axial channel through b	ottom reflector			6.19	critical
(35)	same except 9" di	a axial channel through b	ottom reflector			6.26	critical
(35)	same except 10" d	ia axial channel through	bottom reflector			6.40	critical
(35)	same except 23.9	kg D_0 (12" x 12" cyl) at	cavity center (no chan	nel)		5.60 ^b	critical
(35)	40 dia x 40	six 40" discs of 0.035" av U foil 8" apart along cavity	D ₂ 0 (99.2 w/o)	20	1/8" Al, av	7 .97^c	critical
(36)	15-1/2 dia x 31	0.022" av U foil covering cavity sur- face, on 1/16" Al support	Be (7 = 1.77 g/cm ³)	14 wall, 18 top, 15 bottom	-	11.0 ⁴	56
(36)	15-1/2 dia x 31	0.015" av U foil covering cavity sur- face, on 1/16" Al support	Be $(\overline{n} = 1.79 \text{ g/cm}^3)$	18.5 wall, 18 top, 15 bottom	-	7.7*	100
(36)	15-1/2 dia x 31	0.6 o.d., 0.25 i.d. graphite - 22 w/o U rods, distributed uniformly within cavity, parallel to axis	Be (Ā - 1.79 g/cm ³)	18.5 wall, 18 top, 15 bottom	1/16" Al	7.6 ^{0,1}	130
(36)	15-1/2 dia x 16	0.6 o.d., 0.25 i.d. graphite - 22 w/o U rods, distributed uniformly within cavity, parallel to axis	Be (7 - 1.77 g/cm ³)	14 wall, 18 top, 30 bottom	1/16" A1	9.9 ^g	138

^a After correction for Al cavity liner and fuel support, $m_c = 5.33$ kg; 6.93 kg of 0.003" foil covers the cavity completely

^b Corrected for effect of Al container for central D_2O

^C After correction for Al cavity liner and fuel support, $\mathbf{m}_{c} \sim 7.0 \text{ kg}$

d Corrected (-0.04 kg) for Al fuel support

• Corrected (-0.03 kg) for Al cavity liner

 $f_m = 7.30$ kg when fuel concentrated toward outside of cavity, $m_c = 8.60$ kg when fuel concentrated along axis; with 14" reflector wall, $m_c = 9.99$ kg when fuel concentrated toward outside of cavity

E Corrected (-0.02 kg) for Al cavity liner

TABLE IIE2

U(93.65)02F2-D20 SOLUTIONS, BARE, D20 OR GRAPHITE REFLECTED

All systems critical

			co	re						
	(u^{235})	atomic ratio	shane	solution dimensions (in.)	container	shape	reflector dimensions (in.)	composition	(kg 235)	
(37)	0.1094 1" o.d. x	230 ² 7/8" 1.d. ss "	cylinder dry" axial	24.9 dia x 28.1 glory hole	1/8" ss		none		24.5	
(37)	0.0610 1" o.d. x	419 ^a 7/8" i.d. ss "	cylinder dry" axial	24.9 dia x 31.0 glory hole	1/8" ss		none		15.04	
(37)	0.0301 1" o.d. x	856 ⁸ 7/8" i.d. ss "	cylinder dry" axial	30.0 dia x 24.1 glory hole	1/8" ss		none		8.37	
(37)	0.0301 1-1/8" o.d	856 ^a . x 1" i.d. Al	cylinder "dry" axia	30.0 dia x 24.0 1 glory hole	1/8" ss		none		8.33	
(37)	0.0124 1-1/8" o.d	2081 ^a . x l" 1.d. Al	cylinder "dry" axia	30.0 dia x 33.4 1 glory hole	1/8" ss		none		4.78	
(37)	0.679	34.2 ^b	sphere	~13.5 dia	0.04" ss (321)	sphere ^C	10.7 thick D ₂ O	~99.5% D20	14.19	
(37)	0.443	53.7 ^b	sphere	~14.5 dia	0.04" ss (321)	sphere ^c	10.2 thick D_2^0	~99.5% D ₂ 0	11.56	
(37)	0.302	81.2 ^b	sphere	~15.5 dia	0.04" ss (321)	sphere ^C	9.7 thick D ₂ 0	~99.5% D ₂ 0	9.57	
(37)	0.185	135.3 ^b	sphere	~16.5 dia	0,04" ss (321)	sphere ^C	9.2 thick D ₂ O	~99.5% D ₂ 0	7.05	
(37)	0,104	243 ^b	sphere	~17.5 dia	0,04" ss (321)	sphere ^C	8.7 thick D ₂ 0	~99.5% D ₂ 0	4.77	
(37)	0.0595	431 ^b	sphere	~18.5 dia	0,04" ss (321)	sphere ^C	8.2 thick D ₂ O	~99.5% D ₂ 0	3.20	
(38)	1.051 0.9" thick	19.56 ^ª space above s	cylinder olution	12.5 dia x 12.1	ss, 1/16" wall, 1/8" top, bottom	cylinder	32 dia x 31.75 9.67 wall, 10 base, 8.5 top	graphite (CS-312) p = 1.67 g/cm ³	25.51	
(38)	0.595 1.1" thick	39.4 ^a space above s	cylinder olution	14 dia x 13.4	ss, 1/16" wall, 1/8" top, bottom	cylinder	32 dia x 31.75 8.92 wall, 10 base, 7 top	graphite (CS-312) c = 1.67 g/cm ³	20.11	

^a No correction for ~ 1 mole percent H_2^0

^b No correction for ~ 0.3 mole percent H_2^{-0}

^c Stainless steel container 35" i.d., \sim 0.1" thick

35

TABLE IIF1a

U(14.67)02S04-H20 SOLUTION, SPHERE

Solution volume 14.95 liters, container 12" dia, 1/32" thick, type 347 ss sphere

	<u>crit</u>	ical core						
reference	$\begin{array}{c} \rho (U^{235}) \\ \hline (g/cm^3) \end{array}$	atomic ratio H/U ²³⁵	material	ρ (g/cm ³)	shape	outside dimension (in.)	^m c (kg U ²³⁵)	max (kg U ²³⁵)
(39)	0,0378	647	BeO supported on ~12"	2.7 thick grap	pseudosphere hite plate	~36 dia	0.5655	critical
(39)	0,0383	638	BeO supported on ${\sim}12"$	2.7 thick grap	pseudosphere hite plate	~36 dia	0.572 ± 2 ^a	critical
(39)	0.0383	638	BeO (inside) graphite	2.7 1.67	cube cube	24 18 thick	0.573 ± 2 ^a	critical
(39)	0.0492	497	graphite (inside) BeO	1.67 2.7	cube cube	18 12 thick	0.735 ± 10 ⁸	0.66
(39)	0.0508	481	graphite	1.67	cube	48	0.760 ± 10 ^a	0.66
(39),(40)	0.0803	~300	water	1.0	cylinder	60 dia x 60	1.20 ± 0.05^{a}	0.72 ^b

^a Large detector displacing reflector near core, re-entrant tube in core

^b Although this measurement does not satisfy the criterion $m_{max}/m_{c} \ge 0.75$, multiplication curves with several detector types and locations lead to greater reliability than usual

TABLE IIF1b

U(93.5)-PHOSPHATE AQUEOUS SOLUTION, CYLINDERS, 3.0" THICK Fe REFLECTOR^a

Solutions of UO₃ dissolved in 4.26 molar H_3PO_4

Solution cylinder 12.4" dia; 1/8" ss (347) container included in thickness of mild steel reflector

reference	ρ (U ²³⁵) of solution (g/cm ³)	atomic ratio H/U ²³⁵	$\overline{\rho}$ (347 ss) in core (g/cm ³) ^b	solution h_(in.) 	core h _c /d	^m c (kg U ²³⁵)	^m max (kg U ²³⁵)
(41),(42)	0.112	212	0	6.5	0.52	1.43 ± 0.02	1.35
(42)	0.112	212	0.725	10.0	0.81	2.02 ± 0.02	1.93
(42)	0.112	212	1.140	17.1	1.38	3.26 ± 0.03	3.10
(41),(42)	0.101	235	0	6.8	0.55	1.36 ± 0.02	1.27
(42)	0.101	235	0.725	10.8	0.87	1.97 ± 0.02	1.85
(41),(42)	0.090	265	0	7.1	0.57	1.25 ± 0.02	1.23
(42)	0.090	265	0.725	12.1	0.97	1.95 ± 0.04	1.85
(41),(42)	0.075	321	0	7.7	0.62	1.14 ± 0.02	1.10
(42)	0.075	321	0.725	15.6	1.26	$2.10 \pm 0.12 \\ 0.03$	1,83

^a Reflector nearly in contact with top of solution

^b Plates of 1/16" thick type 347 stainless steel distributed throughout the solution as vertical grids

TABLE IIF2

ENRICHED-URANIUM HYDRIDE COMPOSITION®

Cores are homogeneous except that of last entry

	······································			re					
ref	effective composition	$\overline{\rho} (U^{235}) \\ (g/cm^3)$	shape	material	ρ (g/cm ³)	shape	thickness (in.)	^m c (kg U ²³⁵)	Mmax
(43)	U(93.15)H _{2.97} C _{1.11} O.25	6,36	pseudosphere	U(N)	19.0	pseudosphere	~8-1/2	12.61	critical
(43)	U(93.15)H _{2.97} C _{1.11} O.25	6.36	pseudosphere	N1	8.8	pseudosphere	~8-1/2	12.63	critical
(43)	^{U(93.15)H} 2.97 ^C 1.11 ^O .25	6.36	pseudosphere	Ni (inside) U(N)	8.8 19.0	pseudosphere pseudosphere	~1/2 ~8	11.81	critical
(43)	U(93.15)H _{2.97} C _{1.11} O.25	6,36	pseudosphere	Ni (inside) U(N)	8.8 19.0	pseudosphere pseudosphere	~1 ~7-1/2	11.64	critical
(43)	U(93.15)H _{2.97} C _{1.11} O.25	6.36	approx. cube	U(N)	19.0	pseudosphere	~8-1/2	12.98	critical
(44)	U(73.8)H ₁₀ C ₄	2.09	pseudoe H ipsoid	U(N)	18.6	sphere	~6-1/2	6.95 ± 0.12	critical
(44)	U(75.0)H ₁₀ C ₄	2.17	pseudosphere	WC	~14.7	cube	~4-1/2	7.00 ± 0.05	critical
(44)	U(75.0)H ₁₀ C ₄	2.17	approx. cube	WC	~14.7	cub o	~4-1/2	7.53 ± 0.12	critical
(44)	U(73.5)H10 ^C 4	2.06	pseudoellipsoid	РЪ	11.2	sphere	~6-1/2	9.2 ± 0.2	14.5
(44)	U(73.5)H ₁₀ C ₄	2.06	p se udoellipsoid	Fe	7.8	sphere	~6-1/2	8.29 ± 0.17	critical
(44)	U(75.2)H10C4	2.18	approx. cube	BeO	2.69	cube	~6	3.52 ± 0.05	- critical
(44)	U(75.2)H ₁₀ C ₄	2.18	approx. cube	BeO	2.69	cube	~12	2.80 ± 0.06	critical
(44)	U(73.8)H ₁₀ C ₄	2.07	approx. cube		1	none		16.5 ± 1.2	13.7
(45)	av U(94.5)H ₃₈ C _{1.9} (heterogeneous)	5.32	pseudosphere	U(N)	19.0	pseudosphere	~8	11.35	critical

^a Heterogeneous mixtures of U(72)H₁₀C₄ and polyethylene extending to the average composition UH₈₀C₃₉ have not been tabulated because of imperfect reflector assemblies and deficient core densities

^b All cores built of 1/2" cubic units

^c Core composed of 1/2" cubes of U(94.5) metal and of polyethylene, intermixed to average 30 v/o U

TABLE IIF3

LATTICES OF U(94) METAL UNITS, H20 MODERATED, H20 REFLECTF"

Centered in water cylinder, 35-1/2" dia x 23" deep

Reference (46)

U ²³⁵ enrich-	dimensions of	lattic	20	center-center	critical	n _c (ha 11235)	max (b	¥
ment, w/o		structure		spacing (III.)	<u>lo. or units</u>			
94.0	4.0 x 4.0 x 4.5	(801)	la core)	-	T	22.5	20.8	110
94.3	l cube	cubic	approx. cube	1.25	83.4	24.1	22.0	100
94.3	l cube	cubic	approx. cube	1.50	75.0	21.7	18.5	58
94.3	l cube	cubic	approx. cube	1.75	73.0	21. 1	18.5	81
94.3	l cube	cubic	approx. cube	2.00	79.9	23.1	19.7	74
94.52	1/2 cube	cubic	approx. cube	0.75	469	17.0	12,4	22
94.52	1/2 cube	cubic	approx. cube	1.00	378	13.7	12.4	90
94.52	1/2 cube	cubic	approx. cube	1.17	372	13.5	12.4	124
94.52	1/2 cube	cubic	approx. cube	1.50	522	18.9	12.4	34
94.52	1/2 cube	body-center cubic	approx. cube	1.50 in any horiz. plane	368	13.3 ^ª	12.4	143
93.61	1/8 dia x 12 rod	square	pseudocylinder	0.50	171	7.13	6.55	86
93.61	1/8 dia x 12 rod	square	pseudocylinder	0.625	149	6.22 ^b	5.91	125
93.61	1/8 dia x 12 rod	square	pseudocylinder	0.750	152	6,33	6.01	170
93.61	1/8 dia x 12 rod	square	pseudocylinder	0.875	173	7.21	6.55	139
93.61	1/8 dia x 12 rod	square	pseudocylinder	1.00	>203	>8.4	6.55	52

^a With alternate horizontal planes of cubes translated 3/4" to vertical face-center positions, $m_c = 13.6$ kg

^b Non uniform arrays of 1/8" rods gave minimum observed m = 6.08 kg with spacing graded from 1/2" near axis to 1" near periphery

TABLE IIIA1

PLUTONIUM-METAL SPHERES

Hemispheres of Pu(1.0w/o Ga) are coated with ~0.005" thick Ni, unless otherwise noted

	c	ore		reflector				
ref	▼/ 0 Pu ²⁴⁰	<pre>p (total Pu) (g/cm³)</pre>	material	shape	thickness (in.)	<u>(g/cm³)</u>	inc (kg Ρυ)	Mmax
(47) (55)	4.5	15.45		none			16.85 ± 0.10^{a}	critical
(55)	20.2	15.57		none			19.26 ± 0.15^{b}	critical
(47) (55)	1.5	15.63	ע(א)	pseudos phere	9-1/2 av	19.0	5.73 ± 0.02^{c}	critical
(7) (55)	4.82	15.36	ע(א)	spherə	7.72	19.0	5.99 ± 0.03 ^C	critical
(2)	1.35	15.58	U(N)	sphera	4.60	19.0	6.22	94
(48)	4.9	15.62	U(N)	sphere	1.625 ± 1%	18.92	8.39	m _{may} > m ^e
(49) (57)	5.1	15.25	Th	cylinder (21" diam x 21")	8.4 min	11.58	9.24 ⁸	critical
(48)	4.9	15.62	wf	sphere	1.850 ± 1%	17.21	8.39	
(50)	1,35	15,58	Cu	sphere	5.00	8.88	6.88 ⁶	25
(19)	4.9	15.74	Al (2014)	sphere	3.12 ± 0.03	2.82	11.04	
(48)	4.9	15.62	Be (98 w/o)	sphere	1.452 ± 1%	1,83	8.39	max > m
(25)	1.35	15.58	water	cylinder	>12	1.00	7.9 ^h	15
(55)	5.20	19.74	water	cylinder	>10	1.00	5.79 ± 0.3^{1}	critical
(10)	1.0	15.6	inside: U(N) outside: Al	spher» spherø	(1.0 o.d.) (18.5 o.d.)	19.0 2.7	6.46 ^h	M _{max} = 6,15
(10)	1.35	15.58	inside: U(N) outside: WC	sphere parallelepip (12.75" x 12.75" x 10.62")	0.45 ed	19.0 ~14.7	6.13 ^h	critical

^aThree major parts; corrected empirically to unreflected, uniform sphere; 0.3 w/o Pu²⁴¹.

^bThree major parts; corrected empirically to unreflected, uniform sphere; 3.1 w/o Pu²⁴¹, 0.4 w/o Pu²⁴².

^CTwo major parts, corrected empirically for effects of Ni and cavities.

 $^{d}0.30 \text{ w/o Pu}^{241}$.

"Bffect of a small compensating gap was extrapolated to zero.

f_{Composition 91.3 w/o W, 5.5 w/o Wi, 2.5 w/o Cu, 0.7 w/o Zr.}

⁸No correction for 0.41" central source cavity.

hNo correction for 0.83" central source cavity.

¹0.30 w/o Pu²⁴¹, 0.02 w/o Pu²⁴²; no Ga.

TABLE IIIA2

PLUTONIUM IN METAL-POLYETHYLENE REFLECTOR, SPHERICAL GEOMETRY

Ball of Pu(94.54 w/o Pu²³⁹, 5.11 w/o Pu²⁴⁰, 0.35 w/o Pu²⁴¹) in three major Ni-coated parts, 0.95 w/o Ga

Close-fitting metal or graphite shell, 5.335-cm nominal i.d., 6.335-cm o.d., polyethylene shell 6.342-cm i.d.

Critical mass 9.76 kg Pu in each case

Reference (61)

metal or gra	aphite shell	polyethyl critical par	ene ameters ^a			
material	mass (kg)	density (g/cm ³)	mass (kg)	<u>M_{max}</u>		
beryllium	0.783	0.926 av	1.261	549		
graphite	0.738	0.926 av	1.960	critical		
aluminum	1.140	0.937 av	2.507	critical		
iron	3.414	0.960	2.807	critical		
molybdenum	4.291	0.924	1.739	274		

^aMeasured when temperature at center of Pu was 30^oC.

TABLE IIIA3

PLUTONIUM-METAL CYLINDERS

Cores of Pu(lw/o Ga) containing $\sim 5\%$ Pu²⁴⁰; no correction for Ni coating Reference (12)

	core		cyli	ndric refl			
cylinder dia (in.)	h _c /d	<pre></pre>	material	ρ (g/cm ³)	thickness (in.)	mc (kg Pu)	^m max (kg Pu)
2.25 ^a	8.75	15.44	U(~0.3) ^b	18.7	3.0	20.0 ± 0.1	19.2
2.25 ^a	7.13	15.44	$graphite^{b}$	1.60	7.0	16.3 ± 0.1	15.7
2.21 ^a	12.52	15.44	water	1.00	>12	27.1 ± 1.5	21.3
6.0 ^C	0.258	14.3	U(N)	18.7	3.0	10.14 ± 0.07	9.9
6.0 ^c	0.390	14.3	graphite	1.60	1.0	15.44 ± 0.07	15.4
6.0 ^C	0.273	14.3	graphite	1.60	7.0	10.8 ± 0.07	10.7
6.0 ^C	0.280	14.3	water ^d	1.00	>12	11.1 ± 0.2	9.9
11.0 ^{c,e}	0.095	13.1 ^e	water ^d	1.00	>12	21.4 ± 0.8	20.0
16.0 ^{c,e}	0.049	13,1 ^e	water ^d	1.00	>12	34.1 ± 1.2	26.5

See also the last item of Table VB

^a Pu pieces 0.5" to 3.0" thick, each coated with 0.005" thick Ni

^b Reflector wall lined with 0.030" thick steel

^C Pu pieces 5.934" dia x 0.123" in thin Ni cans with outside dimensions 5.967" x 0.135"

^d Core sealed in lucite container before immersion in water

e Average diameter and density of cylinders constructed of overlapping layers of closepacked plates

DILUTED Pu CYLINDERS, 6.0" DIAMETER, UNREFLECTED

Pu(1w/o Ga), $\sim 5\%$ Pu²⁴⁰, as discs 5.934" dia x 0.123", in thin Ni cans of outside dimensions 5.967" dia x 0.135", \cap (Pu) = 15.61 g/cm³.

Diluent plates 5.967" dia x 1/8" or 1/4"

Reference (51)

	vol %	repeated layers,		<u>core-average o (g/cm³)</u>					a ^m c	m Max
diluent (A)	Pu	Pu	<u>A</u>	ī (Pu)	Ā (A)	ρ (Ni)	h _c (in.)	h _c /d ^a	(kg Pu)	(kg Pu)
none	91.4	1/8	-	14.27	-	0.65	3.23	0.54	21.4 ^b	20.2
U(0. 28)	63.0	1/4	1/8	9.83	5.97	0.45	6.07	1.01	27.3	25.2
steel ^C	62.7	1/4	1/8	9.78	2.50	0.45	7.32	1.22	32.8	27.1
Th	62.7	1/4	1/8	9.78	3.62	0.45	7.85	1.31	35.2	27.1

^a Based on 6.00" diameter

^b Also reported in (51) are reflector saving values for 1/2" thick discs of polyethylene, Be, graphite, Mg, Al, Ti, Fe, Co, Ni, Cu, Mo, W, Th, U(N), and U(0.28), on the top of this Pu stack

^C Stainless steel, type 304

DILUTED Pu CYLINDERS, 6.0" DIAMETER, 2.0" THICK U(~0.3) REFLECTOR

Pu(lw/o Ga), $\sim 5\%$ Pu²⁴⁰, as discs 5.934" dia x 0.123", in thin Ni cans of outside dimensions 5.967" dia x 0.135"; ρ (Pu) = 15.61 g/cm³

Diluent plates 5.97" dia x 1/8" or 1/4"

Steel guide sleeve, 0.030" thick, within reflector cylinder; \overline{r} (U) = 19.0

Reference (51)

	vol %	repeated layers, % nom thickness (in.)		core-average \cap (g/cm ³) ^a			n — h (i-)	. 9	a ^m c	m max
diluent (A)	Pu	Pu	<u>A</u>	<u>p</u> (Pu)	<u>o</u> (A)	<u>p (Ni)</u>	h _c (in.)	$\frac{h_c}{d^u}$	(kg Pu)	(kg Pu)
none	90.8	1/8	-	14.18	-	0.65	1.72	0.29	11.15	10.7
U(0.28)	62.2	1/4	1/8	9.71	5.95	0.45	2.92	0.49	13.0	12.5
steel ^b	62.5	1/4	1/8	9.75	2.51	0.45	3.15	0.525	14.1	13.9
Th	62.4	1/4	1/8	9.74	3.63	0.45	3.29	0.55	14,7	14.4
Al ^C	62.3	1/4	1/8	9.72	0.84	0.45	3.23	0.54	14.4	14,15
space	64.0	1/4	1/8	9.97	-	0,45	3 .29	0.55	15.0 ₅	14.4
U(0.28)	47.8	1/8	1/8	7.46	9.03	0.34	4.56	0.76	15.6	15.4
steel ^b	47.6	1/8	1/8	7.43	3 .78	0.34	5.58	0.93	19.0	18.7
Th	48.0	1/8	1/8	7.49	5 .55	0.34	6.02	1.00	20.6 ₅	19.8
Al ^C	48.0	1/8	1/8	7.49	1.28	0.34	5.78	0.96	19,9	19.6
space	48.7	1/8	1/8	7.60	-	0.35	6.43	1.07	22.4	21.7
U(0.28)	32.4	1/8	1/4	5.05	12.22	0.23	12.49	2.08	28.9	27.1

^a Based on 6.00" diameter to include reflector clearance

b Stainless steel, type 304

DILUTED Pu CYLINDERS, 6.0" DIAMETER, 4.5" THICK U(~0.3) REFLECTOR

Pu(lw/o Ga), $\sim 5\%$ Pu²⁴⁰, as discs 5.934" dia x 0.123", in thin Ni cans of outside dimensions 5.967" dia x 0.135"; \cap (Pu) - 15.61 g/cm³

Diluent plates 5.97" dia x 1/8" or 1/4"

Steel guide sleeve, 0.030" thick, within reflector cylinder; \overline{r} (U) - 19.0

Reference (51)

	vol %	repeated layers,		core-average p (g/cm ³) ^a			a		a ⁿ c	max
diluent (A)	Pu	Pu	<u>A</u>	P (Pu)	<u>ه (۸)</u>	P (Ni)	h _c (in.)	h _c /d	(kg Pu)	(kg Pu)
none	91.4	1/8	-	14.26	-	0.65	1.42	0.24	9.3	9.0
U(0.28)	61,8	1/4	1/8	9.65	5.88	0.44	2.40	0.40	10.6	9.0
steel ^b	60.6	1/4	1/8	9.46	2.48	0.44	2.59	0.43	11.2	10.6
Th	62.5	1/4	1/8	9.75	3.65	0.45	2.62	0.44	11.7	10.8
A1 ^C	62.5	1/4	1/8	9.75	0.84	0.45	2.58	0.43	11.5 ₅	10.8
space	63.7	1/4	1/8	9.95	-	0.45	2.59	0.43	11.8	10,8
U(0.28)	47.5	1/8	1/8	7.42	9.08	0.34	3.72	0.62	12.65	12.55
steel ^b	47.5	1/8	1/8	7.42	3.81	0,34	4,26	0.71	14,5	14,35
Th	47.7	1/8	1/8	7.44	5.55	0.34	4.51	0.75	15.4	15.2
A1 ^C	47.5	1/8	1/8	7.42	1.27	0.34	4.34	0.72	14.8	14.35
space	49.0	1/8	1/8	7.65	-	0.35	4.46	0.74	15.7	15.4
U(0.28)	32.4	1/8	1/4	5.06	12.28	0.23	7.99	1.33	18.5 ₅	18,0
steel ^b	32.3	1/8	1/4	5.04	5.14	0.23	10.97	1.83	25.3	24.3
Th	32.5	1/8	1/4	5.07	7.70	0.23	12.90	2.15	30.0	28.0
A1 ^C	32.4	1/8	1/4	5.05	1.75	0.23	11.42	1.90	26.4	26,1
space	32.7	1/8	1/4	5.11	-	0.23	12.84	2.14	30.1	27.0

^a Based on 6.00" diameter to include reflector clearance

^b Stainless steel, type 304

DILUTED Pu CYLINDERS, 6.0" DIAMETER, 7.5" THICK U(~0.3) REFLECTOR

Pu(lw/o Ga), $\sim 5\%$ Pu²⁴⁰, as discs 5.934" dia x 0.123", in thin Ni cans of outside dimensions 5.967" dia x 0.135"; ρ (Pu) = 15.61 g/cm³

Diluent plates 5.97" dia x 1/8" or 1/4"

Steel guide sleeve 0.030" thick, within reflector cylinder; $\overline{\rho}$ (U) - 19.0

Reference (51)

	vol %	repeated layers,		core-average A (g/cm ³) ^a					a ^m c	max
diluent (A)	<u>Pu</u>	Pu Pu		P (Pu)	<u>ه (۸)</u>	F (Ni)	h_(in,)	$\frac{h_c/d}{d}$	(kg Pu)	(kg Pu)
none	91.2	1/8	-	14.23	-	0.65	1.37	0.23	8.95	8.0
U(0.28)	62.6	1/4	1/8	9.77	5,94	0.45	2.31	0.385	10.3 ₅	10.3
steel ^b	62.5	1/4	1/8	9.76	2.51	0.45	2.43	0.40 ₅	10,9	10.8
Th	62.5	1/4	1/8	9.76	3.63	0.45	2.49	0.415	11.1	10.8
Al ^c	62.5	1/4	1/8	9.76	0.84	0.45	2.47	0.41	11.0 ₅	10.8
space	63.5	1/4	1/8	9.92	-	0.45	2.47	0.41	11.2 ₅	10.8
U(0.28)	47.7	1/8	1/8	7.44	9.05	0.34	3,51	0.585	11.9 ₅	11.7
steel ^b	47.7	1/8	1/8	7.45	3.80	0.34	3.97	0.665	13.5 ₅	13.3
Th	48.1	1/8	1/8	7.51	5.57	0.34	4.14	0,69	14.25	14.2
A1 ^C	48.0	1/8	1/8	7.50	1.28	0.34	3.98	0.66 ₅	13.7	13.5
space	48.8	1/8	1/8	7.62	-	0.35	4.18	0.70	14.6	14.4
U(0.28)	32.4	1/8	1/4	5.06	12.27	0.23	7.29	1.22	16.9	16.7
steel ^b	32.1	1/8	1/4	5.01	5.11	0.23	9.49	1.58	21.8	21.7
Th	32.5	1/8	1/4	5.07	7.49	0.23	10,83	1.80	25.1 ₅	25.0
A1 ^C	32.4	1/8	1/4	5.05	1.75	0.23	9.65	1.61	22.3 ₅	22.3
space	32.8	1/8	1/4	5,12	-	0.23	10.58	1.76	24.8 ₅	24.4
U(0.28)	24.4	1/8	3/8	3.81	13.87	0.17	17.24	2.87	30.1	27.0

^a Based on 6.00" diameter to include reflector clearance

b Stainless steel, type 304

DILUTED Pu CYLINDERS, 6.0" DIAMETER, 2.0" THICK Th REFLECTOR Pu(1w/o Ga), ~5% Pu²⁴⁰, as discs 5.934" dia x 0.123", in thin Ni cans of outside dimensions 5.967" dia x 0.135"; ρ (Pu) = 15.61 g/cm³ Diluent plates 5.97" dia x 1/8" or 1/4" Steel guide sleeve, 0.030" thick, within reflector cylinder; $\overline{\rho}$ (Th) = 11.9 g/cm³ Reference (51)

	vol %	repeated layers, nom thickness (in.)		<u>core-average p (g/cm³)^a</u>				. 0	a ^m c	
diluent (A)	<u></u> Pu	Pu	<u>_A</u>	<u>p</u> (Pu)	<u>p (A)</u>	ρ (Ni)	$\frac{h_c (in.)}{c}$	h _c /d ^a	(kg Pu)	(kg Pu)
none	91.3	1/8	-	14.25	-	0.65	2.25	0.37 ₅	14.7	14.5
U(0.28)	63.1	1/4	1/8	9.85	5.29	0.45	3.90	0.65	17.6	16.3
steel ^b	62.8	1/4	1/8	9.81	2,51	0.45	4.32	0.72	19.4	18.1
Th	62.8	1/4	1/8	9.81	3.63	0.45	4.44	0.74	20.0	18.1
A1 ^C	62.8	1/4	1/8	9.81	0.84	0.45	4.46	0.74	20.0 ₅	18.1
space	64.0	1/4	1/8	9.99	-	0.45	4.80	0.80	22.0	19.9
U(0.28)	47.5	1/8	1/8	7.41	9.01	0.34	6.55	1.09	22.2 ₅	21.65
steel ^b	50.4	1/8	1/8	7.87	4.01	0.36	8.50	1.42	30.6	26.1
Th	47.9	1/8	1/8	7.48	5.54	0.34	9.78	1.63	33.5	26. 1
A1 ^C	48.1	1/8	1/8	7.51	1.29	0.34	10.15	1.69	34.9	26. 1

^a Based on 6.00" diameter to include reflector clearance

^b Stainless steel, type 304

DILUTED Pu CYLINDERS, 6.0" DIAMETER, 4.5" THICK TH REFLECTOR Pu(1w/o Ga), $\sim 5\%$ Pu²⁴⁰, as discs 5.934" dia x 0.123", in thin Ni cans of outside dimensions 5.967" dia x 0.135"; ρ (Pu) = 15.61 g/cm³

Diluent plates 5.97" dia x 1/8" or 1/4"

Steel guide sleeve, 0.030" thick, within reflector cylinder; \overline{p} (Th) = 11.9 g/cm³

Reference (51)

	NO1 4	repeated layers,		core-average ρ (g/cm ³) ^a				. 9	m	n_
diluent (A)	<u>Pu</u>	Pu	<u>A</u>	p (Pu)	Ā (A)	₽ (Ni)	h (in.)	h _c /d ^u	(kg Pu)	(kg Pu)
none	91.8	1/8	-	14.33	-	0.66	2.02	0.34	13.2 ₅	12.6
U(0.28)	62.5	1/4	1/8	9.75	5.94	0.45	3.42	0.57	15.3	14.4
steel ^b	63.1	1/4	1/8	9.85	2.52	0.45	3.74	0.625	16.9	16.2
Th	63.0	1/4	1/8	9.83	3.67	0.45	3.90	0.65	17.5 ₅	16.2
A1 ^C	63.1	1/4	1/8	9.85	0.84	0.45	3.88	0.64 ₅	17.5	16.2
space	63.9	1/4	1/8	9.97	-	0.45	3.99	0.665	18.2	16.2
U(0.28)	47.7	1/8	1/8	7.45	9.06	0.34	5.52	0.92	18.9	18.0
steel ^b	47.3	1/8	1/8	7.39	3.77	0.34	6.85	1.14	23.5	22.5
Th	47.9	1/8	1/8	7.47	5.52	0.34	7.35	¹ .22 ₅	25.2	24.4
A1 ^C	47.8	1/8	1/8	7.46	1.28	0.34	7.35	1.225	25.1 ₅	24.4
space	48.8	1/8	1/8	7.62	-	0.35	8.36	1.39	29.2	27.9

^a Based on 6.00" diameter to include reflector clearance

^b Stainless steel, type 304

DILUTED Pu CYLINDERS, 6.0" DIAMETER, 7.5" THICK TH REFLECTOR Pu(1w/o Ga), $\sim 5\%$ Pu²⁴⁰, as discs 5.934" dia x 0.123", in thin Ni cans of outside dimensions 5.967" dia x 0.135"; c (Pu) = 15.61 g/cm³ Diluent plates 5.97" dia x 1/8" or 1/4"

Steel guide sleeve, 0.030" thick, within reflector cylinder; \overline{o} (Th) = 11.9 g/cm³

Reference (51)

	vol \$	repeated layers,		core-average \cap (g/cm ³) ^a				-	m	.
diluent (A)	Pu	Pu	<u>A</u>	₽ (Pu)	ō (A)	p (Ni)	h _c (in.)	h _c /d	(kg Pu)	(kg Pu)
none	92.9	1/8	-	14.50	-	0.66	1.92	0.32	12.7 ₅	11.8
U(0.28)	63.5	1/4	1/8	9.91	5.99	0.45	3.23	0.54	14.65	12.6
steel ^b	62.5	1/4	1/8	9.76	2.50	0.45	3.58	0.60	16.0	14.4
Th	62.9	1/4	1/8	9.82	3.63	0.45	3.69	0.615	16.6	16.2
A1 ^C	63.7	1/4	1/8	9.95	0.85	0.45	3.61	0.60	16.4 ₅	16.2
space	63.7	1/4	1/8	9.95	-	0.45	3.80	0.63	17.3 ₅	16.2
U(0.28)	47.5	1/8	1/8	7.42	9.04	0.34	5.16	0.86	17.5	17.1
steel ^b	47.6	1/8	1/8	7.43	3.80	0.34	6.33	1.06	21.5 ₅	20.7
Th	47.7	1/8	1/8	7.45	5.52	0.34	6.78	1.13	23.2	22.5
A1 ^C	48.6	1/8	1/8	7.59	1.30	0.35	6.55	1.09	22.8	21.6
space	49.0	1/8	1/8	7.65	-	0.35	7.34	1.22	25.7 ₅	25.2
U(0.28)	32.4	1/8	1/4	5.06	12.27	0.23	13.26	2.21	30.8	27.0

^a Based on 6.00" diameter to include reflector clearance

^b Stainless steel, type 304

TABLE IV

U-233 METAL SPHERES

Reflected cores consist of hemispheres coated with 0.005" thick Ni

		C01	re		spl	neric refle	·		
ref	w/o U ²³³	composition w/o U ²³⁴	n w/o U ²³⁸	p (U) (g/cm ³)	material	0 (g/cm ³)	thickness (in.)	$(kg U^{233})$	max
(1)(55)	98.11	1.25	0.61	18.42		none		16.22 ± 0.06^{a}	critical
(52) (55	98.11 ^b	1.25	0.61	18.42	U(N)	19.0	7.84	5.63 ± 0.03 ^c	critical
(48)	98.2	1.1	0.7	18.64	U(N)	18.92	2.09 ± 1%	7.47 ^d (3.622" dia)	>mc [€]
(48)	98.2	1.1	0.7	18.62	U(N)	18 .92	0.906 ± 1%	9.84 ^d (3.972" dia)	>m ^e
(48)	98.2	1.1	0.7	18.64	W-alloy ^f	17.21	2.28 ± 1%	7.47 ^d (3.622" dia)	>m _c e
(48)	98.2	1.1	0.7	18.62	W-alloy ^f	17.21	0.960 ± 1%	9.84 ^d (3.972" dia)	>m_e
(48)	98.2	1.1	0.7	18.64	Be (98%)	1.83	1.652 ± 1%	7.47 ^d (3.622" dia)	>mce
(48)	98.2	1.1	0.7	18.62	Ве (98%)	1.83	0.805 ± 1%	9.84 ^d (3.972" dia)	> m _C ⁰

^a Corrected for effects of Ni coating, supports and small asphericity; 0.03 w/o U^{235}

^b Analysis available for one hemisphere only, 0.03 w/o U^{235}

^C Corrected for effects of Ni coating, oversize core and compensating gap between core and reflector

^d Corrected for effects of Ni and clearances between assembly parts

^e Effect of small compensating gap was adjusted to zero; reflector thickness modified

f Composition 91.3 w/o W, 5.5 w/o Ni, 2.5 w/o Cu, 0.7 w/o Zr

TABLE VA

	c	entral ball_		U(~93) shell	$\overline{0} = 18.8 \text{ g/cm}^3$	U(N) reflector	a .		
ref	composition	ρ (Ρυ, U) <u>(g/cm³)</u>	diam (in.)	enrichment w/o U ²³⁵	critical thickness (in.)	$\overline{\rho} = 19.0 \text{ g/cm}^3$ thickness (in.)	kg Pu or U ²³³	c kg U ²³⁵	Mmax
(48) (55)	Pu(1 w/o Ga), 4.9% Pu ²⁴⁰	15.62	3.970	93.2	0.655 ± 1%	none	8.386	12.73 ± 0.18^{a}	m _{max} > m _c ^b
(53)	Pu(1 W/0462), 1.5% Pu ²⁴⁶²	15,56	3.510 0.42 i.d.	93.18	1.006	none	5.72	18.8 ± 0.3 ^a	65
(33) (57)	Pu(1 w/o Ga), 4.7% Pu ²⁴⁰	15.13	2.506	93.17	1.939	none	2.022	36.7 ± 0.1 ²	130
(53) (57)	Pu(1 w/o Ga), 1.5% Pu ²⁴⁰	15.14	2,506	93.17	1.929	none	2.024	36.3 ₅ ± 0.1 ^a	118
(53) (57)	Pu (1007) 4.8% Pu ² 40	18,80	2,502	93,17	1.644	none	2.52 ₇	26.8 ± 0.1 ^C	233
(54)	Pu (100%), 2.34% Pu240	19,48	2,130	93.2	0.974	7,45	1.615	8.87 ^d	critical
(54)	Pu (100%) 4.73% Pu240	19.42	2.130	93.2	0.988	7.43	1,610	9,09 ^d	critical
(54)	Pu (100%), 16.1% Pu240	19.43	2.130	93.2	1.039	7.38	1.611	9.90 ^d	^m max - 9.75 kg U ²³⁵
(48) (55)	U ²³³ (95, 11 v/o) [®]	18.62	3.972	93.2	0.481 ± 1%	none	9,83	8.64 ± 0.11 ^a	m _{max} > m _c ^b
(49) (55)	U ²³³ (98.11 ₩/0) [●]	18.64	3.622	93.2	0.783 ± 1%	none	7.46	13.84 ± 0.19^{a}	m _{max} > m _c ^b
(53) (57)	U ²³³ (97.9 w/o) ^f	17.78	2.504	93.17	1.886	none	2.371	34.8 ± 0.1 ^a	138

Pu OR U-233 METAL SPHERES WITHIN U(~93) METAL SPHERES

^aCorrected for effects of 0.005" thick Ni on Pu or U²³³ hemispherem and for clearances between assembly parts

^bEffect of small compensating gap was adjusted to zero; reflector thickness modified

Corrected for effects of 0.005" thick Cu about Pu sphere and for clearances between assembly parts

^dNo correction for 0.012" thick gap containing 0.010" thick Ni between Pu and U(93.2)

*1.25 w/o
$$U^{234}$$
, 0.03 w/o U^{235} , 0.61 w/o U^{238}

¹0.9 w/o U²³⁴, 0.2 w/o U²³⁸, 0.95 w/o W

TABLE VB

Pu METAL CYLINDER WITHIN U(93.2) METAL CYLINDER, THICK U(N) REFLECTOR The Pu(lw/o Ga) contains ~6% Pu²⁴⁰; Pu pieces coated with 0.005" thick Ni Dimensions of Pu and outside dimensions of U(93.2) are such that h/d values are the same Cores are approximately centered in a U(N) cylinder, 18.0" dia x 10", of density 19.0 g/cm³ Reference (53)

h _c /d		ρ̄ (Pu)	₽ (U-93.2)	^m c		
(Pu and U^{235})	dimensions (in.)	<u>(g/cm³)</u>	(g/cm ³)	kg Pu	kg U ²³⁵	max
0.20	4.315 dia x 0.875	14.98	18.66	3.14 (fixed)	13.0 ± 0.2	11.9 kg U ²³⁵
0.30	4.315 dia x 1.290	15.29	18.30	4.73 (fixed)	5.3 ± 0.2	4.2 kg U^{235}
1.00	2.235 dia x 2.231	14.83	18.58	2.13 (fixed)	9.7 ± 0.2	8.2 kg U^{235}
0.44	4.315 dia cyl	15.34	none	6.91 ± 0.04	-	6.47 kg Pu

^a No correction for effect of Ni or 0.06 in.³ central source cavity

REFERENCES

- (1) G. E. Hansen, Status of Computational and Experimental Correlations for Los Alamos Fast-Neutron Critical Assemblies, Physics of Fast and Intermediate Reactors, IAEA, Vienna (1962).
- (2) G. E. Hansen and D. P. Wood, <u>Precision Critical-Mass</u> Determinations for Oralloy and Plutonium in Spherical Tuballoy Tampers, LA-1356 Revised (to be issued).
- (3) J. D. Orndoff and H. C. Paxton, <u>Measurements on</u> Untamped Oralloy Assembly, LA-1209 (February 1951).
- (4) V. Josephson, R. W. Paine, Jr. and L. L. Woodward, Oralloy Shape Factor Measurements, LA-1155 (August 1950).
- (5) G. E. Hansen, D. P. Wood and B. Peña, <u>Reflector Savings</u> of Moderating Materials on Large Diameter U(93.2%) Slabs, LAMS-2744 (June 1962).
- (6) H. C. Paxton, <u>Bare Critical Assemblies of Oralloy at</u> <u>Intermediate Concentrations of U-235</u>, <u>LA-1671</u> (May 1954).
- (7) Private communication, D. M. Barton (September 1958).
- (8) V. Josephson, Critical Mass Measurements on Oy in Tu and WC Tampers, LA-1114 deleted (May 1950).
- (9) J. D. Orndoff, H. C. Paxton and G. E. Hansen, <u>Critical</u> <u>Masses of Oralloy at Reduced Concentrations and</u> <u>Densities, LA-1251 (May 1951).</u>
- (10) Private communication, C. P. Baker (December 1947).
- (11) G. E. Hansen, H. C. Paxton and D. P. Wood, <u>Critical</u> <u>Masses of Oralloy in Thin Reflectors</u>, LA-2203 (July 1958).

- (12) G. E. Hansen, H. C. Paxton and D. P. Wood, <u>Critical</u> <u>Plutonium and Enriched-Uranium-Metal Cylinders of</u> <u>Extreme Shape</u>, Nuclear Sci. and Eng. <u>8</u>, 570-577 (1960).
- (13) J. J. Neuer, <u>Critical Assembly of Uranium Metal at an</u> <u>Average U²³⁵ Concentration of 16-1/4%</u>, LA-2085 (January 1957).
- (14) Private communication, J. J. Neuer, G. A. Newby,
 H. C. Paxton and T. F. Wimett (March 1954).
- (15) Private communication, H. C. Paxton and C. B. Stewart (May 1953).
- (16) Private communication, D. P. Wood, L. C. Osborn and B. Peña (April 1960).
- (17) Private communication, V. Josephson and R. W. Paine, Jr. (March 1951).
- (18) Private communication, J. C. Hoogterp and D. P. Wood (September 1955).
- (19) D. P. Wood and B. Peňa, <u>Critical Mass Measurements of</u> Oy and Pu Cores in Spherical Aluminum Reflectors, LAMS-2579 (June 1961).
- (20) E. C. Mallary, Oralloy Cylindrical Shape Factor and Critical Mass Measurements in Graphite, Paraffin, and Water Tampers, LA-1305 (October 1951).
- (21) J. C. Hoogterp, <u>Critical Masses of Graphite-Tamped</u> Heterogeneous Oy-Graphite Systems, LA-1732 (May 1954).
- (22) Private communication, G. A. Jarvis (November 1961).
- (23) Private communication, D. P. Wood (October 1961).
- (24) Private communication, F. F. Hart and C. B. Stewart (December 1953).
- (25) Private communication, R. W. Paine, Jr., D. P. Wood and R. S. Dike (April 1951).

- (26) F. F. Hart, Safety Tests for Melting and Casting Oralloy, LA-1623 (December 1953).
- (27) Private communication, K. Gallup, G. E. Hansen (July 1951).
- (28) Private communication, R. E. Schreiber (September 1951).
- (29) Private communication, E. C. Mallary (March 1952).
- (30) Private communication, J. J. Neuer, H. C. Paxton, R. H. White and T. F. Wimett (March 1954).
- (31) Private communication, G. A. Jarvis (June 1963).
- (32) H. Iskenderian and C. C. Byers, <u>Physics Calculations</u> on Four Los Alamos Graphite Moderated Critical <u>Assemblies</u>, Trans. ANS 1, No. 1, p. 149 (June 1958); also private communication, C. C. Byers (September 1957).
- (33) G. E. Hansen, J. C. Hoogterp, J. D. Orndoff and
 H. C. Paxton, Beryllium-Reflected, Graphite-Moderated
 Critical Assemblies, LA-2141 (October 1957).
- (34) Private communication, S. J. Balestrini (November 1963).
- (35) Private communication, C. C. Byers (March 1962).
- (36) Private communication, G. A. Jarvis and C. C. Byers (October 1961).
- (37) R. N. Olcott, <u>Homogeneous Heavy Water Moderated</u> <u>Critical Assemblies, Part 1, Experimental</u>, Nuclear <u>Sci. and Eng. 1, 327-341 (1956).</u>
- G. E. Hansen and W. H. Roach, <u>Interpretation of</u> <u>Neutron Resonance Detector Activities in Critical</u> <u>Uranyl Fluoride - Heavy Water Solutions</u>, Proc. <u>Brookhaven Conf. on Resonance Absorption of Neutrons</u> in Nuclear Reactors, Upton, New York, BNL 433 (C-24), pp. 13-25 (September 1956); also private communication, C. C. Byers (January 1956).

- (39) Los Alamos Scientific Laboratory of the University of California, <u>An Enriched Homogeneous Nuclear Reactor</u>, RSI <u>22</u>, 489-499 (July 1951); also L. D. P. King, Water Boilers, LA-1034 (December 1947).
- (40) R. E. Carter and J. C. Hinton, <u>Water Tamper Measure-</u> ments, LA-241 (March 1945).
- (41) J. C. Allred, P. J. Bendt and R. E. Peterson, <u>Critical</u> <u>Measurements on U03-H3PO4 Solutions</u>, Nuclear Sci. and Eng. 4, 498-500 (1958).
- (42) Private communication, J. C. Allred, P. J. Bendt,
 H. C. Paxton and R. E. Peterson (April 1953).
- (43) G. A. Linenberger, J. D. Orndoff and H. C. Paxton, <u>Enriched-Uranium Hydride Critical Assemblies</u>, Nuclear <u>Sci. and Eng. 7, 44-57 (1960).</u>
- (44) Private communication, M. G. Holloway and C. P. Baker (December 1947).
- (45) H. C. Paxton and G. A. Linenberger, Polythene-25 Critical Assembly and Neutron Distribution Studies, LA-749 (September 1949).
- (46) J. C. Hoogterp, <u>Critical Masses of Oralloy Lattices</u> Immersed in Water, <u>LA-2026</u> (November 1955).
- (47) G. A. Jarvis, G. A. Linenberger, J. D. Orndoff and H. C. Paxton, Two Plutonium-Metal Critical Assemblies, Nuclear Sci. and Eng. <u>8</u>, 525-531 (1960).
- (48) E. A. Plassmann and D. P. Wood, <u>Critical Reflector</u> <u>Thicknesses for Spherical U233 and Pu239 Systems</u>, <u>Nuclear Sci. and Eng. 8, 615-620 (1960).</u>
- (49) Private communication, D. P. Wood and C. C. Byers (December 1960).
- (50) Private communication, H. C. Paxton (October 1951).
- (51) D. P. Wood, C. C. Byers and L. C. Osborn, <u>Critical</u> <u>Masses of Plutonium Diluted with Other Metals</u>, <u>Nuclear Sci. and Eng. 8</u>, 578-587 (1960).

- (52) Private communication, G. E. Hansen (October 1963).
- (53) Private communication, H. C. Paxton, G. E. Hansen,D. P. Wood and E. A. Plassmann (May 1960).
- (54) D. M. Barton, W. Bernard and G. E. Hansen, <u>Critical</u> <u>Masses of Composites of Oy and Pu-239-240 in Flattop</u> <u>Geometry</u>, <u>LAMS-2489</u> (December 1960).
- (55) G. E. Hansen and H. C. Paxton, <u>Reevaluated Critical</u> <u>Specifications of Some Los Alamos Fast-Neutron Sys</u>tems, LA-4208 (September 1969).
- L. J. Sapir, H. H. Helmick and J. D. Orndoff, <u>BIG TEN</u>, a 10% Enriched Uranium Critical Assembly: <u>Kinetic</u> <u>Studies</u>, ANS Trans., <u>15</u>, No. 1, 312 (June 1972); also private communication, G. E. Hansen and H. C. Paxton (December 1974).
- (57) Private communication, G. E. Hansen (November 1966).
- (58) J. C. Hoogterp, G. E. Hansen and H. C. Paxton, <u>Bare</u> $U(93)C_{170}$ <u>Assembly</u>, LA-4798-MS (May 1974).
- (59) G. A. Jarvis and C. B. Mills, <u>Critical Mass Reduc</u>tion, LA-3651 (March 1967).
- (60) H. C. Paxton, G. A. Jarvis and C. C. Byers, <u>Reflector</u>-Moderated Critical Assemblies, LA-5963 (July 1975).
- (61) Private communication; E. A. Plassmann (October 1975).