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FOREWORD

This manual is a practical guide for the use of our general-purpose Monte
Carlo code MCNP. The first chapter is a primer for the novice user. The
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simulation found stn MCNP. This discussion is not meant to be ezhaustive—
details of the particular techniques and of the Monte Carlo method itself will
have to be found elsewhere. The third chapter shows the user how to prepare
input for the code. The fourth chapter contains several ezamples, and the
fifth chapter ezplains the output. The appendices show how to use MCNP
on various computer systems and also give details about some of the code
internals.

The Monte Carlo method emerged from work done at Los Alamos during
World War II. The invention is generally attributed to Ferms, von Neumann,
Ulam, Metropolis, and Richtmyer. MCNP 1s the successor to their work and
represents over 400 person-years of develoment.

Neither the code nor the manual 1s static. The code is changed as the
need arises and the manual is changed to reflect the latest version of the code.
This particular manual refers to Version 4A.

MCNP and this manual are the product of the combined effort of many
people in the Radiation Transport Group (X-6) of the Applied Theoretical
Physics Division (X Division) at the Los Alamos National Laboratory.

The code and manual can be obtained from the Radiation Shielding In-
formation Center (RSIC), P. 0. Boz X, Oak Ridge, TN, 37831.

J. F. Briesmeister
Editor

505-667-7277

FAX: 505-665-5538
email: menp@lanl.gov

—iii—



COPYRIGHT NOTICE FOR MCNP VERSION 4A

Copyright 1988, the Regents of the University of California. MCNP
was produced under a U.S. Government contract (w-7405-eng-36) by the
Los Alamos National Laboratory, which is operated by the University of
California for the U.S. Department of Energy. The U.S. Government is
licensed to use, reproduce, and distribute MCNP. Permission is granted to the
public to copy MCNP without charge, provided that this notice is reproduced
on all copies. Neither the government nor the University makes any warranty,
express or implied, or assumes any liability or responsibility for the use of

MCNP. '
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MCNP—A General Monte Carlo
N-Particle Transport Code
Version 4A

Radiation Transport Group
Los Alamos National Laboratory

ABSTRACT

MCNP is a general-purpose Monte Carlo N-Particle code that can be
used for neutron, photon, electron, or coupled neutron/photon/electron trans-
port, including the capability to calculate eigenvalues for critical systems.
The code treats an arbitrary three-dimensional configuration of materials
in geometric cells bounded by first- and second-degree surfaces and fourth-
degree elliptical tori.

Pointwise cross-section data are used. For neutrons, all reactions given
in a particular cross-section evaluation (such as ENDF/B-VI) are accounted
for. Thermal neutrons are described by both the free gas and S(a, ) mod-
els. For photons, the code takes account of incoherent and coherent scat-
tering, the possibility of fluorescent emission after photoelectric absorption,
absorption in pair production with local emission of annihilation radiation,
and bremsstrahlung. A continuous slowing down model is used for electron
transport that includes positrons, k x-rays, and bremsstrahlung but does
not include external or self-induced fields.

Important standard features that make MCNP very versatile and easy to
use include a powerful general source, criticality source, and surface source;
both geometry and output tally plotters; a rich collection of variance re-
duction techniques; a flexible tally structure; and an extensive collection of
cross-section data.



NOTES:
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CHAPTER 1

Introduction

CHAPTER 1
PRIMER

WHA \% P 1

Brief explanation of the Monte Carlo method.

Summary of MCNP features.

Introduction to geometry.

Description of MCNP data input illustrated by a sample problem.
How to run MCNP.

Tips on problem setup.

Chapter 1 will enable the novice to start using MCNP, assuming very
little knowledge of the Monte Carlo method and no experience with MCNP.
The primer begins with a short discussion of the Monte Carlo method. Five
features of MCNP are introduced: (1) nuclear data and reactions, (2) source
specifications, (3) tallies and output, (4) estimation of errors, and (5) vari-
ance reduction. The third section explains MCNP geometry setup, including
the concept of cells and surfaces. A general description of an input deck is
followed by a sample problem and a detailed description of the input cards
used in the sample problem. Section V tells how to run MCNP, VI lists tips
for setting up correct problems and running them efficiently, and VII is the
references for Chapter 1. The word “card” is used throughout this document
to describe a single line of input up to 80 characters.

MCNP is a general-purpose, continuous-energy, generalized-geometry,
time-dependent, coupled neutron/photon/electron Monte Carlo transport
code. It can be used in several transport modes: neutron only, photon only,
electron only, combined neutron/photon transport where the photons are
produced by neutron interactions, neutron/photon/electron, photon/electron,
or electron/photon. The neutron energy regime is from 10~ MeV to 20
MeV, and the photon and electron energy regimes are from 1 keV to 1000
MeV. The capability to calculate k.¢s eigenvalues for fissile systems is also
a standard feature.

The user creates an input file that is subsequently read by MCNP. This
file contains information about the problem in areas such as:

the geometry specification,

the description of materials and selection of cross-section evaluations,

the location and characteristics of the neutron, photon, or electron source,

the type of answers or tallies desired, and

any variance reduction techniques used to improve efficiency.

Each area will be discussed in the primer by use of a sample problem.

Remember five “rules” when running a Monte Carlo calculation. They
will be more meaningful as you read this manual and gain experience with
MCNP, but no matter how sophisticated a user you may become, never forget
the following five points:
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1. Define and sample the geometry and source well;

2. You cannot recover lost information;

3. Question the stability and reliability of results;

4. Be conservative and cautious with variance reduction biasing; and

5. The number of histories run is not indicative of the quality of the answer.

The following sections compare Monte Carlo and deterministic methods
and provide a simple description of the Monte Carlo method.

A. Monte Carlo Method vs Deterministic Method

Monte Carlo methods are very different from deterministic transport
methods. Deterministic methods, the most common of which is the discrete
ordinates method, solve the transport equation for the average particle be-
havior. By contrast, Monte Carlo does not solve an explicit equation, but
rather obtains answers by simulating individual particles and recording some
aspects (tallies) of their average behavior. The average behavior of particles
in the physical system is then inferred (using the central limit theorem) from
the average behavior of the simulated particles. Not only are Monte Carlo
and deterministic methods very different ways of solving a problem, even
what constitutes a solution is different. Deterministic methods typically give
fairly complete information (for example, flux) throughout the phase space
of the problem. Monte Carlo supplies information only about specific tallies
requested by the user.

When Monte Carlo and discrete ordinates methods are compared, it is
often said that Monte Carlo solves the integral transport equation, whereas
discrete ordinates solves the integro-differential transport equation. Two
things are misleading about this statement. First, the integral and integro-
differential transport equations are two different forms of the same equation;
if one is solved, the other is solved. Second, Monte Carlo “solves” a transport
problem by simulating particle histories rather than by solving an equation.
No transport equation need ever be written to solve a transport problem by
Monte Carlo. Nonetheless, one can derive an equation that describes the
probability density of particles in phase space; this equation turns out to be
the same as the integral transport equation.

Without deriving the integral transport equation, it is instructive to in-
vestigate why the discrete ordinates method is associated with the integro-
differential equation and Monte Carlo with the integral equation. The dis-
crete ordinates method visualizes the phase space to be divided into many
small boxes, and the particles move from one box to another. In the limit as
the boxes get progressively smaller, particles moving from box to box take a
differential amount of time to move a differential distance in space. In the
limit this approaches the integro-differential transport equation, which has
derivatives in space and time. By contrast, Monte Carlo transports particles
between events (for example, collisions) that are separated in space and time.
Neither differential space nor time are inherent parameters of Monte Carlo
transport. The integral equation does not have time or space derivatives.
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Monte Carlo is well suited to solving complicated three-dimensional
time-dependent problems. Because the Monte Carlo method does not use
phase space boxes, there are no averaging approximations required in space,
energy, and time. This is especially important in allowing detailed represen-
tation of all aspects of physical data.

B. The Monte Carlo Method

Monte Carlo can be used to duplicate theoretically a statistical process
(such as the interaction of nuclear particles with materials) and is particularly
useful for complex problems that cannot be modeled by computer codes that
use deterministic methods. The individual probabilistic events that comprise
a process are simulated sequentially. The probability distributions govern-
ing these events are statistically sampled to describe the total phenomenon.
In general, the simulation is performed on a digital computer because the
number of trials necessary to adequately describe the phenomenon is usu-
ally quite large. The statistical sampling process is based on the selection of
random numbers—analogous to throwing dice in a gambling casino—hence
the name “Monte Carlo.” In particle transport, the Monte Carlo technique
is pre-eminently realistic (a theoretical experiment). It consists of actually
following each of many particles from a source throughout its life to its death
in some terminal category (absorption, escape, etc.). Probability distribu-
tions are randomly sampled using transport data to determine the outcome
at each step of its life.

Event Log

1. Neutron scatter !
Photon Production !/
2. FPission 4
Photon Production-:

. Neutron Capture Incident

. Neutron Leakage Neutron PR

Photon Scatter N .

< o e W

Photon Leakage
Photon Capture

Void

g
Fissionable
Material

Void

Figure 1.1

Figure 1.1 represents the random history of a neutron incident on a slab
of material that can undergo fission. Numbers between 0 and 1 are selected
randomly to determine what (if any) and where interaction takes place, based
on the rules (physics) and probabilities (transport data) governing the pro-
cesses and materials involved. In this particular example, a neutron collision
occurs at event 1. The neutron is scattered in the direction shown, which
is selected randomly from the physical scattering distribution. A photon is
also produced and is temporarily stored, or banked, for later analysis. At
event 2, fission occurs, resulting in the termination of the incoming neutron
and the birth of two outgoing neutrons and one photon. One neutron and
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the photon are banked for later analysis. The first fission neutron is cap-
tured at event 3 and terminated. The banked neutron is now retrieved and.
by random sampling, leaks out of the slab at event 4. The fission-produced
photon has a collision at event 5 and leaks out at event 6. The remaining
photon generated at event 1 is now followed with a capture at event 7. Note
that MCNP retrieves banked particles such that the last particle stored in
the bank is the first particle taken out.

This neutron history is now complete. As more and more such histories
are followed, the neutron and photon distributions become better known.
The quantities of interest (whatever the user requests) are tallied, along
with estimates of the statistical precision (uncertainty) of the results.

II. INTRODUCTION TO MCNP FEATURES

Various features, cbncepts, and capabilities of MCNP are summarized in
this section. More detail concerning each topic is available in later chapters
or appendices.

A. Nuclear Data and Reactions

MCNP uses continuous-energy nuclear and atomic data libraries. The
primary sources of nuclear data are evaluations from the Evaluated Nuclear
Data File (ENDF)! system, the Evaluated Nuclear Data Library (ENDL)?
and the Activation Library (ACTL)? compilations from Livermore, and eval-
uations from the Applied Nuclear Science (T-2) Group*~® at Los Alamos.
Evaluated data are processed into a format appropriate for MCNP by codes
such as NJOY’. The processed nuclear data libraries retain as much de-
tail from the original evaluations as is feasible to faithfully reproduce the
evaluator’s intent.

Nuclear data tables exist for neutron interactions, neutron-induced pho-
tons, photon interactions, neutron dosimetry or activation, and thermal par-
ticle scattering S(a,3). Photon and electron data are atomic rather than
nuclear in nature. Each data table available to MCNP is listed on a directory
file, XSDIR. Users may select specific data tables through unique identifiers
for each table, called ZAIDs. These identifiers generally contain the atomic
number Z, mass number A, and library specifier ID.

Over 500 neutron interaction tables are available for approximately 100
different isotopes and elements. Multiple tables for a single isotope are pro-
vided primarily because data have been derived from different evaluations,
but also because of different temperature regimes and different processing
tolerances. More neutron interaction tables are constantly being added as
new and revised evaluations become available. Neutron-induced photon pro-
duction data are given as part of the neutron interaction tables when such
data are included in the evaluations.

Photon interaction tables exist for all elements from Z=1 through Z=94.
The data in the photon interaction tables allow MCNP to account for coher-
ent and incoherent scattering, photoelectric absorption with the possibility of
fluorescent emission, and pair production. Scattering angular distributions
are modified by atomic form factors and incoherent scattering functions.

November 16, 1993 1-4
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Cross sections for nearly 2000 dosimetry or activation reactions involving
over 400 target nuclei in ground and excited states are part of the MCNP
data package. These cross sections can be used as energy-dependent re-
sponse functions in MCNP to determine reaction rates but can not be used
as transport cross sections.

Thermal data tables are appropriate for use with the S(a, 3) scattering
treatment in MCNP. The data include chemical (molecular) binding and
crystalline effects that become important as the neutron’s energy becomes
sufficiently low. Data at various temperatures are available for light and
heavy water, beryllium metal, beryllium oxide, benzene, graphite, polyethy-
lene, and zirconium and hydrogen in zirconium hydride.

B. Source Specification

MCNP’s generalized user-input source capability allows the user to spec-
ify a wide variety of source conditions without having to make a code modifi-
cation. Independent probability distributions may be specified for the source
variables of energy, time, position and direction, and for other parameters
such as starting cell(s) or surface(s). Information about the geometrical ex-
tent of the source can also be given. In addition, source variables may depend
on other source variables (for example, energy as a function of angle) thus
extending the built-in source capabilities of the code. The user can bias all
input distributions.

In addition to input probability distributions for source variables, certain
built-in functions are available. These include various analytic functions for
fission and fusion energy spectra such as Watt, Maxwellian and Gaussian
spectra; Gaussian for time; and isotropic, cosine, and monodirectional for
direction. Biasing may also be accomplished by special built-in functions.

A surface source allows particles crossing a surface in one problem to be
used as the source for a subsequent problem. The decoupling of a calculation
into several parts allows detailed design or analysis of certain geometrical
regions without having to rerun the entire problem from the beginning each
time. The surface source has a fission volume source option that starts
particles from fission sites where they were written in a previous run.

MCNP provides the user three methods to define an initial criticality
source to estimate k., the ratio of neutrons produced in successive gener-
ations in fissile systems.

C. Tallies and Output

The user can iisctact MCNP to make various tallies related to particle
current, particle flux, and energy deposition. MCNP tallies are normalized to
be per starting particle except for a few special cases with criticality sources.
Currents can be tallied as a function of direction across any set of surfaces,
surface segments, or sum of surfaces in the problem. Charge can be tallied for
electrons and positrons. Fluxes across any set of surfaces, surface segments,
sum of surfaces, and in cells, cell segments, or sum of cells are also available.
Similarly, the fluxes at designated detectors (points or rings) are standard
tallies. Heating and fission tallies give the energy deposition in specified
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cells. A pulse height tally provides the energy distribution of pulses created
in a detector by radiation. In addition, particles may be flagged when they
cross specified surfaces or enter designated cells, and the contributions of
these flagged particles to the tallies are listed separately. Tallies such as the
number of fissions, the number of absorptions, the total helium production,
or any product of the flux times the approximately 100 standard ENDF
reactions plus several nonstandard ones may be calculated with any of the
MCNP tallies. In fact, any quantity of the form

C / #(E) f(E) dE

may be tallied, where ¢(E) is the energy-dependent fluence, and f(E) is
any product or summation of the quantities in the cross-section libraries or
a response function provided by the user. The tallies may also be reduced
by line-of-sight attenuation. Tallies may be made for segments of cells and
surfaces without having to build the desired segments into the actual problem
geometry. All tallies are functions of time and energy as specified by the user
and are normalized to be per starting particle.

In addition to the tally information, the output file contains tables of
standard summary information to give the user a better idea of how the
problem ran. This information can give insight into the physics of the prob-
lem and the adequacy of the Monte Carlo simulation. If errors occur during
the running of a problem, detailed diagnostic prints for debugging are given.
Printed with each tally is also its statistical relative error corresponding to
one standard deviation. Following the tally is a detailed analysis to aid in
determining confidence in the results. Ten pass/no pass checks are made for
the user-selectable tally fluctuation chart (TFC) bin of each tally. The qual-
ity of the confidence interval still cannot be guaranteed because portions of
the problem phase space possibly still have not been sampled. Tally fluctua-
tion charts, described in the following section, are also automatically printed
to show how a tally mean, error, variance of the variance, and slope of the
largest history scores fluctuate as a function of the number of histories run.

Tally results can be displayed graphically, either while the code is running
or in a separate postprocessing mode.

D. Estimation of Monte Carlo Errors

MCNP tallies are normalized to be per starting particle and are printed
in the output accompanied by a second number R, which is the estimated
relative error defined to-be one estimated standard deviation of the mean
S: divided by the estimated mean z. In MCNP, the quantities required
for this error estimate—the tally and its second moment—are computed
after each complete Monte Carlo history, which accounts for the fact that
the various contributions to a tally from the same history are correlated.
For a well-behaved tally, R will be proportional to 1/vV N where N is the
number of histories. Thus, to halve R, we must increase the total number of
histories fourfold. For a poorly behaved tally, R may increase as the number
of histories increases.
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The estimated relative error can be used to form confidence intervals
about the estimated mean, allowing one to make a statement about what
the true result is. The Central Limit Theorem states that as N approaches
infinity there is a 68% chance that the true result will be in the range z(1+R)
and a 95% chance in the range 7(1 = 2R). It is eztremely important to note
that these confidence statements refer only to the precision of the Monte Carlo
calculation itself and not to the accuracy of the result compared to the true
physical value. A statement regarding accuracy requires a detailed analysis
of the uncertainties in the physical data, modeling, sampling techniques and
approximations, etc., used in a calculation.

The guidelines for interpreting the quality of the confidence interval for
various values of R are listed in Table 1.1.

Table 1.1
Guidelines for Interpreting the Relative Error R*

Range of R Quality of the Tally
0.5 to 1.0 Not meaningtul
0.2t0 0.5 Factor of a few
0.1 to 0.2 Questionable
< 0.10 Generally reliable
< 0.05 Generally reliable for point detectors

*R = S:/% and represents the estimated relative error at the 1o level.
These interpretations of R assume that all portions of the problem phase
space are being sampled well by the Monte Carlo process.

For all tallies except next—event estimators, hereafter referred to as point
detector tallies, the quantity R should be less than 0.10 to produce generally
reliable confidence intervals. Point detector results tend to have larger third
and fourth moments of the individual tally distributions, so a smaller value
of R, < 0.05, is required to produce generally reliable confidence intervals.
The estimated uncertainty in the Monte Carlo result must be presented with
the tally so that all are aware of the estimated precision of the results.

Keep in mind the footnote to Table 1.1. For example, if an important
but highly unlikely particle path in phase space has not been sampled in a
problem, the Monte Carlo results will not have the correct expected values
and the confidence interval statements may not be correct. The user can
guard against this situation by setting up the problem so as not to exclude
any regions of phase space and by trying to sample all regions of the problem
adequately.

Despite one’s best effort, an important path may not be sampled often
enough, causing confidence interval statements to be incorrect. To try to
inform the user about this behavior, MCNP calculates a figure of merit
(FOM) for one tally bin of each tally as a function of the number of histories
and prints the results in the tally fluctuation charts at the end of the output.
The FOM is defined as

FOM = 1/(R*T),
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where T is the computer time in minutes. The more efficient a Monte Carlo
calculation is, the larger the FOM will be because less computer time is
required to reach a given value of R.

The FOM should be approximately constant as N increases because
R? is proportional to 1/N and T is proportional to N. Always ezamine
the tally fluctuation charts to be sure that the tally appears well behaved, as
evidenced by a fairly constant FOM. A sharp decrease in the FOM indicates
that a seldom-sampled particle path has significantly affected the tally result
and relative error estimate. In this case, the confidence intervals may not
be correct the fraction of the time that statistical theory would indicate.
Examine the problem to determine what path is causing the large scores and
try to redefine the problem to sample that path much more frequently.

After each tally, an analysis is done and additional useful information
is printed about the TFC tally bin result. The nonzero scoring efficiency,
the zero and nonzero score components of the relative error, number and
magnitude of negative history scores, if any, and the effect on the result if
the largest observed history score in the TFC were to occur again on the
very next history are given. A table just before the TFCs summarizes the
results of these checks for all tallies in the problem. Ten statistical checks
are made and summarized in table 160 after each tally, with a pass yes/no
criterion. The empirical history score probability density function (PDF') for
the TFC bin of each tally is calculated and displayed in printed plots.

The TFCs at the end of the problem include the variance of the variance
(an estimate of the error of the relative error), and the slope (the estimated
exponent of the PDF large score behavior) as a function of the number of
particles started.

All this information provides the user with statistical information to aid
in forming valid confidence intervals for Monte Carlo results. There is no
GUARANTEE, however. The possibility always exists that some as yet
unsampled portion of the problem may change the confidence interval if
more histories were calculated. Chapter 2 contains more information about
estimation of Monte Carlo precision.

E. Variance Reduction

As noted in the previous section, R (the estimated relative error) is
proportional to 1/ VN, where N is the number of histories. For a given
MCNP run, the computer time T consumed is proportional to N. Thus
R = C/\/T, where C is a positive constant. There are two ways to reduce
R: (1) increase T and/or (2) decrease C. Computer budgets often limit the
utility of the first approach. For example, if it has taken 2 hours to obtain
R = 0.10, then 200 hours will be required to obtain R = 0.01. For this
reason MCNP has special variance reduction techniques for decreasing C.
(Variance is the square of the standard deviation.) The constant C' depends
on the tally choice and/or the sampling choices.

1. Tally Choice
As an example of the tally choice, note that the fluence in a cell can
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be estimated either by a collision estimate or a track length estimate. The
collision estimate is obtained by tallying 1/¥, (X,=macroscopic total cross
section) at each collision in the cell and the track length estimate is obtained
by tallying the distance the particle moves while inside the cell. Note that
as I gets very small, very few particles collide but give enormous tallies
when they do, a high variance situation (see page 2—95). In contrast, the
track length estimate gets a tally from every par*.-le that enters the cell. For
this reason MCNP has track length tallies as standard tallies, whereas the
collision tally is not standard in MCNP, except for estimating k.yy.

2. Nonanalog Monte Carlo

Explaining how sampling affects C requires understanding of the nonana-
log Monte Carlo model.

The simplest Monte Carlo model for particle transport problems is the
analog model that uses the natural probabilities that various events occur (for
example, collision, fission, capture, etc.). Particles are followed from event
to event by a computer, and the next event is always sampled (using the
random number generator) from a number of possible next events according
to the natural event probabilities. This is called the apalog Monte Carlo
model because it is directly analogous to the naturally occurring transport.

The analog Monte Carlo model works well when a significant fraction of
the particles contribute to the tally estimate and can be compared to detect-
ing a significant fraction of the particles in the physical situation. There are
many cases for which the fraction of particles detected is very small, less than
1078, For these problems analog Monte Carlo fails because few, if any, of the
particles tally, and the statistical uncertainty in the answer is unacceptable.

Although the analog Monte Carlo model is the simplest conceptual prob-
ability model, there are other probability models for particle transport. They
estimate the same average value as the analog Monte Carlo model, while of-
ten making the variance (uncertainty) of th- =stimate much smaller than
the variance for the analog estimate. Pract: -, this means that problems
that would be impossible to solve in days of computer time can be solved in
minutes of computer time.

A nonanalog Monte Carlo model attempts to follow “interesting” parti-
cles more often than “uninteresting” ones. An “interesting” particle is one
that contributes a large amount to the quantity (or quantities) that needs to
be estimated. There are many nonanalog techniques, and they all are meant
to increase the odds that a particle scores (contributes). To ensure that the
average score is the same in the nonanalog model as in the analog model,
the score is modified to remove the effect of biasing (changing) the natural
odds. Thus, if a particle is artificially made ¢ times as likely to execute a
given random walk, then the particle’s score is weighted by (multiplied by)
1/q. The average score is thus preserved because the average score is the
sum, over all random walks, of the probability of a random walk multiplied
by the score result - g from that random walk.

A nonanalog Monte Carlo technique will have the same expected tallies as
an analog technique if the expected weight executing any given random walk
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is preserved. For example. a particle can be split into two identical pieces and
the tallies of each piece are weighted by 1/2 of what the tallies would have
been without the split. Such nonanalog, or variance reduction, techniques
can often decrease the relative error by sampling naturally rare events with
an unnaturally high frequency and weighting the tallies appropriately.

3. Variance Reduction Tools in MCNP

There are four classes of variance reduction techniques® that range from
the trivial to the esoteric.

Truncation Methods are the simplest of variance reduction methods.
They speed up calculations by truncating parts of phase space that do not
contribute significantly to the solution. The simplest example is geometry
truncation in which unimportant parts of the geometry are simply not mod-
eled. Specific truncation methods available in MCNP are energy cutoff and
time cutoff.

Population Control Methods use particle splitting and Russian roulette
to control the number of samples taken in various regions of phase space. In
important regions many samples of low weight are tracked, while in unimpor-
tant regions few samples of high weight are tracked. A weight adjustment is
made to ensure that the problem solution remains unbiased. Specific popula-
tion control methods available in MCNP are geometry splitting and Russian
roulette, energy splitting/roulette, weight cutoff, and weight windows.

Modified Sampling Methods alter the statistical sampling of a problem to
increase the number of tallies per particle. For any Monte Carlo event it is
possible to sample from any arbitrary distribution rather than the physical
probability as long as the particle weights are then adjusted to compensate.
Thus with modified sampling methods, sampling is done from distributions
that send particles in desired directions or into other desired regions of phase
space such as time or energy, or change the location or type of collisions.
Modified sampling methods in MCNP include the exponential transform,
implicit capture, forced collisions, source biasing, and neutron-induced pho-
ton production biasing.

Partially-Deterministic Methods are the most complicated class of vari-
ance reduction methods. They circumvent the normal random walk process
by using deterministic-like techniques, such as next event estimators, or by
controlling of the random number sequence. In MCNP these methods include
point detectors, DXTRAN, and correlated sampling.

Variance reduction techniques, used correctly, can greatly help the user
to produce a more efficient calculation. Used poorly, they can result in
a wrong answer with good statistics and few clues that anything is amiss.
Some variance reduction methods have general application and are not easily
misused. Others are more specialized and attempts to use them carry high
risk. The use of weight windows tends to be more powerful than the use of
importances but typically requires more input data and more insight into the
problem. The exponential transform for thick shields is not recommended for
the inexperienced user; rather, use many cells with increasing importances
(or decreasing weight windows) through the shield. Forced collisions are used
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to increase the frequency of random walk collisions within optically thin cells
but should be used only by an experienced user. The point detector estimator
should be used with caution, as should DXTRAN.

For many problems, variance reduction is not just a way to speed up the
problem but is absolutely necessary to get any answer at all. Deep penetra-
tion problems and pipe detector problems, for example, will run too slowly
by factors of trillions without adequate variance reduction. Consequently,
users have to become skilled in using the variance reduction techniques in
MCNP. Most of the following techniques can not be used with the pulse
height tally.

The following summarizes briefly the main MCNP variance reduction
techniques. Detailed discussion is in Chapter 2, page 2—112.

a. Energy cutoff Particles whose energy is out of the range of interest are
terminated so that computation time is not spent following them.

b. Time cutoff Like the energy cutoff but based on time.

c. Geometry splitting with Russian roulette: Particles transported from a
region of higher importance to a region of lower importance (where they
will probably contribute little to the desired problem result) undergo
Russian roulette; that is, some of those particles will be killed a certain
fraction of the time, but survivors will be counted more by increasing
their weight the remaining fraction of the time. In this way, unimpor-
tant particles are followed less often, yet the problem solution remains
undistorted. On the other hand, if a particle is transported to a region of
higher importance (where it will likely contribute to the desired problem
result), it may be split into two or more particles (or tracks), each with
less weight and therefore counting less. In this way, important parti-
cles are followed more often, yet the solution is undistorted because on
average total weight is conserved.

d. Energy splitting/Russian roulette: Particles can be split or rouletted upon
entering various user-supplied energy ranges. Thus important energy
ranges can be sampled more frequently by splitting the weight among
several particles and less important energy ranges can be sampled less
frequently by rouletting particles.

e. Weight cutoff/Russian roulette: If a particle weight becomes so low that
the particle becomes insignificant, it undergoes Russian roulette. Most
particles are killed, and some particles survive with increased weight. The
solution is unbiased because total weight is conserved, but computer time
is not wasted on insignificant particles.

f. Weight window: As a function of energy, geometrical location, or both,
low-weighted particles are eliminated by Russian roulette and high-weighted
particles are split. This technique helps keep the weight dispersion within
reasonable bounds throughout the problem. An importance generator is
available that estimates the optimal limits for a weight window.

g. Ezponential transformation: To transport particles long distances, the
distance between collisions in a preferred direction is artificially increased
and the weight is correspondingly artifically decreased. Because large
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weight fluctuations often result, it is highly recommended that the weight
window be used with the exponential transform.

h. Implicit capture: When a particle collides, there is a probability that it
is captured by the nucleus. In analog capture, the particle is killed with
that probability. In implicit capture, also known as survival biasing, the
particle is never killed by capture; instead, its weight is reduced by the
capture probability at each collision. Important particles are permitted
to survive by not being lost to capture. On the other hand, if particles
are no longer considered useful after undergoing a few collisions, analog
capture efficiently gets rid of them.

i. Forced collisions: A particle can be forced to undergo a collision each
time it enters a designated cell that is almost transparent to it. The par-
ticle and its weight are appropriately split into a collided and uncollided
part. Forced collisions are often used to generate contributions to point
detectors, ring detectors, or DXTRAN spheres.

J. Source variable biasing: Source particles with phase space variables of
more importance are emitted with a higher frequency but with a com-
pensating lower weight than are less important source particles. This
technique can be used with pulse height tallies.

k. Point and ring detectors: When the user wishes to tally a flux-related
quantity at a point in space, the probability of transporting a particle
precisely to that point is vanishingly small. Therefore, pseudoparticles
are directed to the point instead. Every time a particle history is born
in the source or undergoes a collision, the user may require that a pseu-
doparticle be tallied at a specified point in space. In this way, many
pseudoparticles of low weight reach the detector, which is the point of
interest, even though no particle histories could ever reach the detector.
For problems with rotational symmetry, the point may be represented
by a ring to enhance the efficiency of the calculation.

l. DXTRAN: DXTRAN, which stands for deterministic transport, improves
sampling in the vicinity of detectors or other tallies. It involves determin-
istically transporting particles on collision to some arbitrary, user-defined
sphere in the neighborhood of a tally and then calculating contributions
to the tally from these particles. Contributions to the detectors or to the
DXTRAN spheres can be controlled as a function of geometric cell or as
a function of the relative magnitude of the contribution to the detector
or DXTRAN sphere.

The DXTRAN method is a way of obtaining large numbers of particles
on user-specified “DXTRAN spheres.” DXTRAN makes it possible to
obtain many particles in a small region of interest that would otherwise
be difficult to sample. Upon sampling a collision or source density func-
tion, DXTRAN estimates the correc: weight fraction that should scatter
toward, and arrive without collision at, the surface of the sphere. The
DXTRAN method then puts this correct weight on the sphere. The
source or collision event is sampled in the usual manner, except that
the particle is killed if it tries to enter the sphere because all particles
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entering the sphere have already been accounted for deterministically.

m. Correlated sampling: The sequence of random numbers in the Monte
Carlo process is chosen so that statistical fluctuations in the problem
solution will not mask small variations in that solution resulting from
slight changes in the problem specification. The i* history will always
start at the same point in the random number sequence no matter what
the previous : — 1 particles did in their random walks.

III. MCNP GEOMETRY

We will present here only basic information about geometry setup, sur-
face specification, and cell and surface card input. Areas of further interest
would be the complement operator, use of parentheses, and repeated struc-
ture and lattice definitions, found in Chapter 2. Chapter 4 contains geometry
examples and is recommended as a next step. Chapter 3 has detailed infor-
mation about the format and entries on cell and surface cards.

The geometry of MCNP treats an arbitrary three-dimensional config-
uration of user-defined materials in geometric cells bounded by first- and
second-degree surfaces and fourth-degree elliptical tori. The cells are defined
by the intersections, unions, and complements of the regions bounded by the
surfaces. Surfaces are defined by supplying coefficients to the analytic surface
equations or, for certain types of surfaces, known points on the surfaces.

MCNP has a more general geometry than is available in most combinato-
rial geometry codes. Rather than combining several predefined geometrical
bodies as in a combinatorial geometry scheme, MCNP gives the user the
added flexibility of defining geometrical regions from all the first and second
degree surfaces of analytical geometry and elliptical tori and then of com’ in-
ing them with Boolean operators. The code does extensive internal checking
to find input errors. In addition, the geometry-plotting capability in MCNP
helps the user check for geometry errors.

MCNP treats geometric cells in a Cartesian coordinate system. The sur-
face equations recognized by MCNP are listed in Table 3.1 on page 3—14.
The particular Cartesian coordinate system used is arbitrary and user de-
fined, but the right-handed system shown in Figure 1.2 is often chosen.

Figure 1.2

Using the bounding surfaces specified on cell cards, MCNP tracks parti-
cles through the geometry, calculates the intersection of a track’s trajectory
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with each bounding surface, and finds the minimum positive distance to an
intersection. If the distance to the next collision is greater than this mini-
mum distance and there are no DXTRAN spheres along the track, the par-
ticle leaves the current cell. At the appropriate surface intersection, MCNP
finds the correct cell that the particle will enter by checking the sense of
the intersection point for each surface listed for the cell. When a complete
match is found, MCNP has found the correct cell on the other side and the
transport continues.

A. Cells

When cells are defined, an important concept is that of the sense of
all points in a cell with respect to a bounding surface. Suppose that s =
f(z,y,z) = 0 is the equation of a surface in the problem. For any set of
points (z,y,z), if s = 0 the points are on the surface. However, for points
not on the surface, if s is negative the points are said to have a negative sense
with respect to that surface and, conversely, a positive sense if s is positive.
For example, a point at z = 3 has a positive sense with respect to the plane
r —2 =0. That is, the equation z — D =3 -2 = s =1 is positive for z = 3
(where D = constant).

Cells are defined on cells cards. Each cell is described by a cell number.
material number, and material density followed by a !’ .t of operators and
signed surfaces that bound the cell. If the sense is positive, the sign can be
omitted. The material number and material density can be replaced by a
single zero to indicate a void cell. The cell number must begin in columns
1-5. The remaining entries follow, separated by blanks. A more complete
description of the cell card format can be found on page 1-22. Each surface
divides all space into two regions, one with positive sense with respect to the
surface and the other with negative sense. The geometry description defines
the cell to be the intersection, union, and/or complement of the listed regions.

The subdivision of the physical space into cells is not necessarily governed
only by the different material regions, but may be affected by problems of
sampling and variance reduction techniques (such as splitting and Russian
roulette), the need to specify an unambiguous geometry, and the tally re-
quirements. The tally segmentation feature may eliminate most of the tally
requirements.

Be cautious about making any one cell very complicated. With the union
operator and disjointed regions, a very large geometry can be set up with
just one cell. The problem is that for each track flight between collisions in
a cell, the 'ntersection of the track with each bounding surface of the cell
is calculated, a calculation that can be costly if a cell has many surfaces.
As an example, consider Figure 1.3a. It is just a lot of parallel cylinders
and is easy to set up. However, the cell containing all the little cylinders is
bounded by fourteen surfaces (counting a top and bottom). A much more
efficient geometry is seen in Figure 1.3b, where the large cell has been broken
up into a number of smaller cells.
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Figure 1.4

1. Cells Defined by Intersections of Regions of Space

The intersection operator in MCNP is implicit; it is simply the blank
space between two surface numbers on the cell card.

If a cell is specified using only intersections, all points in the cell must

have the same sense with respect to a given bounding surface. This means
that, for each bounding surface of a cell, all points in the cell must remain
on only one side of any particular surface. Thus, there can be no concave
corners in a cell specified only by intersections. Figure 1.4, a cell formed
by the intersection of five surfaces (ignore surface 6 for the time being),
illustrates the problem of concave corners by allowing a particle (or point)
to be on two sides of a surface in one cell.
Surfaces 3 and 4 form a concave corner in the cell such that points p; and p,
are on the same side of surface 4 (that is, have the same sense with respect
to 4) but point p3 is on the other side of surface 4 (opposite sense). Points
p2 and p3 have the same sense with respect to surface 3, but p; has the
opposite sense. One way to remedy this dilemma (and there are others) is
to add surface 6 between the 3/4 corner and surface 1 to divide the original
cell into two cells.

With surface 6 added to Figure 1.4, the cell to the right of surface 6 is
number 1 (cells indicated by circled numbers); to the left number 2; and the
outside cell number 3. The cell cards (in two dimensions, all cells void) are

1 0 1 -2 -3 6

2 0 1 -6 -4 5
Cell 1 is a void and is formed by the intersection of the region above (posi-
tive sense) surface 1 with the region to the left (negative sense) of surface 2
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intersected with the region below (negative sense) surface 3 and finally in-
tersected with the region to the right (positive sense) of surface 6. Cell 2 is
described similarly.

Cell 3 cannot be specified with the intersection operator. The following
section about the union operator is needed to describe cell 3.

2. Cells Defined by Unions of Regions of Space

The union operator, signified by a colon on the cell cards, allows concave
corners in cells and also cells that are completely disjoint. The intersec-
tion and union operators are binary Boolean operators, so their use follows
Boolean algebra methodology; unions and intersections can be used in com-
bination in any cell description.

Spaces on either side of the union operator are irrelevant, but remember
that a space without the colon signifies an intersection. In the hierarchy of
operations, intersections are performed first and then unions. There is no left
to right ordering. Parentheses can be used to clarify operations and in some
cases are required to force a certain order of operations. Innermost paren-
theses are cleared first. Spaces are optional on either side of a parenthesis.
A parenthesis is equivalent to a space and signifies an intersection.

For example, let A and B be two regions of space. The region containing
points that belong to both A and B is called the intersection of A and B. The
region containing points that belong to A alone or to B alone or to both A
and B is called the union of A and B. The lined area in Figure 1.5a represents
the union of A and B (or A : B), and the lined area in Figure 1.5b represents
the intersection of A and B (or A B). The only way regions of space can
be added is with the union operator. An intersection of two spaces always
results in a region no larger than either of the two spaces. Conversely, the
union of two spaces always results in a region no smaller than either of the
two spaces.

Figure 1.5

A simple example will further illustrate the concept of Figure 1.5 and the
union operator to solidify the concept of adding and intersecting regions of
space to define a cell. See also the second example in Chapter 4. In Figure 1.6
we have two infinite planes that meet to form two cells. Cell 1 is easy to
define; it is everything in the universe to the right of surface 1 (that is, a
positive sense) that is also in common with (or intersected with) everything
in the universe below surface 2 (that is, a negative sense). Therefore, the
surface relation of cell 1is 1 -2.
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(a) (b)
Figure 1.6

Cell 2 is everything in the universe to the left (negative sense) of surface
1 plus everything in the universe above (positive sense) surface 2, or —1: 2,
illustrated in Figure 1.6b by all the shaded regions of space. If cell 2 were
specified as —1 2, that would represent the region of space common to —1
and 2, which is only the cross-hatched region in the figure and is obviously
an improper specification for cell 2.

Returning to Figure 1.4 on page 1-15, if cell 1 is inside the solid black
line and cell 2 is the entire region outside the solid line, then the MCNP cell
cards in two dimensions are (assuming both cells are voids)

1 0 1 -2 (-3 : -4) 5

2 0 -5 : =1 2 : 3 4
Cell 1 is defined as the region above surface 1 intersected with the region to
the left of surface 2, intersected with the union of regions below surfaces 3
and 4, and finally intersected with the region to the right of surface 5. Cell
2 contains four concave corners (all but between surfaces 3 and 4), and its
specification is just the converse (or complement) of cell 1. Cell 2 is the space
defined by the region to the left of surface 5 plus the region below 1 plus
the region to the right of 2 plus the space defined by the intersections of the
regions above surfaces 3 and 4.

A simple consistency check can be noted with the two cell cards above.
All intersections for cell 1 become unions for cell 2 and vice versa. The senses
are also reversed.

Note that in this example, all corners less than 180 degrees in a cell are
handled by intersections and all corners greater than 180 degrees are handled
by unions.

To illustrate some of the concepts about parentheses, assume an intersec-
tion is thought of mathematically as multiplication and a union is thought of
mathematically as addition. Parentheses are removed first, with multiplica-
tion being performed before addition. The cell cards for the example cards
above from Figure 1.4 may be written in the form

1 a- b-(c+d) e

2 e+a+b+c- d
Note that parentheses are required for the first cell but not for the second,
although the second could have been written as e+ a+ b+ (c-d), (e +a +
b) + (c-d), () + (a) + (b) + (¢ d), etc.
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Several more examples using the union operator are given in Chapter 4.
Study them to get a better understanding of this powerful operator that can
greatly simplify geometry setups.

B. Surface Type Specification

The first- and second-degree surfaces plus the fourth-degree elliptical
and degenerate tori of analytical geometry are all available in MCNP. The
surfaces are designated by mnemonics such as C/Z for a cylinder parallel
to the z-axis. A cylinder at an arbitrary orientation is designated by the
general quadratic GQ mnemonic. A paraboloid parallel to a coordinate axis
is designated by the special quadratic SQ mnemonic. The 29 mnemonics
representing various types of surfaces are listed in Table 3.1 on page 3—14.

C. Surface Parameter Specification

There are two ways to specify surface parameters in MCNP: (1) by sup-
plying the appropriate coefficients needed to satisfy the surface equation, and
(2) by specifying known geometrical points on a surface that is rotationally
symmetric about a coordinate axis.

1. Coefficients for the Surface Equations

The first way to define a surface is to use one of the surface-type mnemon-
ics from Table 3.1 on page 3—14 and to calculate the appropriate coefficients
needed to satisfy the surface equation. For example, a sphere of radius 3.62-
cm with the center located at the point (4,1,—3) is specified by

S 4 1 -3 3.62

An ellipsoid whose axes are not parallel to the coordinate axes is defined
by the GQ mnemonic plus up to 10 coefficients of the general quadratic
equation. Calculating the coefficients can be (and frequently is) nontrivial,
but the task is greatly simplified by defining an auxiliary coordinate system
whose axes coincide with the axes of the ellipsoid. The ellipsoid is easily
defined in terms of the auxiliary coordinate system, and the relationship
between the auxiliary coordinate system and the main coordinate system is
specified on a TRn card, described on page 3—26.

The use of the SQ (special quadratic) and GQ (general quadratic) sur-
faces is determined by the orientation of the axes. One should always use the
simplest possible surface in describing geometries; for example, using a GQ

surface instead of an S to specify a sphere will require more computational
effort for MCNP.

2. Points that Define a Surface

The second way to define a surface is to supply known points on the
surface. This method is convenient if you are setting up a geometry from
something like a blueprint where you know the coordinates of intersections
of surfaces or points on the surfaces. When three or more surfaces intersect
at a point, this second method also produces a more nearly perfect point of
intersection if the common point is used in the surface specification. It is
frequently difficult to get complicated surfaces to meet at one point if the
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surfaces are specified by the equation coefficients. Failure to achieve such a
meeting can result in the unwanted loss of particles.

There are, however, restrictions that must be observed when specifying
surfaces by points that do not exist when specifying surfaces by coefficients.
Surfaces described by points must be either skew planes or surfaces rotation-
ally symmetric about the x, y, or z axes. They must be unique, real, and
continuous. For example, points specified on both sheets of a hyperboloid
are not allowed because the surface is not continuous. However, it is valid to
specify points that are all on one sheet of the hyperboloid. (See the X,Y,Z,
and P input cards description on page 3—16 for additional explanation.)

IV. MCNP INPUT FOR SAMPLE PROBLEM

The main input file for the user is the INP (the default name) file that
contains the input information to describe the problem. We will present here
only the subset of cards required to run the simple fixed source demonstration
problem. All input cards are discussed in Chapter 3 and summarized in
Table 3.6 starting on page 3—123.

MCNP does extensive input checking but is not foolproof. A geometry
should be checked by looking at several different views with the geometry
plotting option. You should also surround the entire geometry with a sphere
and flood the geometry with particles from a source with an inward cosine
distribution on the spherical surface, using a VOID card to remove all mate-
rials specified in the problem. If there are any incorrectly specified places in
your geometry, this procedure will usually find them. Make sure the impor-
tance of the cell just inside the source sphere is not zero. Then run a short
job and study the output to see if you are calculating what you think you
are calculating.

The basic constants used in MCNP are printed in optional print table 98
in the output file. The units used are:

lengths in centimeters,

energies in MeV,

times in shakes (10~% sec),

temperatures in MeV (kT),

atomic densities in units of atoms/barn-cm,

mass densities in g/cm?,

cross sections in barns (10~24 cm?),

heating numbers in MeV/collision, and

atomic weight ratio based on a neutron mass of 1.008664967. In these
units, Avogadro’s number is 0.59703109z10~24.

A simple sample problem illustrated in Figure 1.7 is referred to through-
out the remainder of this chapter. We wish to start 14-MeV neutrons at
a point isotropic source in the center of a small sphere of oxygen that is
embedded in a cube of carbon. A small sphere of iron is also embedded in
the carbon. The carbon is a cube 10 cm on each side; the spheres have a
0.5-cm radius and are centered between the front and back faces of the cube.

© 0N O W
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We wish to calculate the total and energy-dependent flux in increments of 1
MeV from 14 to 1 MeV

1. on the surface of the iron sphere and

2. averaged in the iron sphere volume.
Bin 1 will be the tally from 0 to 1 MeV.

This geometry has four cells, indicated by circled numbers, and eight
surfaces-six planes and two spheres. Surface numbers are written next to
the appropriate surfaces. Surface 5 comes out from the page in the +=z
direction and surface 6 goes back into the page in the —z direction.

) ®

a 1
©@ o i

Figure 1.7

With knowledge of the cell card format, the sense of a surface, and the
union and intersection operators, we can set up the cell cards for the geometry
of our example problem. To simplify this step, assume the cells are void, for
now. Cells 1 and 2 are described by the following cards:

10 -7

20 -8
where the negative signs denote the regions inside (negative sense) surfaces
7 and 8. Cell 3 is everything in the universe above surface 1 intersected with
everything below surface 2 intersected with everything to the left of surface 3
and so forth for the remaining three surfaces. The region in common to all six
surfaces is the cube, but we need to exclude the two spheres by intersecting
everything outside surface 7 and outside surface 8. The card for cell 3 is

30 1 -2 -3 4 -5 6 7 8

Cell 4 requires the use of the union operator and is similar to the idea illus-
trated in Figure 1.6. Cell 4 is the outside world, has zero importance, and is
defined as everything in the universe below surface 1 plus everything above
surface 2 plus everything to the right of surface 3 and so forth. The cell card
for cell 4 is

4 0 -1:2:3:-4:5: -6
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A. INP File

An input file has the following form:

Message Block _
Blank Line Delimiter }Optmnal
One Line Problem Title Card

Cell Cards

Bla.nit Line Delimiter
Surface Cards

Blanic Line Delimiter
Data Cards

Blank Line Terminator (optional)

All input lines are limited to 80 columns. Alphabetic characters can
be upper, lower, or mixed case. A § (dollar sign) terminates data entry.
Anything that follows the $ is interpreted as a comment. Blank lines are
used as delimiters and as an optional terminator. Data entries are separated
by one or more blanks.

Comment cards can be used anywhere in the INP file after the problem
title card and before the optional blank terminator card. Comment lines
must have a C somewhere in columns 1-5 followed by at least one blank and
can be a total of 80 columns long.

Cell, surface, and data cards must all begin within the first five columns.
Entries are separated by one or more blanks. Numbers can be integer or
floating point. MCNP makes the appropriate conversion. A data entry item,
e.g., IMP:N or 1.1€2, must be completed on one line.

Blanks filling the first five columns indicate a continuation of the data
from the last named card. An & (ampersand) ending a line indicates data
will continue on the following card, where data on the continuation card can
be in columns 1-80.

The optional message block, discussed in detail on page 3—1, is used to
change file names and specify running options such as a continuation run.
On most systems these options and files may alternatively be specified with
an execution line message (see page 1—29). Message block entries supersede
execution line entries. The blank line delimiter signals the end of the message
block.

The first card in the file after the optional message block is the required
problem title card. If there is no message block, this must be the first card
in the INP file. It is limited to one 80-column line and is used as a title
in various places in the MCNP output. It can contain any information you
desire but usually contains information describing the particular problem.
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MCNP makes extensive checks of the input file for user errors. A FATAL
error occurs if a basic constraint of the input specification is violated, and
MCNP will terminate before running any particles. The first fatal error is
real: subsequent error messages may or may not be real because of the nature
of the first fatal message.

B. Cell Cards

The cell number is the first entry and must begin in the first five columns.

The next entry is the cell material number, which is arbitrarily assigned
by the user. The material is described on a material card (Mn) that has the
same material number (see page 1—27). If the cell is a void, a zero is entered
for the material number. The cell and material numbers can not exceed 3
digits.

Next is the cell material density. A positive entry is interpreted as atc
density in units of 10%* atoms/cm?. A negative entry is interpreted as mass
density in units of g/cm3. No density is entered for a void cell.

A complete specification of the geometry of the cell follows. This spec-
ification includes a list of the signed surfaces bounding the cell where the
sign denotes the sense of the regions defined by the surfaces. The regions
are combined with the Boolean intersection and union operators. A space
indicates an intersection and a colon indicates a union.

Optionally, after the geometry description, cell parameters can be en-
tered. The form is keyword=value. The following line illustrates the cell
card format:

1 1 -0.0014 -7 INP:N=1
Cell 1 contains material 1 with density 0.0014 g/cm?, is bounded by only
one surface (7), and has an importance of 1. If cell 1 were a void, the cell
card would be
1 0 -7 INP:N=1
The complete cell card input for this problem (with 2 comment cards) is
c cell cards for sample problem
1 1 -0.0014 -7
2 2 -7.86 -8
3 3 -1.60 1-2-34-5678
4 0 -1:2:3:—4:5:-6
c end of cell cards for sample problem
blank line delimiter

The blank line terminates the cell card section of the INP file. We
strongly suggest that the cells be numbered sequentially starting with one.
A complete explanation of the cell card input is found in Chapter 3, page
3-9.

C. Surface Cards

The surface number is the first entry. It must begin in columns 1-5 and
not exceed 5 digits. The next entry is an alphabetic mnemonic indicating the
surface type. Following the surface mnemonic are the numerical coefficients
of the equation of the surface in the proper order. This simplified description
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enables us to proceed with the example problem. For a full description of
the surface card see page 3—12.

Our problem uses planes normal to the x, y, and z axes and two general
spheres. The respective mnemonics are PX, PY, PZ, and S. Table 1.2 shows
the equations that determine the sense of the surface for the cell cards and
the entries required for the surface cards. A complete list of available surface
equations is contained in Table 3.1 on page 3—14.

Table 1.2
Surface Equations

Mnemonic ‘ Equation Card Entries
PX t-D=0 D
PY y—-D=0 D
PZ 2-D=0 D
S (-2 +(y-5)*+(z-2°%-R*=0 Zy:zR

For the planes, D is the point where the plane intersects the axis. If we
place the origin in the center of the 10-cm cube shown in Figure 1.7, the
planes will be at z = -5, z = 5, etc. The two spheres are not centered at
the origin or on an axis, so we must give the x,y,z of their center as well as
their radii. The complete surface card input for this problem is shown below.
A blank line terminates the surface card portion of the input.

C Beginning of surfaces for cube

1 PZ -5
2 PZ 5
3 PY 5
4 PY -5
5 PX 5
6 PX -5

C End of cube surfaces
7 S 0 -4 -25 .5 $ oxygen sphere
8 S 0 4 4 5 $ iron sphere
blank line delimiter

D. Data Cards

The remaining data input for MCNP follow the second blank card de-
limiter, or third blank card if there is a message block. The card name is
the first entry and must begin in the first five columns. The required entries
follow, separated by one or more blanks.

Several of the data cards require a particle designator to distinguish
between input data for neutrons, data for photons, and data for electrons.
The particle designator consists of the symbol : (colon) and the letter N or
P or E immediately following the name of the card. For example, to enter

1-23 November 16, 1993



CHAPTER 1
Input File

neutron importances, use an IMP:N card; enter photon importances on an
IMP:P card; enter electron importances on an IMP:E card. No data card
can be used more than once with the same mnemonic, that is, M1 and M2
are acceptable, but two M1 cards are not allowed. Defaults have been set for
cards in some categories. A summary starting on page 3—123 shows which
cards are required, which are optional, and whether defaults exist and if so,
what they are. The sample problem will use cards in the following categories:

MCNP card name

1. mode, MODE
2. cell and surface parameters, IMP:N
3. source specification, SDEF

4. tally specification, Fn, En
5. material specification, and Mn

6. problem cutoffs. NPS

A complete description of the data cards is found on page 3—18 in Chapter 3.

1. MODE card
MCNP can be run in several different modes:

Mode N - neutron transport only (default)
N P - neutron and neutron-induced photon transport
P - photon transport only
E - electron transport only
P E - photon and electron transport

N P E - neutron, neutron-induced photon and electron transport

The MODE card consists of the mnemonic MODE followed by either an N,
NP,P,E,PE,or NP E. If the MODE card is omitted, mode N is assumed.

Mode N P does not account for photo-neutrons but only neutron-induced
photons. Photon-production cross sections do not exist for all nuclides. If
they are not available for a Mode N P problem, MCNP will print out warning
messages. To find out whether a particular table for a nuclide has photon-
production cross sections available, check the Appendix G cross-section list.

Mode P or mode N P problems generate bremsstrahlung photons with a
computationally expensive thick-target bremsstrahlung approximation. This
approximation can be turned off with the PHYS:E card.

The sample problem is a neutron-only problem, so the MODE card can
be omitted because MODE N is the default.

2. Cell and surface parameter cards

Most of these cards define values of cell parameters. Entries correspond
in order to the cell or surface cards that appear earlier in the INP file. A
listing of all available cell and surface parameter cards is found on page 3—28.
A few examples are neutron and photon importance cards (IMP:N,IMP:P),
weight window cards (WWE:N, WWE:P, WWNi:N, WWNi:P), etc. Some
method of specifying relative cell importances is required; the majority of
the other cell parameter cards are for optional variance reduction techniques.
The number of entries on a cell or surface parameter card must equal the
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number of cells or surfaces in the problem or MCNP prints out a WARNING
or FATAL error message. In the case of a WARNING, MCNP assumes zeros.

The IMP:N card is used to specify relative cell importances in the sample
problem. There are four cells in the problem, so the IMP:N card will have
four entries. The IMP:N card is used (a) for terminating the particle’s history
if the importance is zero and (b) for geometry splitting and Russian roulette
to help particles move more easily to important regions of the geometry. An
IMP:N card for the sample problem is

IMPEN 1110
Cell parameters also can be defined on cell cards using the keyword=value
format. If a cell parameter is specified on any cell card, it must be specified
only on cell cards and not at all in the data card section.

3. Source specification cards

A source definition card SDEF is one of four available methods of defining
starting particles. Chapter 3 has a complete discussion of source specifica-
tion. The SDEF card defines the basic source parameters, some of which
are

POS=xyz default is 0 0 0;
CEL = starting cell number

ERG = starting energy default is 14 MeV;
WGT= starting weight default is 1;
TME= time default is 0;

PAR = source particle type N for N NP, NPE;P for P,PE;E for E.

. MCNP will determine the starting cell number for a point isotropic source,
so the CEL entry is not always required. The default starting direction for
source particles is isotropic.

For the example problem, a fully specified source card is

SDEF POS=0 -4 -2.5 CEL=1 ERG=14 WGT=1 TME=0 PAR=N
Neutron particles will start at the center of the oxygen sphere (0 —4 —2.5),
in cell 1, with an energy of 14 MeV, and with weight 1 at time 0. All these
source parameters except the starting position are the default values, so the
most concise source card is

SDEF POS=0 -4 -25
If all the default conditions were satisfactory for the problem, only the
mnemonic SDEF would be required.

4. Tally specification cards

The tally cards are used to specify what you want to learn from the Monte
Carlo calculation, perhaps current across a surface, flux at a point, etc. You
request this information with one or more tally cards. Tally specification
cards are not required, but if none is supplied, no tallies will be printed
when the problem is run and a warning message is issued. Many of the tally
specification cards describe tally “bins.” A few examples are energy (En),
time (Tn), and cosine (Cn) cards.
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MCNP provides six standard neutron, six standard photon, and four
standard electron tallies, all normalized to be per starting particle. Some
tallies in criticality calculations are normalized differently. Chapter 2, page
2-66, discusses tallies more completely and Chapter 3, page 3—59, lists all
the tally cards and fully describes each one.

Tally Mnemonic Description

F1:N or F1:P or F1:E Surface current
F2:N or F2:P or F2:E Surface flux
F4:N or F4&P or F4&E Track length estimate of cell flux

F5a:N or F5a:P Flux at a point (point detector)
F6:N or F6:N,P Track length estimate of energy deposition
or F6:P '
FT:N Track length estimate of fission energy deposition
F8P or F8.E Energy distribution of pulses created
or F8:P,.E in a detector

The tallies are identified by tally type and particle type. Tallies are given
the numbers 1, 2, 4, 5, 6, 7, 8, or increments of 10 thereof, and are given the
particle designator :N or :P or :E (or :N,P only in the case of tally type 6 or
P,E only for tally type 8). Thus you may have as many of any basic tally as
you need, each with different energy bins or flagging or anything else. F4:N,
F14:N, F104:N, and F234:N are all legitimate neutron cell flux tallies; they
could all be for the same cell(s) but with different energy or multiplier bins,
for example. Similarly F5:P, F15:P, and F305:P are all photon point detector
tallies. Having both an F1:N card and an F1:P card in the same INP file is
not allowed. The tally number may not exceed three digits.

For our sample problem we will use Fn cards (Tally type) and En cards
(Tally energy).

a. Tally (Fn) Cards: The sample problem has a surface flux tally and
a track length cell flux tally. Thus, the tally cards for the sample problem
shown in Figure 1.7 are

F2:N 8 § flux across surface 8
F4:N 2 § track length in cell 2
Printed out with each tally bin is the relative error of the tally corre-

sponding to one estimated standard deviation. Read page 1—-6 for an expla-
nation of the relative error. Results are not reliable until they become stable
as a function of the number of histories run. Much information is provided
for one bin of each tally in the tally fluctuation charts at the end of the
output file to help determine tally stability. The user is strongly encouraged
to look at this information carefully.

b. Tally Energy (En) Card: We wish to calculate flux in increments
of 1 MeV from 14 to 1 MeV. Another tally specification card in the sample
input deck establishes these energy bins.

The entries on the En card are the upper bounds in MeV of the energy
bins for tally n. The entries must be given in order of increasing magnitude.
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If a particle has an energy greater than the last entry, it will not be tallied,
and a warning is issued. MCNP automatically provides the total over all
specified energy bins unless inhibited by putting the symbol NT as the last
entry on the selected En card.

The following cards will create energy bins for the sample problem:

E2 1234567891011 1213 14
E4 112 14
If no En card exists for tally n, a single bin over all energy will be used.
To change this default, an EQ (zero) card may be used to set up a default
energy bin structure for all tallies. A specific En card will override the default
structure for tally n. We could replace the E2 and E4 cards with one EO
card for the sample problem, thus setting up identical bins for both tallies.

5. Materials speciﬁcation

The cards in this section specify both the isotopic composition of the
materials and the cross-section evaluations to be used in the cells. For a
comprehensive discussion of materials specification, see page 3—92.

a. Material (Mm) Card: The following card is used to specify a ma-
terial for all cells containing material m, where m can not exceed 5 digits:

Mm ZAID, fraction; ZAID, fraction,

The m on a material card corresponds to the material number on the cell card
(see page 1—22). The consecutive pairs of entries on the material card consist
of the identification number (ZAID) of the constituent element or nuclide
followed by the atomic fraction (or weight fraction if entered as a negative
number) of that element or nuclide, until all the elements and nuclides needed
to define the material have been listed.

i. Nuclide Identification Number (ZAID). This number is used
to identify the element or nuclhide desired. The torm of the number is
ZZZAAA.nnX, where

ZZ7 is the atomic number of the element or nuclide,
AAA is the mass number of the nuclide, ignored for photons
and electrons,

nn is the cross-section evaluation identifier; if blank or zero,
a default cross-section evaluation will be used, and
X is the class of data: C is continuous energy; D is discrete

reaction; T is thermal; Y is dosimetry; P is photon;

E is electron; and M is multigroup.
For naturally occurring elements, AAA=000. Thus ZAID=74182 represents
the isotope }3°W, and ZAID=74000 represents the element tungsten.

1. Nuclide Fraction. The nuclide fractions may be normalized to
1 or left unnormalized. For example, if the material is H,O the fractions can
be entered as .667 and .333 or as 2 and 1 for H and O respectively. If the
fractions are entered with negative signs, they are weight fractions; otherwise
they are atomic fractions. Weight fractions and atomic fractions cannot be
mixed on the same Mm card.
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The material cards for the sample problem are

M1 8016 1 § oxygen 16
M2 26000 1 $ naturaliron
M3 6000 1 § carbon

b. VOID Card: The VOID card removes all materials and cross sec-
tions in a problem and sets all nonzero importances to unity. It is very
effective for finding errors in the geometry description because many parti-
cles can be run in a short time. Flooding the geometry with many particles
increases the chance of particles going to most parts of the geometry—in par-
ticular, to an incorrectly specified part of the geometry—and getting lost.
The history of a lost particle often helps locate the geometry error. The
other actions of and uses for the VOID card are discussed on page 3—96.

The sample input deck could have a VOID card while testing the geome-

try for errors. When you are satisfied that the geometry is error-free, remove
the VOID card.

6. Problem Cutoffs

Problem cutoff cards are used to specify parameters for some of the
ways to terminate execution of MCNP. The full list of available cards and
a complete discussion of problem cutoffs is found on page 3—107. For our
problem we will use only the history cutoff (NPS) card. The mnemonic
NPS is followed by a single entry that specifies the number of histories to
transport. MCNP will terminate after NPS histories unless it has terminated
earlier for some other reason.

7. Sample Problem Summary

The entire input deck for the sample problem follows. Recall that the
input can be upper, lower, or mixed case.

Sample Problem Input Deck
c cell cards for sample problem
1 1 -0.0014 -7

End of cube surfaces

S 0 -4 -2.5 .5 § oxygen sphere
8 s 0 4 4 .5 § iron sphere
blank line delimiter

2 2 -7.86 -8

3 3 -1.60 1-2-34-5678
4 0 -1:2:3:-4:5:-6

c¢ end of cell cards for sample problem
blank line delimiter

C Beginning of surfaces for cube
1 PZ -5

2 PZ §

3 PY 5

4 PY -5

5 PX 5

6 PX =5

C

7
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IMP:N 1110

SDEF P0S=0 -4 -2.5

F2:N 8 § flux across surface 8
F4:N 2 § brack length in cell 2

EO 1121 14

M1 8016 1 § oxygen 16

M2 26000 1 $ natural iron
M3 6000 1 $ carbon

NPS 100000

blank line delimiter (optional)
V. HOW TO RUN MCNP

This section assumes a basic knowledge of UNIX. Lines the user will type
are shown in lower case typewriter style type. Press the RETURN key
after each input line. MCNP is the executable binary file and XSDIR is the
cross-section directory. If XSDIR is not in your current directory, you may
need to set the environmental variable:

setenv DATAPATH /ab/cd

where /ab/cd is the directory containing both XSDIR and the data libraries.

A. Ezecution Line
The MCNP execution line has the following form:
mcnp Files Options
Files and Options are described below. Their order on the execution line
is irrelevant. If there are no changes in default file names, nothing need be
entered for Files and Options.
1. Files

MCNP uses several files for input and output. The file names cannot be
longer than eight characters. The files pertinent to the sample problem are
shown in Table 1.3. File INP must be present as a local filee. MCNP will
create QUTP and RUNTPE.

Table 1.3
MCNP Files
Default File Name Description
INP Problem input specification
OuUTP BCD output for printing
RUNTPE Binary start-restart data
XSDIR Cross-section directory

The default name of any of the files in Table 1.3 can be changed on the
MCNP execution line by entering

default_file_name=newname
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For example, if you have an input file called MCIN and want the output file
to be MCOUT and the runtpe to be MCRUNTPE, the execution line is
mcnp inp=mcin outp=mcout runtpe=mcruntpe
Only enough letters of the default name are required to uniquely identify it.
For example, :
mcnp i=mcin o=mcout ru=mcrntpe

also works. If a file in your local file space has the same name as a file MCNP
needs to create, the file is created with a different unique name by changing
the last letter of the name of the new file to the next letter in the alphabet.
For example, if you already have an QUTP, MCNP will create OUTQ.

Sometimes it is useful for all files from one run to have similar names. If
your input file is called JOBI, the following line

mcnp name=jobl
will create an OUTP file called JOB10 and a RUNTPE file called JOB1R.
If these files already exist, MCNP will NOT overwrite them, but will issue a
message that JOB1O already exists and then will terminate.
2. Options
There are two kinds of options: program module execution options and

other options. The other options are: C m, DEBUG n, NOTEK, FATAL,
PRINT, and TASKS m. Execution options are discussed next.

MCNP consists of five distinct execution operations, each given a module
name. These operations, their corresponding module names, and a one-letter
mnemonic for each operation are listed in Table 1.4.

Table 1.4
Execution Options

Mnemonic - Module Operation
i IMCN Process problem input file
p PLOT Plot geometry
x XACT Process cross sections
r MCRUN Particle transport
z MCPLOT Plot tally results

When Options are omitted, the default is ixr. The execution of the
modules is controlled by entering the proper mnemonic on the execution
line. If more than one operation is desired, combine the single characters (in
any order) to form a string. Examples of use are: i to look for input errors,
ip to debug a geometry by plotting, ix to see how much cross-section space
is required, and z to plot tally results from the RUNTPE file.

After a job has been run, the BCD print file OUTP can be examined
with an editor on the computer and/or sent to a printer. Numerous mes-
sages about the problem execution and statistical quality of the results are
displayed at the terminal.
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B. Interrupts
MCNP allows four interactive interrupts while it is running:
(ctrl c)<cr> (default) MCNP status
(ctrl ¢)s MCNP status
(ctrl ¢)m Make interactive plots of tallies
(ctrl ¢)q Terminate MCNP normally after current history
(ctrl c)k Kill MCNP immediately

The (ctrl ¢)s interrupt prints the computer time used so far, the number
of particles run so far, and the number of collisions. In the IMCN module,
it prints the input line being processed. In the XACT module, it prints the
cross section being processed.

The (ctrl c)q interrupt has no effect until MCRUN is executed. (Ctrl ¢)q
causes the code to stop after the current particle history, to terminate “grace-
fully,” and to produce a final print output file and RUNTPE file.

The (ctrl c)k interrupt kills MCNP immediately, without normal termi-
nation. If (ctrl c)k fails, enter (ctrl c¢) three or more times in a row.

C. Running MCNP

To run the example problem, have the input file in your current directory.
For illustration, assume the file is called SAMPLE. Type

mcnp n=sample

where n uniquely identifies NAME. MCNP will produce an output file SAM-
PLEO that you can examine at your terminal, send to a printer, or both. To
look at the geometry with the PLOT module using an interactive graphics
terminal, type in

menp  ip n=sample
After the plot prompt plot> appears, type in
px=0 ex=20

This plot will show an intersection of the surfaces of the problem by the
plane X=0 with an extent in the x-direction of 20 cm on either side of the
origin. If you want to do more with PLOT, see the instructions on page
B-1. Otherwise type end after the next prompt to terminate the session.

VI. TIPS FOR CORRECT AND EFFICIENT PROBLEMS

This section has a brief checklist of helpful hints that apply to three
phases of your calculation: defining and setting up the problem, preparing
for the long computer runs that you may require, and making the runs that
will give you results. Not everything mentioned in the checklist has been
covered in this chapter, but the list can serve as a springboard for further
reading in preparation for tackling more difficult problems.
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A. Problem Setup
1. Model the geometry and source distribution accurately.
2. Use the best problem cutoffs.
3. Use zero (default) for the neutron energy cutoff (MODE N P).
4. Do not use too many variance reduction techniques.
5. Use the most conservative variance reduction techniques.
6. Do not use cells with many mean free paths.
7. Use simple cells.
8. Use the simplest surfaces.
9. Study warning messages.
10. Always plot the geometry.
11. Use the VOID card when checking geometry.
12. Use separate tallies for the fluctuation chart.
13. Generate the best output (consider PRINT card).
14. RECHECK the INP file (materials, densities, masses, sources, etc.).
15. GARBAGE into code = GARBAGE out of code.
B. Preproduction
1. Run some short jobs.
2. Examine the outputs carefully.
3. Study the summary tables.
4. Study the statistical checks on tally quality and the sources of vari-
ance.
5. Compare the figures of merit and variance of the variance.
6. Consider the collisions per source particle.
7. Examine the track populations by cell.
8. Scan the mean free path column.
9. Check detector diagnostic tables.

G

o

Understand large detector contributions.

. Strive to eliminate unimportant tracks.
. Check MODE N P photon production.

Do a back-of-the-envelope check of the results.
DO NOT USE MCNP AS A BLACK BOX.

Production

. Save RUNTPE for expanded output printing, continue run, tally

plotting.

Look at figure of merit stability.

Make sure answers seem reasonable.

Make continue runs if necessary.

See if stable errors decrease by 1/v/N (that is, be careful of the brute
force approach).

Remember, accuracy is only as good as the nuclear data, modeling,
MCNP sampling approximations, etc.
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CHAPTER 2
GEOMETRY, DATA, PHYSICS, AND MATHEMATICS

I INTRODUCTION

Chapter 2 discusses the mathematics and physics of MCNP, includ-
ing geometry, cross-section libraries, sources, variance reduction schemes,
Monte Carlo simulation of neutron and photon transport, and tallies. This
discussion is not meant to be exhaustive; many details of the particular
techniques and of the Monte Carlo method itself will be found elsewhere.
Carter and Cashwell’s book Particle-Transport Simulation with the Monte
Carlo Method,! a good general reference on radiation transport by Monte
Carlo, is based upon what is in MCNP. A more recent reference is Lux and
Koblinger’s book, Monte Carlo Particle Transport Methods: Neutron and
Photon Calculations.? Methods of sampling from standard probability den-
sities are discussed in the Monte Carlo samplers by Everett and Cashwell.?

MCNP was originally developed by the Monte Carlo Group, currently the
Radiation Transport Group, (Group X-6) in the Applied Theoretical Physics
Division (X Division) at the Los Alamos National Laboratory. Group X-6
improves MCNP (releasing a new version every two to three years), main-
tains it at Los Alamos and at other laboratories where we have collaborators
or sponsors, and provides limited free consulting and support for MCNP
users. MCNP is distributed to other users through the Radiation Shielding
Information Center (RSIC) at Oak Ridge, Tennessee, and the OECD/NEA
data bank in Paris, France.

MCNP has approximately 40,000 lines of FORTRAN and 1000 lines of
C source coding, including comments and with the COMMON blocks listed
only once and not in every subroutine. There are about 350 subroutines.
There is only one source code; it is used for all systems. At Los Alamos,
there are about 200 active users. Worldwide, there are about 1000 active
users at about 100 installations.

MCNP takes advantage of parallel computer architectures. It is sup-
ported in multitasking mode on the 8-processor Cray YMP and in multi-
processing mode on a cluster of 16 IBM RS-6000 workstations where the
distributed processing uses the Parallel Virtual Machine (PVM) software
from Oak Ridge.

MCNP has not been successfully vectorized because the overhead re-
quired to set up and break apart vector queues at random decision points is
greater than the savings from vectorizing the simple arithmetic between the
decision points. MCNP (and any general Monte Carlo code) is little more
than a collection of random decision points with some simple arithmetic in
between. Because MCNP does not take advantage of vectorization, it is
fairly inefficient on vectorized computers. In particular, many workstations
run MCNP as fast or faster than the Cray-YMP.*

MCNP has been made as system independent as possible to enhance its
portability, and has been written to comply with the ANSI FORTRAN 77
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standard. With one source code, MCNP is maintained on many platforms.
A. History

The Monte Carlo method is generally attributed to scientists working
on the development of nuclear weapons in Los Alamos during the 1940s.
However, its roots go back much farther.

Perhaps the earliest documented use of random sampling to solve a math-
ematical problem was that of Compte de Buffon in 1772.5 A century later
people performed experiments in which they threw a needle in a haphaz-
ard manner onto a board ruled with parallel straight lines and inferred the
value of 7 from observations of the number of intersections between needle
and lines.®” Laplace suggested in 1886 that 7 could be evaluated by random
sampling.® Lord Kelvin appears to have used random sampling to aid in eval-
uating some time integrals of the kinetic energy that appear in the kinetic
theory of gasses® and acknowledged his secretary for performing calculations
for more than 5000 collisions.!?

According to Emilio Segre, Enrico Fermi’s student and collaborator,
Fermi invented a form of the Monte Carlo method when he was studying
the moderation of neutrons in Rome.!®!! Though Fermi did not publish
anything, he amazed his colleagues with his predictions of experimental re-
sults. After indulging himself, he would reveal that his “guesses” were really
derived from the statistical sampling techniques that he performed in his
head when he couldn'’t fall asleep.

During World War II at Los Alamos, Fermi joined many other eminent
scientists to develop the first atomic bomb. It was here that Stan Ulam be-
came impressed with electromechanical computers used for implosion studies.
Ulam realized that statistical sampling techniques were considered impracti-
cal because they were long and tedious, but with the development of comput-
ers they could become practical. Ulam discussed his ideas with others like
John von Neumann and Nicholas Metropolis. Statistical sampling techniques
reminded everyone of games of chance, where randomness would statistically
become resolved in predictable probabilities. It was Nicholas Metropolis who
noted that Stan had an uncle who would borrow money from relatives be-
cause he “just had to go to Monte Carlo” and thus named the mathematical
method “Monte Carlo.”!!

Meanwhile, a team of wartime scientists headed by John Mauchly was
working to develop the first electronic computer at the University of Penn-
sylvania in Philadelphia. Mauchly realized that if Geiger counters in physics
laboratories could count, then they could also do arithmetic and solve mathe-
matical problems. When he saw a seemingly limitless array of women crank-
ing out firing tables with desk calculators at the Ballistic Research Labo-
ratory at Aberdeen, he proposed!! that an electronic computer be built to
deal with these calculations. The result was ENIAC (Electronic Numerical
Integrator and Computer), the world’s first computer, built for Aberdeen at
the University of Pennsylvania. It had 18,000 double triode vacuum tubes
in a system with 500,000 solder joints.!!
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John von Neumann was a consultant to both Aberdeen and Los Alamos.
When he heard about ENIAC, he convinced the authorities at Aberdeen
that he could provide a more exhaustive test of the computer than mere
firing-table computations. In 1945 John von Neumann, Stan Frankel, and
Nicholas Metropolis visited the Moore School of Electrical Engineering at
the University of Pennsylvania to explore using ENIAC for thermonuclear
weapon calculations with Edward Teller at Los Alamos.!! After the success-
ful testing and dropping of the first atomic bombs a few months later, work
began in earnest to calculate a thermonuclear weapon. On March 11, 1947,
John von Neumann sent a letter to Robert Richtmyer, leader of the Theo-
retical Division at Los Alamos, proposing use of the statistical method to
solve neutron diffusion and multiplication problems in fission devices.!! His
letter was the first formulation of a Monte Carlo computation for an elec-
tronic computing machine. In 1947, while in Los Alamos, Fermi invented a
mechanical device called FERMIAC!? to trace neutron movements through
fissionable materials by the Monte Carlo Method.

By 1948 Stan Ulam was able to report to the Atomic Energy Commis-
sion that not only was the Monte Carlo method being successfully used on
problems pertaining to thermonuclear as well as fission devices, but also it
was being applied to cosmic ray showers and the study of partial differential
equations.!! In the late 1940s and early 1950s, there was a surge of papers
describing the Monte Carlo method and how it could solve problems in ra-
diation or particle transport and other areas.!3141% Many of the methods
described in these papers are still used in Monte Carlo today, including the
method of generating random numbers!® used in MCNP. Much of the interest
was based on continued development of computers such as the Los Alamos
MANIAC (Mechanical Analyzer, Numerical Integrator, and Computer) in
March, 1952.

The Atomic Energy Act of 1946 created the Atomic Energy Commission
to succeed the Manhattan Project. In 1953 the United States embarked upon
the “Atoms for Peace” program with the intent of developing nuclear energy
for peaceful applications such as nuclear power generation. Meanwhile, com-
puters were advancing rapidly. These factors led to greater interest in the
Monte Carlo method. In 1954 the first comprehensive review of the Monte
Carlo method was published by Herman Kahn!7 and the first book was pub-
lished by Cashwell and Everett!® in 1959.

At Los Alamos, Monte Carlo computer codes developed along with com-
puters. The first Morite Carlo code was the simple 19-step computing sheet
in John von Neumann’s letter to Richtmyer. But as computers became
more sophisticated, so did the codes. At first the codes were written in
machine language and each code would solve a specific problem. In the
early 1960s, better computers and the standardization of programming lan-
guages such as FORTRAN made possible more general codes. The first Los
Alamos general-purpose particle transport Monte Carlo code was MCS,!*
written in 1963. Scientists who were not necessarily experts in comput-
ers and Monte Carlo mathematical techniques now could take advantage of
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the Monte Carlo method for radiation transport. They could run the MCS
code to solve modest problems without having to do either the programming
or the mathematical analysis themselves. MCS was followed by MCN?? in
1965. MCN could solve the problem of neutrons interacting with matter
in a three-dimensional geometry and used physics data stored in separate,
highly-developed libraries.

In 1973 MCN was merged with MCG,2! a Monte Carlo gamma code that
treated higher energy photons, to form MCNG, a coupled neutron-gamma
code. In 1977 MCNG was merged with MCP,?! a Monte Carlo Photon
code with detailed physics treatment down to 1 keV, to accurately model
neutron-photon interactions. The code has been known as MCNP ever since.
Though at first MCNP stood for Monte Carlo Neutron Photon, now it stands
for Mor.:e Carlo N-Particle. Other major advances in the 70s included the
present generalized tally structure, automatic calculation of volumes, and a
Monte Carlo eigenvalue algorithm to determine k.¢s for nuclear criticality
(KCODE).

In 1983 MCNP3 was released, entirely rewritten in ANSI standard FOR-
TRAN 77. MCNP3 was the first MCNP version internationally distributed
through the Radiation Shielding and Information Center at Oak Ridge, Ten-
nessee. Other 1980s versions of MCNP were MCNP3A (1986) and MCNP3B
(1988), that included tally plotting graphics (MCPLOT), the present gen-
eralized source, surface sources, repeated structures/lattice geometries, and
multigroup/adjoint transport.

MCNP4 was released in 1990 and was the first UNIX version of the
code. It accommodated N-particle transport and multitasking on parallel
computer architectures. MCNP4 added electron transport (patterned after
the Integrated TIGER Series (ITS) continuous-slowing-down approximation
physics),?? the pulse height tally (F8), a thick-target bremsstrahlung ap-
proximation for photon transport, enabled detectors and DXTRAN with the
S(a, 3) thermal treatment, provided greater random number control, and
allowed plotting of tally results while the code was running.

MCNP4A, released in 1993, featured enhanced statistical analysis, dis-
tributed processor multitasking for running in parallel on a cluster of sci-
entific workstations, new photon libraries, ENDF/B-VI capabilities, color
X-Windows graphics, dynamic memory allocation, expanded criticality out-
put, periodic boundaries, plotting of particle tracks via SABRINA, improved
tallies in repeated structures, and many smaller improvements.

Large production codes such as MCNP have revolutionized science —
not only in the way it is done, but also by becoming the repositories for
physics knowledge. MCNP represents about 400 person-years of sustained
effort. The knowledge and expertise contained in MCNP is formidable.

Current MCNP development is characterized by a strong emphasis on
quality control, documentation, and research. New features continue to be
added to the code to reflect new advances in computer architecture, improve-
ments in Monte Carlo methodology, and better physics models. MCNP has
a proud history and a promising future.
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B. MCNP Structure

MCNP is written in the style of Dr. Thomas N. K. Godfrey, the princi-
pal MCNP programmer from 1975 - 1989. Variable dimensions for arrays are
achieved by massive use of EQUIVALENCE statements and offset indexing.
All variables local to a routine are no more than two characters in length, and
all COMMON variables are between three and six characters in length. The
code strictly complies with the ANSI FORTRAN 77 standard. The principal
characteristic of Tom Godfrey’s style is its terseness. Everything is accom-
plished in as few lines of code as possible. Thus MCNP does more than some
other codes that are more than ten times larger. It was Godfrey’s philosophy
that anyone can understand code at the highest level by making a flow chart
and anyone can understand code at the lowest level (one FORTRAN line);
it is the intermediate level that is most difficult. Consequently, by using a
terse programming style, subroutines could fit within a few pages and be
most easily understood. Tom Godfrey’s style is clearly counter to modern
computer science programming philosophies, but it has served MCNP well
and is preserved to provide stylistic consistency throughout.

The general structure of MCNP is as follows:

Initiation (IMCN):
¢ Read input file (INP) to get dimensions (PASS1);
e Set up variable dimensions or dynamically allocated storage (SETDAS);
¢ Re-read input file (INP) to load input (RDPROB);
e Process source (ISOURC);

Process tallies (ITALLY);

o Process materials specifications (STUFF) including masses but without
loading in the data files;

e Calculate cell volumes and surface areas (VOLUME).

Interactive Geometry Plot (PLOT).

Cross Section Processing (XACT):

o Load libraries (GETXST);

¢ Eliminate excess neutron data outside problem energy range (EXPUNG);

¢ Doppler broaden elastic and total cross sections to the proper tempera-
ture if the problem temperature is higher than the library temperature
(BROADN);

e Process multigroup libraries (MGXSPT);

e Process electron libraries (XSGEN) including calculation of range tables,
straggling tables, scattering angle distributions, and bremsstrahlung.

MCRUN sets up multitasking and multiprocessing, runs histories (by calling
TRNSPT, which calls HSTORY), and returns to OUTPUT to print, write
RUNTPE dumps, or process another criticality (KCODE) cycle.

Under MCRUN, MCNP runs neutron, photon, or electron histories (HSTORY),
calling ELECTR for electron tracks:
e Start a source particle (STARTP);
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e Find the distance to the next boundary (TRACK), cross the surface
(SURFAC) and enter the next cell (NEWCEL);

¢ Find the total neutron cross section (ACETOT) and process neutron
collisions (COLIDN) producing photons as appropriate (ACEGAM);

e Find the total photon cross section (PHOTOT) and process photon col-
lisions (COLIDP) producing electrons as appropriate (EMAKER);

o Use the optional thick-target bremsstrahlung approximation if no elec-
tron transport (TTBR);

e Follow electron tracks (ELECTR);

o Process optional multigroup collisions (MGCOLN, MGCOLP, MGA-
COL);

o Process detector tallies (TALLYD) or DXTRAN;

e Process surface, cell, and pulse height tallies (TALLY).

Periodically write output file, restart dumps, update to next criticality (KCODE)
cycle, rendezvous for multitasking and updating detector and DXTRAN Rus-
sian roulette criteria, etc. (OUTPUT):

o Go to the next criticality cycle (KCALC);

e Print output file summary tables (SUMARY, ACTION);

e Print tallies (TALLYP);

o Generate weight windows (OUTWWG).

Plot tallies (MCPLOT).

GKS graphics simulation routines.

PVM distributed processor multiprocessing routines.
Random number generator and control (RANDOM).

Mathematics, character manipulation, and other slave routines.
C. History Flow

The basic flow of a particle history for a coupled neutron/photon/electron
problem is handled in subroutine HSTORY. HSTORY is called from TRN-
SPT after the random number sequence is set up and the number of the
history, NPS, is incremented. The flow of HSTORY is then as follows.

First, STARTP is called. The flag IPT is set for the type of particle being
run: 1 for a neutron, 2 for a photon, and 3 for an electron. Some arrays and
variables (such as NBNK, the number of particles in the bank) are initialized
to zero. The starting random number is saved (RANB, RANS, RNRTCO0),
and the branch of the history, NODE, is set to 1.

Next, the appropriate source routine is called. Source options are the
standard fixed sources (SOURCB), the surface source (SURSRC), the KCODE
criticality source (SOURCK), or a user-provided source (SOURCE). All of
the parameters describing the particle are set in these source routines, in-
cluding position, direction of flight, energy, weight, time, and starting cell
(and possibly surface), by sampling the various distributions described on the
source input control cards. Several checks are made at this time to verify
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that the particle is in the correct cell or on the correct surface, and directed
toward the correct cell; then control is returned to STARTP.

Next in STARTP, the initial parameters of the first fifty particle histo-
ries are printed. Then some of the summary information is incremented (see
Appendix E for an explanation of these arrays). Energy, time, and weight
are checked against cutoffs. A number of error checks are made. TALLYD

ie rallad ta conre antv datontar cantnihicks nAd than NYTDAN & Anllod
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(if used in the problem) to create particles on the spheres. The particles
are saved with BANKIT for later tracking. TALPH is called to start the
bookkeeping for the pulse height cell tally energy balance. The weight win-
dow game is played, with any additional particles from splitting put into the
bank and any losses to Russian roulette terminated. Control is returned to
HSTORY.

Back in HSTORY, the actual particle transport is started. For an elec-
tron source, ELECTR is called and electrons are run separately. For a neu-
tron or photon source, TRACK is called to calculate the intersection of the
particle trajectory with each bounding surface of the cell. The minimum
positive distance DLS to the cell boundary indicates the next surface JSU
the particle is heading toward. The distance to the nearest DXTRAN sphere
DXL is calculated, as is the distance to time cutoff DTC, and energy bound-
ary for multigroup charged particles DEB. The cross sections for cell ICL
are calculated using a binary table lookup in ACETOT for neutrons and in
PHOTOT for photons. The total cross section is modified in EXTRAN by
the exponential transformation if necessary. The distance PMF to the next
collision is determined (if a forced collision is required, FORCOL is called and
the uncollided part is banked). The track length D of the particle in the cell
is found as the minimum of the distance PMF to collision, the distance DLS
to the surface JSU, the distance DXL to a DXTRAN sphere, the distance
DTC to time cutoff, or the distance DEB to energy boundary. TALLY then
is called to increment any track length cell tallies. Some summary informa-
tion is incremented. The particle’s parameters (time, position, and energy)
are then updated. If the particle’s distance DXL to a DXTRAN sphere (of
the same type as the current particle) is equal to the minimum track length
D, the particle is terminated because particles reaching the DXTRAN sphere
are already accounted for by the DXTRAN particles from each collision. If
the particle exceeds the time cutoff, the track is terminated. If the particle
was detected leaving a DXTRAN sphere, the DXTRAN flag IDX is set to
zero and the weight cutoff game is played. The particle is either terminated
to weight cutoff or survives with an increased weight. Weight adjustments
then are made for the exponential transformation.

If the minimum track length D is equal to the distance-to-surface crossing
DLS, the particle is transported distance D to surface JSU and SURFAC is
called to cross the surface and do any surface tallies (by calling TALLY)
and to process the particle across the surface into the next cell by calling
NEWCEL. It is in SURFAC that reflecting surfaces, periodic boundaries,
geometry splitting, Russian roulette from importance sampling, and loss to
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escape are treated. For splitting, one bank entry of NPA particle tracks
is made in BANKIT for an (NPA+1)-for-1 split. The bank is the IBNK
array, and entries or retrievals are made with the GPBLCM and JPBLCM
arrays (the bank operates strictly on a last-in, first-out basis). The history
is continued by going back to HSTORY and calling TRACK.

If the distance to collision PMF is less than the distance to surface DLS,
or if a multigroup charged particle reaches the distance to energy boundary
DEB, the particle undergoes a collision. Everything about the collision is
determined in COLIDN for neutrons and COLIDP for photons. COLIDN
determines which nuclide is involved in the collision, samples the target ve-
locity of the collision nuclide by calling TGTVEL for the free gas thermal
treatment, generates and banks any photons (ACEGAM), handles analog
capture or capture by weight reduction, plays the weight cutoff game, han-
dles S(a, 3) thermal collisions (SABCOL) and elastic or inelastic scattering
(ACECOL). For criticality problems, COLIDK is called to store fission sites
for subsequent generations. Any additional tracks generated in the collision
are put in the bank. ACECAS and ACECOS determine the energies and di-
rections of particles exiting the collision. Multigroup and multigroup/adjoint
collisions are treated separately in MGCOLN and MGACOL that are called
from COLIDN. The collision process and thermal treatments are described
in more detail later in this chapter (see page 2—-27).

COLIDP for photons is similar to COLIDN, and it covers the simple or
the detailed physics treatments. The simple physics treatment is better for
free electrons; the detailed treatment is the default and includes form factors
for electron binding effects, coherent (Thomson) scatter, and fluorescence
from photoelectric capture (see page 2—50). COLIDP samples for the col-
lision nuclide, treats photoelectric absorption, or capture (with fluorescence
in the detailed physics treatment), incoherent (Compton) scatter (with form
factors in the detailed physics treatment to account for electron binding),
coherent (Thomson) scatter for the detailed physics treatment only (again
with form factors), and pair production. Electrons are generated (EMAKER)
for incoherent scatter, pair production, and photoelectric absorption. These
electrons may be assumed to instantly deposit all their energy if IDES=1
on the PHYS:P card, or they may produce electrons with the thick-target
bremsstrahlung approximation (default for MODE P problems, IDES=0 on
the PHYS:P card), or they may undergo full electron transport (default for
MODE P E problems, IDES=0 on the PHYS:P card.) Multigroup or multi-
group/adjoint photons are treated separately in MGCOLP or MGACOL.

After the surface crossing or collision is processed, control returns to
HSTORY and transport continues by calling TRACK, where the distance to
cell boundary is calculated. Or if the particle involved in the collision was
killed by capture or variance reduction, the bank is checked for any remaining
progeny, and if none exists, the history is terminated. Appropriate summary
information is incremented, the tallies of this particular history are added to
the total tally data by TALSHF, and a return is made to TRNSPT.

In TRNSPT, checks are made to see if output is required or if the job
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should be terminated because enough histories have been run or too little
time remains to continue. For continuation, HSTORY is called again. Oth-
erwise a return is made to MCRUN. MCRUN calls OUTPUT, which calls
SUMARY to print the summary information. Then SUMARY calls TALLYP
to print the tally data. Appendix E defines all of the MCNP variables that
are in COMMON as well as detailed descriptions of some important arrays.

II. GEOMETRY

The basic MCNP geometry concepts, discussed in Chapter 1, include the
sense of a cell, the intersection and union operators, and surface specification.
Covered in this section are the complement operator; the repeated structure
capability; an explanation of two surfaces, the cone and the torus; and a
description of ambiguity, reflecting, white, and periodic boundary surfaces.

A. Complement Operator

This operator provides no new capability over the intersection and union
operators; it is just a shorthand cell-specifying method that implicitly uses
the intersection and union operators.

The symbol # is the complement operator and can be thought of as
standing for not in. There are two basic uses of the operator:

#n means that the description of the current cell is the com-
plement of the description of cell n.

#(...) means complement the portion of the cell description
in the parentheses (usually just a list of surfaces describing
another cell).

In the first of the two above forms, MCNP performs five operations:
(1) the symbol # is removed, (2) parentheses are placed around =, (3) any
intersections in n become unions, (4) any unions in n are replaced by back-
to-back parentheses )( which is an intersection, and (5) the senses of the
surfaces defining n are reversed.

A simple example is a cube. We define a two-cell geometry with six
surfaces, where cell 1 is the cube and cell 2 is the outside world:

1 0-1 2-3 4-5 6
2 0 1:=-2: 3:—4: 5:—6

Note that cell 2 is everything in the universe that is not in cell 1, or

2 0 #1

The form #(n) is not allowed; it is functionally available as the equivalent
of —n.

CAUTION: Using the complement operator can destroy some of the
necessary conditions for some cell volume and surface area calculations by
MCNP. See page 4—14 for an example.
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The complement operator can be easily abused if it is used indiscrimi-
nately. A simple example can best illustrate the problems. Fig. 2.1 consists
of two concentric spheres inside a box. Cell 4 can be described using the
complement operator as

4 0 #3 #2 #1

Although cells 1 and 2 do not touch cell 4, to omit them would be incor-
rect. If they were omitted, the description of cell 4 would be everything in
the universe that is not in cell 3. Since cells 1 and 2 are not part of cell 3,
they would be included in cell 4. Even though surfaces 1 and 2 do not phys-
ically bound cell 4, using the complement operator as in this example causes
MCNP to think that all surfaces involved with the complement do bound
the cell. Even though this specification is correct and required by MCNP,
the disadvantage is that when a particle enters cell 4 or has a collision in cell
4, MCNP must calculate the intersection of the particle’s trajectory with all
real bounding surfaces of cell 4 plus any extraneous ones brought in by the
complement operator. This intersection calculation is very expensive and
can add significantly to the required computer time.

o|®

2

Figure 2.1

A better description of cell 4 would be to complement the description of
cell 3 (omitting surface 2) by reversing the senses and interchanging union
and intersection operators as illustrated in the cell cards that describe the
simple cube in the preceding paragraphs.

B. Repeated Structure Geometry

The repeated structure geometry feature is explained in detail starting on
page 3—-21. The capabilities are only introduced here. Examples are shown
in Chapter 4. The cards associated with the repeated structure feature are
U (universe), FILL, TRCL, and LAT (lattice) and cell cards with LIKE m
BUT.

The repeated structure feature makes it possible to describe only once
the cells and surfaces of any structure that appears more than once in a
geometry. This unit then can be replicated at other xyz locations by using
the “LIKE m BUT” construct on a cell card. The user specifies that a cell is
filled with something called a universe. The U card identifies the universe,
if any, to which a cell belongs. The FILL card specifies with which universe

November 16, 1993 2-10



CHAPTER 2
Geometry

a cell is to be filled. A universe is either a lattice or an arbitrary collection
of cells. The two types of lattice shapes, hexagonal prisms and hexahedra,
need not be rectangular nor regular, but they must fill space exactly. Several
concepts and cards combine in order to use this capability.

C. Surfaces

1. Explanation of Cone and Torus

Two surfaces, the cone and torus, require more explanation. The quadratic
equation for a cone describes a cone of two sheets (just like a hyperboloid
of two sheets)—one sheet is a cone of positive slope, and the other has a
negative slope. A cell whose description contains a two-sheeted cone may
require an ambiguity surface to distinguish between the two sheets. MCNP
provides the option to select either of the two sheets; this option frequently
simplifies geometry setups and eliminates any ambiguity. The +1 or the —1
entry on the cone surface card causes the one sheet cone treatment to be
used. If the sign of the entry is positive, the specified sheet is the one that
extends to infinity in the positive direction of the coordinate axis to which
the cone axis is parallel. The converse is true for a negative entry. This
feature is available only for cones whose axes are parallel to the coordinate
axes of the problem.

The treatment of fourth degree surfaces in Monte Carlo calculations has
always been difficult because of the resulting fourth order polynomial (“quar-
tic”) equations. These equations must be solved to find the intersection of
a line of flight of a particle with a toroidal surface. In MCNP these equa-
tions must also be solved to find the intersection of surfaces to compute the
volumes and surface areas of geometric regions of a given problem. In either
case, the quartic equation,

t*+ Bz +Cz2* + Dz +E=0

is difficult to solve on a computer because of roundoff errors. For many
years the MCNP toroidal treatment required 30 decimal digits (CDC double-
precision) accuracy to solve quartic equations. Even then there were roundoff
errors that had to be corrected by Newton-Raphson iterations. Schemes
using a single-precision quartic formula solver followed by a Newton-Raphson
iteration were inadequate because if the initial guess of roots supplied to the
Newton-Raphson iteration is too inaccurate, the iteration will often diverge
when the roots are clcsc together.

The single-precision quartic algorithm in MCNP basically follows the
quartic solution of Cashwell and Everett.?> When roots of the quartic equa-
tion are well separated, a modified Newton-Raphson iteration quickly achieves
convergence. But the key to this method is that if the roots are double roots
or very close together, they are simply thrown out because a double root
corresponds to a particle’s trajectory being tangent to a toroidal surface,
and it is a very good approximation to assume that the particle then has no
contact with the toroidal surface. In extraordinarily rare cases where this is
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not a good assumption, the particle would become “lost.” Additional refine-
ments to the quartic solver include a carefully selected finite size of zero, the
use of a cubic rather than a quartic equation solver whenever a particle is
transported from the surface of a torus, and a gross quartic coefficient check
to ascertain the existence of any real positive roots. As a result, the single-
precision quartic solver is substantially faster than double-precision schemes,
portable, and also somewhat more accurate.

In MCNP, elliptical tori symmetric about any axis parallel to a coordi-
nate axis may be specified. The volume and surface area of various tallying
segments of a torus usually will be calculated automatically.

2. Ambiguity Surfaces

The description of the geometry of a cell must eliminate any ambiguities
as to which region of space is included in the cell. That is, a particle entering
a cell should be able to uniquely determine which cell it is in from the senses
of the bounding surfaces. This is not possible in a a geometry such as shown
in Fig. 2.2 unless an ambiguity surface is specified. Suppose the figure is
rotationally symmetric about the y-axis.

Figure 2.2

A particle entering cell 2 from the inner spherical region might think it was
entering cell 1 because a test of the senses of its coordinates would satisfy
the description of cell 1 as well as that of cell 2. In such cases, an ambiguity
surface is introduced such as a, the plane y = 0. An ambiguity surface need
not be a bounding surface of a cell, but it may be and frequently is. It can
also be the bounding surface of some cell other than the one in question.
However, the surface must be listed among those in the problem and must
not be a reflecting surface (see page 2—13). The description of cells 1 and
2 in Fig. 2.2 is augmented by listing for each its sense relative to surface a
as well as that of each of its other bounding surfaces. A particle in cell 1
cannot have the same sense relative to surface a as does a particle in cell 2.
More than one ambiguity surface may be required to define a particular cell.

A second example may help to clarify the significance of ambiguity sur-
faces. We would like to describe the geometry of Fig. 2.3a. Without the
use of an ambiguity surface, the result will be Fig. 2.3b. Surfaces 1 and 3
are spheres about the origin, and surface 2 is a cylinder around the y-axis.
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Figure 2.3

Cell 1 is both the center and outside world of the geometry connected by the
region interior to surface 2.

At first glance it may appear that cell 1 can easily be specified by —1 :
—2: 3 whereas cell 2 is simply #1. This results in Figure 2.3b, in which cell
1 is everything in the universe interior to surface 1 plus everything in the
universe interior to surface 2 (remember the cylinder goes to plus and minus
infinity) plus everything in the universe exterior to surface 3.

An ambiguity surface (a plane at y=0) will solve the problem. Every-
thing in the universe to the right of the ambiguity surface (call it surface 4)
intersected with everything in the universe interior to the cylinder is a cylin-
drical region that goes to plus infinity but terminates at y=0. Therefore, —1
: (4 =2) : 3 defines cell 1 as desired in Figure 2.3a. The parentheses in this
last expression are not required because intersections are done before unions.
Another expression for cell 2 rather than #1is 1 —3 #(4 -2).

For the user, ambiguity surfaces are specified the same way as any other
surface—simply list the signed surface number as an entry on the cell card.
For MCNP, if a particular ambiguity surface appears on cell cards with only
one sense, it is treated as a true ambiguity surface. Otherwise, it still func-
tions as an ambiguity surface but the TRACK subroutine will try to find
intersections with it, thereby using a little more computer time.

3. Reflecting Surfaces

A surface can be designated a reflecting surface by preceding its number
on the surface card with an asterisk. Any particle hitting a reflecting surface
is specularly (mirror) reflected. Reflecting planes are valuable because they
can simplify a geometry setup (and also tracking) in a problem. They can,
however, make it difficult (or even impossible) to get the correct answer.
The user is cautioned to check the source weight and tallies :- ensure that
the desired result is achieved. Any tally in a problem with reflecting planes
should have the same expected result as the tally in the same problem with-
out reflecting planes. Detectors or DXTRAN used with reflecting surfaces
give wrong answers (see page 2—79).

The following example illustrates the above points and hopefully makes
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you very cautious in the use of reflecting surfaces; they should never be used
in any situation without a lot of thought.

Consider a cube of carbon 10 cm on a side sitting on top of a 5-MeV
neutron source distributed uniformly in volume. The source cell is a 1-cm-
thick void completely covering the bottom of the carbon cube and no more.
The average neutron flux across any one of the sides (but not top or bottom)
is calculated to be 0.150 (+0.5%) per cm? per starting neutron from an
MCNP F2 tally, and the flux at a point at the center of the same side is
1.55E—03 n/cm? (£1%) from an MCNP F5 tally.

The cube can be modeled by half a cube and a reflecting surface. All
dimensions remain the same except the distance from the tally surface to the
opposite surface (which becomes the reflecting surface) is 5 cm. The source
cell is cut in half also. Without any source normalization, the flux across
the surface is now 0.302 (+£0.5%), which is twice the flux in the nonreflecting
geometry. The detector flux is 2.58E—03 (+£1%), which is less than twice the
point detector flux in the nonreflecting problem.

The problem is that for the surface tally to be correct, the starting weight
of the source particles has to be normalized; it should be half the weight of
the nonreflected source particles. The detector results will always be wrong
(and lower) for the reason discussed on page 2—79.

In this particular example, the normalization factor for the starting
weight of source particles should be 0.5 because the source volume is half
of the original volume. Without the normalization, the full weight of source
particles is started in only half the volume. These normalization factors are
problem dependent and should be derived very carefully.

Another way to view this problem is that the tally surface has dou-
bled because of the reflecting surface; two scores are being made across the
tally surface when one is made across each of two opposite surfaces in the
nonreflecting problem. The detector has doubled, too—except that the con-
tributions to it from beyond the reflecting surface are not being made, as
explained on page 2—79.

\ White Boundasi

A surface can be designated a white boundary surface by preceding its
number on the surface card with a plus. Any particle hitting a white bound-
ary is isotropically reflected. White boundary surfaces are useful for com-
paring MCNP results with other codes that have white boundary conditions.
They also can be used to approximate a boundary with an infinite scatterer.
They make absolutely no sense in problems with next event estimators such
as detectors or DXTRAN (see page 2—79) and should always be used with
caution.

5. Periodic Boundari

Periodic boundary conditions can be applied to pairs of planes to sim-
ulate an infinite lattice. Although the same effect can be achieved with an
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infinite lattice, the periodic boundary is easier to use, simplifies compari-
son with other codes having periodic boundaries, and can save considerable
computation time. There is approximately a 55% run time penalty associ-
ated with repeated structures and lattices that can be avoided with periodic
boundaries. However, collisions and other aspects of the Monte Carlo ran-
dom walk usually dominate running time, so the savings realized by using
periodic boundaries are usually much smaller. A simple periodic boundary
problem is illustrated in Figure 2.3c.

N\ 3
Figure 2.3(c)

It consists of a square reactor lattice infinite in the z direction and 10 cm
on a side in the x and y directions with an off-center 1-cm-radius cylindrical

fuel pin. The MCNP surface cards are:

1 -2 px -5
2 -1 px §
3 4 py -5
4 -3 py 5
) c/z 241

The negative entry before the surface mnemonic specify periodic bound-
aries. Card one says that surface 1 is periodic with surface 2 and is a px
plane. Card two says that surface 2 is periodic with surface 1 and is a px
plane. Card three says that surface 3 is periodic with surface 4 and is a py
plane. Card four says that surface 4 is periodic with surface 3 and is a py
plane. Card five says that surface 5 is an infinite cylinder parallel to the
z-axis. A particle leaving the lattice out the left side (surface 1) re-enters
on the right side (surface 2). If the surfaces were reflecting, the re-entering
particle would miss the cylinder, shown by the dotted line. In a fully speci-
fied lattice and in the periodic geometry, the re-entering particle will hit the
cylinder as it should.

Much more complicated examples are possible, particularly hexagonal
prism lattices. In all cases, MCNP checks that the periodic surface pair
matches properly and performs all the necessary surface rotations and trans-
lations to put the particle in the proper place on the corresponding periodic
plane.

The following limitations apply:

%)
|

—

[$1}
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Periodic boundaries cannot be used with next event estimators such as de-
tectors or DXTRAN (see page 2—79);

o All periodic surfaces must be planes;

e Periodic planes cannot also have a surface transformation;

o The periodic cells may be infinite or bounded by planes on the top or bottom
that must be periodic, reflecting, or white boundaries;

Periodic planes can only bound other periodic planes or top and bottom
planes;

A zero-importance cell must be on exactly one side of each periodic plane;
All periodic planes must have a common rotational vector normal to the
geometry top and bottom.

III. CROSS SECTIONS

The MCNP code package is incomplete without the associated nuclear
data tables. The kinds of tables available and their general features are
outlined in this section. The manner in which information contained on
nuclear data tables is used in MCNP is described in Sec. IV of this chapter.

There are two broad objectives in preparing nuclear data tables for
MCNP. First, it is our responsibility to ensure that the data available to
MCNP reproduce the original evaluated data as much as is practical. Sec-
ond, new data should be brought into the MCNP package in a timely fashion,
thereby giving users access to the most recent evaluations.

Eight classes of nuclear data tables exist for MCNP. They are: (1)
continuous-energy neutron interaction data, (2) discrete reaction neutron
interaction data, (3) photon interaction data, (4) neutron dosimetry cross
sections, (5) neutron S(a, ) thermal data (6) multigroup neutron, coupled
neutron/photon, and charged particles masquerading as neutrons, (7) multi-
group photon, and (8) electron interaction data. It is understood that photon
and electron data are atomic rather than nuclear. In Mode N problems, one
continuous-energy or discrete-reaction neutron interaction table is required
for each isotope or element in the problem. Likewise, one photon interaction
table is required for each element in a Mode P problem, and one electron
interaction table is required for each element in a Mode E problem. Dosime-
try and thermal data are optional. Cross sections from dosimetry tables can
be used as response functions with the FM card to determine reaction rates.
Thermal S(a, 3) tables are appropriate if the neutrons are transported at
sufficiently low energies where molecular binding effects are important.

MCNP can read from data tables in any of three formats. Data tables are
transmitted between computer installations in 80-column card-image BCD
format (Type-1 format). An auxiliary processing code, MAKXSF, converts
the BCD files to standard unformatted binary files (Type-2 format), allowing
more economical access during execution of MCNP. At Los Alamos ACE (A
Compact ENDF) tables (Type-3 format) are available. The data contained
on a table for a specific ZAID (10-character name for a nuclear data table)
are independent of the format of the table.
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The format of nuclear data tables is given in considerable detail in Ap-
pendix F. This appendix may be useful for users making extensive modifica-
tions to MCNP involving cross sections or for users debugging MCNP at a
fairly high level.

The available nuclear data tables are listed in Appendix G. Each nu-
clear data table is identified by a ZAID. The general form of a ZAID is
ZZZAAA nnX, where ZZZ is the atomic number, AAA is the atomic weight,
nn is the evaluation identifier, and X indicates the class of data. For elemen-
tal evaluations AAA=000. Nuclear data tables are selected by the user with
the Mn and MTn cards.

In the remainder of this section we describe several characteristics of each
class of data such as evaluated sources, processing tools, and any differences
between data on the original evaluation and on the MCNP data tables. The
means of accessing each class of data through MCNP input will be detailed
and some hints will be provided on how to select the appropriate data tables.

A. Neutron Interaction Data: Continuous-Energy and Discrete Reaction

In neutron problems, one neutron interaction table is required for each
isotope or element in the problem. The form of the ZAIDs is ZZZAAA .nnC
for a continuous-energy table and ZZZA AA.nnD for a discrete reaction table.
The neutron interaction tables available to MCNP are listed in Table G.2 of
Appendix G. (It should be noted that although all nuclear data tables in
Appendix G are available to users at Los Alamos, users at other installations
will generally have only a subset of the tables available.)

For most materials there are many cross-section sets available (repre-
sented by different values of nn in the ZAIDs) because of multiple sources
of evaluated data and different parameters used in processing the data. An
evaluated nuclear data set is produced by analyzing experimentally measured
cross sections and combining those data with the predictions of nuclear model
calculations in an attempt to extract the most accurate cross-section infor-
mation. Preparing evaluated cross-section sets has become a discipline in
itself and has developed since the early 1960s. People in most of the national
laboratories and several of the commercial reactor design firms are involved
in such work. American evaluators joined forces in the mid-1960s to create
the national ENDF system.?* The ENDF contributors collaborate through
the Cross Section Evaluation Working Group (CSEWG).

In recent years the primary evaluated source of neutron interaction data
for MCNP has been the ENDF/B system. Recently evaluated neutron inter-
action data tables are also extracted from two other sources: Lawrence Liv-
ermore National Laboratory’s Evaluated Nuclear Data Library (ENDL),?
and supplemental evaluations performed in the Applied Nuclear Science
Group at Los Alamos.?8:27:28 Qlder evaluations come from previous versions
of ENDF/B and ENDL, the Los Alamos Master Data File,?° and the Atomic
Weapons Research Establishment in Great Britain.
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MCNP does not access evaluated data directly; these data must first be
processed into ACE format. The very complex processing codes used for
this purpose include NJOY?® for evaluated data in ENDF/B format and
MCPOINT?! for ENDL data.

Data on the MCNP neutron interaction tables include cross sections and
much more. Cross sections for all reactions given in the evaluated data are
specified. For a particular table, the cross sections for each reaction are given
on one energy grid that is sufficiently dense that linear-linear interpolation
between points reproduces the evaluated cross sections within a specified
tolerance that is generally 1% or less. Depending primarily on the number
of resolved resonances for each isotope, the resulting energy grid may contain
as few as ~250 points (for example, H-1) or as many as ~22,500 points (for
example, the ENDF/B-V version of Au-197). Other information, including
the total absorption cross section, the total photon production cross section,
and the average heating number (for energy deposition calculations), is also
tabulated on the same energy grid.

Angular distributions of scattered neutrons are included in the neutron
interaction tables for all nonabsorption reactions. The distributions are given
in the center-of-mass system for elastic scattering, discrete-level inelastic
scattering, and for some ENDF/B-VI scattering laws. They are given in the
laboratory system for all other inelastic reactions. Angular distributions are
given on a reaction-dependent grid of incident neutron energies. These tables
are sampled to conserve energy for many collisions but will not necessarily
conserve energy for a single collision; that is, energy is conserved on average.

The sampled angle of scattering uniquely determines the secondary en-
ergy for elastic scattering and discrete-level inelastic scattering. For other
inelastic reactions, energy distributions of the scattered neutrons are pro-
vided in the neutron interaction tables. As with angular distributions, the
energy distributions are given on a reaction-dependent grid of incident neu-
tron energies.

When evaluations contain data about secondary photon production, that
information appears in the MCNP neutron interaction tables. Many pro-
cessed data sets contain photon production cross sections, photon angular
distributions, and photon energy distributions for each neutron reaction that
produces secondary photons. The information is given in a manner similar
to that described in the last few paragraphs for neutron cross sections and
secondary neutron distributions.

Other miscellan=o04+ information on the neutron interaction tables in-
cludes the atomic weight ratio of the target nucleus, the Q-values of each
reaction, and nubar, 7, data (the average number of neutrons per fission)
for fissionable isotopes. In many cases both prompt and total 7 are given.
Prompt 7 is the default for all but KCODE criticality problems and total 7
is the default for KCODE criticality problems. The TOTNU input card can
be used to change the default.

Approximations must be made when processing an evaluated data set
into ACE format. As mentioned above, cross sections are reproduced only
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within a certain tolerance, generally < 1%; to decrease it further would re-
sult in excessively large data tables. For many nuclides, a “thinned” neutron
interaction table is available with a coarse tolerance, > 1%, that greatly
reduces the library size. Smaller library sizes also can be obtained by us-
ing discrete reaction tables or higher temperature data. Evaluated angu-
lar distributions for secondary neutrons and photons are approximated on
MCNP data tables by 32 equally probable cosine bins. This approximation
is clearly necessary when contrasted to the alternative that might involve
sampling from a 20th-order Legendre polynomial distribution. Secondary
neutron energy distributions given in tabular form by evaluators are some-
times approximated on MCNP data tables by 32 equally probable energy
bins. Older cross-section tables include a 30x20 matrix approximation of the
secondary photon energy spectra (described on page 2—32). On the whole,
the approximations are small, and MCNP neutron interaction data tables
are extremely faithful representations of evaluated data.

Discrete-reaction tables are identical to continuous-energy tables except
that in the discrete reaction tables all cross sections have been averaged into
262 groups. The averaging is done with a flat weighting function. This
is not a multigroup representation; the cross sections are simply given as
histograms rather than as continuous curves. The remaining data (angular
distributions, energy distributions, 7, etc.) are identical in discrete-reaction
and continuous-energy tables. Discrete-reaction tables are provided primar-
ily as a method of shrinking the required data storage to enhance the ability
to run MCNP on small machines or in a time-sharing environment. The
tables may also be useful for preliminary scoping studies or for isotopes that
exist only in trace quantities in a problem. They are not, however, recom-
mended as a substitute for the continuous-energy tables when performing
final calculations, particularly for problems involving transport through the
resonance region.

The matter of how to select the appropriate neutron interaction tables
for your calculation is now discussed. Multiple tables for the same isotope
are differentiated by the “nn” portion of the ZAID. The easiest choice for
the user, although by no means the recommended one, is not to enter the nn
at all. MCNP will select the first match found in the directory file XSDIR.
The default nnX can be changed for all isotopes of a material by the NLIB
keyword entry on the Mm card. The default will be overridden by fully
specifying the ZAID. Default continuous-energy neutron interaction tables
are accessed by enivering ZZZAAA for the ZAID. Including a DRXS card in
the input file will force MCNP to choose the default discrete reaction tables.

Careful users will want to think about what neutron interaction tables
to choose. There is, unfortunately, no strict formula for guidance in choosing
the tables. The following guidelines and observations are the best that can
be offered:

1. Users should be aware of the differences between the “.50C” series of
data tables and the “.51C” series. Both are derived from ENDF/B-V. The
“.50C” series is the most faithful reproduction of the evaluated data. The
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“.51C” series, also called the “thinned” series, has been processed with a less
rigid tolerance than the “.50C” series. A« with discrete reaction data tables,
although by no means to the same exten: :sers should be careful when using
the “thinned” data for transport through the resonance region.

2. Consider differences in evaluators’ philosophies. The Physical Data
Group at Livermore is justly proud of its extensive cross-section efforts; their
evaluations manifest a philosophy of reproducing the data with the fewest
number of points. Livermore evaluations are available mainly in the “.40C”
series. We at Los Alamos are particularly proud of the evaluation work being
carried out in the Applied Nuclear Science Group T-2; generally, these eval-
uations are the most complex because they are the most thorough. Recent
evaluations from Los Alamos are available in the “.55C” series.

3. Be aware of the neutron energy spectrum in your problem. For high-
energy problems, the “thinned” and discrete reaction data are probably not
bad approximations. Conversely, it is essential to use the most detailed
continuous-energy set available for problems influenced strongly by transport
through the resonance region.

4. Check the temperature at which various data tables have been pro-
cessed. Do not use a set that is Doppler broadened to 12000000K for a room
temperature calculation.

5. Consider checking the sensitivity of the results to various sets of
nuclear data. Try, for example, a calculation with ENDF/B-V cross sections,
and then another with ENDL cross sections. If the results of a problem are
extremely sensitive to the choice of nuclear data, it is advisable to find out
why.

6. For a coupled neutron/photon problem, be careful that the tables you
choose have photon production data available. If possible, use the more-
recent sets that have been processed into expanded photon production for-
mat.

7. Frequently, data tables are recommended that are not the defaults,
leading to questions about what is wrong with the defaults. The answer is
that nothing is wrong with them. They are frequently the very best evaluated
data sets we have to offer. In other cases they are not, because of size
limitations imposed on the default library at Los Alamos. In still other
cases, a nondefault data table may be appropriate for one or more of the
reasons given in the previous paragraphs.

8. Usually, use the best data you can afford. It is understood that
the latest evaluations tend to be more complex and therefore require more
memory and longer execution times. If you are limited by available memory,
try to use smaller data tables such as thinned or discrete reaction for the
minor isotopes in the calculation. Discrete reaction data tables might be
used for a parameter study, followed by a calculation with the full continuous-
energy data tables for confirmation.

To select the neutron interaction data tables, the nn portion of the ZAIDs
must be entered on the Mn card(s). For a continuous-energy set, ZZZAAA.nn
is equivalent to ZZZAAA.nnC. To use a discrete reaction table (unless there
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is a DRXS card in the input) the full ZAID, ZZZAAA.nnD, must be entered.

In conclusion, the additional time necessary to choose appropriate neu-
tron interaction data tables rather than simply to accept the defaults often
will be well worth it in gaining understanding of your calculation.

B. Photon Interaction Data

Photon interaction cross sections are required for all photon problems.
The form of the ZAID is ZZZ000.nnP. There are two photon interaction
data libraries: nn = 01 and nn = 02.

For the ZAID=ZZZ000.01P library, the photon interaction tables for
2=84, 85, 87, 88, 89, 91, and 93 are based on the compilation of Storm and
Israel3? from 1 keV to 15 MeV. For all other elements from Z=1 through Z=94
the photon interaction tables are based on evaluated data from ENDF3? from
1 keV to 100 MeV. Fluorescence data are taken from work by Everett and
Cashwell.3* Energy grids are tailored specifically for each element and contain
~40-60 points.

The ZAID = ZZZ000.02P library is a superset of the ZAID = ZZZ000.01P
library with pair production thresholds added for the Storm-Israel data.
Data above 15 MeV for the Storm-Israel data and above 100 MeV for the
ENDF data come from adaptation of the Livermore Evaluated Photon Data
Library (EPDL)% and go up to 100 GeV. However, it usually is impractical
to run above 1 GeV with MCNP because electron data only go to 1 GeV.
The energy grid for the ZAID=ZZZ000.02P library contains ~100 points.

For each nuclide the photon interaction libraries contain an energy grid
(logarithms of energies), including the photoelectric edges and the pair pro-
duction threshold. These energies are tailored specifically for each element.
The logarithmic energies are followed by tables of incoherent form factors
and coherent form factors that are tabulated as a function of momentum
transfer. The next tables are logarithms of the incoherent scattering, coher-
ent scattering, photoelectric, and pair production cross sections, followed by
the photon heating numbers. The total cross section is not stored, but rather
summed from the other cross sections during transport.

The determination of directions and energies of scattered photons re-
quires information different from the sets of angular and energy distributions
found on neutron interaction tables. Angular distributions of secondary pho-
tons are isotropic for photoelectric effect, fluorescence, and pair production,
and come from sampling the well-known Thomson and Klein-Nishina formu-
las for coherent and incoherent scattering. The energy of an incoherently
scattered photon is calculated from the sampled scattering angle. Values of
the integrated coherent form factor are tabulated on the photon interaction
tables for use with next event estimators such as point detectors.

Very few approximations are made in the various processing codes used
to transfer photon data from ENDF into the format of MCNP photon inter-
action tables. Cross sections are reproduced exactly as given. Form factors
and scattering functions are reproduced as given; however, the momentum
transfer grid on which they are tabulated may be different from that of the
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original evaluation. Heating numbers are calculated values, not given in eval-
uated sets, but inferred from them. Fluorescence data are not provided in
ENDF; therefore the data for MCNP are extracted from a variety of sources
as described in Ref. 32.

To select photon interaction data, specific ZAID identifiers can be used,
such as ZAID=7ZZ000.02P, or selections from a library can be used by spec-
ifying PLIB=nnP on the M card. The PLIB=specification on the M card is
the preferred method because the ZAID entries may already be used to spec-
ify neutron libraries and, unlike neutrons, it usually is desirable to pick all
photon data from the same library. A specification on the Mn card for a neu-
tron interaction table with ZAID=ZZZAAA.nnC or ZAID=ZZZAAA.nnD
immediately causes a photon interaction table with ZAID=ZZZ000.nnP to
be accessed as well, where nn is the first photon data encountered for ZZZ000
on the XSDIR cross section directory file or nn comes from PLIB=nn. The
data table required for ZAID=ZZZAAA.nnP is identical to that required for
ZAID=ZZ7Z000.nnP; however, the atomic weight used in the calculation will
likely be different.

C. Electron Interaction Data

Electron interaction data tables are required both for problems in which
electrons are actually transported, and for photon problems in which the
thick-target bremsstrahlung model is used. Electron data tables are identi-
fied by ZAIDs of the form ZZZ000.nnE, and are selected by default when
the problem mode requires them. There is only one electron interaction data
library: nn = 01.

The electron library contains data on an element-by-element basis for
atomic numbers Z = 1-94. As is the case with photons, there is no distinc-
tion between isotopes for a given element. The data contain energies for tab-
ulation, bremsstrahlung production cross sections, bremsstrahlung energy
distributions, X-ray production probabilities, K-edge energies and fluores-
cent probabilities, electron stopping powers and ranges, and parameters for
the evaluation of the Goudsmit-Saunderson theory for angular deflections
and the Landau-Blunck-Leisegang theory of energy-loss fluctuations. Dis-
cussions of the theoretical basis for these data and references to the relevant
literature are presented in Section IV-E of this chapter.

Only the nn = 01 library is currently available, but to support the use
of alternate libraries in the future, MCNP implements a hierarchy of rules
identical to that for photons. Thus, one may select a specific ZAID, such
as ZZZ000.01E, and that choice will override any defaults. Alternatively,
a default electron library for a given material may be chosen by specifying
ELIB = nnE on the M card. In the absence of either of these specifications,
MCNP will use the first electron data table listed in the XSDIR cross section
directory file for the relevant element.
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D. Neutron Dosimetry Cross Sections

Dosimetry cross-section tables cannot be used for transport through ma-
terial. These incomplete cross-section sets provide energy-dependent neutron
cross sections to MCNP for use as response functions with the FM tally fea-
ture. ZAIDs of dosimetry tables are of the form ZZZAAA.nnY. Remember,
dosimetry cross-section tables have no effect on the particle transport of a
problem.

The available dosimetry cross sections are from three sources: ENDF/B-
V Dosimetry Tape 531, ENDF/B-V Activation Tape 532, and ACTL3¢—an
evaluated neutron activation cross-section library from the Lawrence Liver-
more National Laboratory. Various codes have been used to process evalu-
ated dosimetry data into the format of MCNP dosimetry tables.

Data on dosimetry tables are simply energy-cross-section pairs for one
or more reactions. The energy grids for all reactions are independent of each
other. Interpolation between adjacent energy points can be specified as his-
togram, linear-linear, linear-log, log-linear, or log-log. With the exception of
the tolerance involved in any reconstruction of pointwise cross sections from
resonance parameters, evaluated dosimetry cross sections can be reproduced
on the MCNP data tables with no approximation.

ZAIDs for dosimetry tables must be entered on material cards that are
referenced by FM cards, not on Mm cards referenced by cell cards. The
complete ZAID, ZZZAAA.nnY, must be given; there are no defaults for
dosimetry tables.

E. Neutron Thermal S(a,3) Tables

Thermal S(a, ) tables are not required, but they are absolutely essen-
tial to get correct answers in problems involving neutron thermalization.
Thermal tables have ZAIDs of the form XXXXXX.nnT, where XXXXXX is
a mnemonic character string. The data on these tables encompass those
required for a complete representation of thermal neutron scattering by
molecules and crystalline solids. The source of S(a,3) data is a special
set of ENDF tapes.}” The THERMR and ACER modules of the NJOY3°
system have been used to process the evaluated thermal data into a format
appropriate for MCNP.

Data are for neutron energies generally less than 4 eV. Cross sections are
tabulated on table-dependent energy grids; inelastic scattering cross sections
are always given and elastic scattering cross sections are sometimes given.
Correlated energy-angle distributions are provided for inelastically scattered
neutrons. A set of equally probable final energies is tabulated for each of
several initial energies. Further, a set of equally probable cosines or cosine
bins is tabulated for each combination of initial and final energies. Elastic
scattering data can be derived from either an incoherent or a coherent ap-
proximation. In the incoherent case, equally probable cosines or cosine bins
are tabulated for each of several incident neutron energies. In the coherent
case, scattering cosines are determined from a set of Bragg energies derived
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from the lattice parameters. During processing, approximations to the eval-
uated data are made when constructing equally probable energy and cosine
distributions.

ZAIDs for the thermal tables are entered on an MTn card that is associ-
ated with an existing Mn card. The thermal table generally will provide data
for one component of a material; for example, hydrogen in light water. Ther-
mal ZAIDs may be entered on the MTn card(s) as XXXXXX, XXXXXX.nn,
or XXXXXX.nnT.

F. Multigroup Tables

Multigroup cross section libraries are the only libraries allowed in multi-
group/adjoint problems. Neutron multigroup problems cannot be supple-
mented with S(a, 8) thermal libraries; the thermal effects must be included
in the multigroup neutron library. Photon problems cannot be supplemented
with electron libraries; the electrons must be part of the multigroup library
containing the photon data. The form of the ZAID is ZZZAAA.nnM.

Although continuous-energy data are more accurate than multigroup
data, the multigroup option is useful for a number of important applica-
tions: (1) comparison of deterministic (S,) transport codes to Monte Carlo;
(2) use of adjoint calculations in problems where the adjoint method is more
efficient; (3) generation of adjoint importance functions; (4) cross section sen-
sitivity studies; (5) solution of problems for which continuous-cross sections
are unavailable; and (6) charged particle transport using the Boltzmann-
Fokker-Planck algorithm in which charged particles masquerade as neutrons.

Multigroup cross sections are very problem dependent. Some multigroup
libraries are available from the Radiation Transport Group at Los Alamos
but must be used with caution. Users are encouraged to generate or get their
own multigroup libraries and then use the supplementary code CRSRD?® to
convert them to MCNP format. Reference 38 describes the conversion proce-
dure. This report also describes how to use both the multigroup and adjoint
merhods in MCNP and presents several benchmark calculations demonstrat-
ing the validity and effectiveness of the multigroup/adjoint method.

IV. PHYSICS

The physics of neutron, photon, and electron interactions is the very
essence of MCNP. This section may be considered a software requirements
document in that it describes the equations MCNP is intended to solve.
All the sampling schemes essential to the random walk are presented or
referenced. But first, particle weight and particle tracks, two concepts that
are important for setting up the input and for understanding the output, are
discussed in the following sections.

(R
|

(&)

NG
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A. Particle Weight

If MCNP were used only to simulate exactly physical transport, then
each MCNP particle would represent one physical particle and would have
unit weight. However, for computational efficiency, MCNP allows many
techniques that do not exactly simulate physical transport. For instance,
each MCNP particle might represent a number w of particles emitted from
a source. This number w is the initial weight of the MCNP particle. The w
physical particles all would have different random walks, but the one MCNP
particle representing these w physical particles will only have one random
walk. Clearly this is not an exact simulation; however, the true number of
physical particles is preserved in MCNP in the sense of statistical averages
and therefore in the limit of large particle numbers (of course including parti-
cle production or loss if they occur). Each MCNP particle result is multiplied
by the weight so that the full results of the w physical particles represented
by each MCNP particle are exhibited in the final results (tallies). This proce-
dure allows users to normalize their calculations to whatever source strength
they desire. The default normalization is to weight one per MCNP particle.
A second normalization to the number of Monte Carlo histories is made in
the results so that the expected means will be independent of the number of
source particles actually initiated in the MCNP calculation.

The utility of particle weight, however, goes far beyond simply normaliz-
ing the source. Every Monte Carlo biasing technique alters the probabilities
of random walks executed by the particles. The purpose of such biasing tech-
niques is to increase the number of particles that sample some part of the
problem of special interest (1) without increasing (sometimes actually de-
creasing) the sampling of less interesting parts of the problem, and (2) with-
out erroneously affecting the expected mean physical result (tally). This pro-
cedure, properly applied, increases precision in the desired result compared
to an unbiased calculation taking the same computing time. For example,
if an event is made v/2 times as likely to occur (as it would occur without
biasing), the tally ought to be multiplied by 1/v/2 so that the expected av-
erage tally is unaffected. This tally multiplication can be accomplished by
multiplying the particle weight by 1/v/2 because the tally contribution by
a particle is always multiplied by the particle weight in MCNP. Note that
weights need not be integers.

In short, particle weight is a number carried along with each MCNP
particle, representing that particle’s relative contribution to the final tallies.
Its magnitude is determined to ensure that whenever MCNP deviates from
an exact simulation of the physics, the expected physical result nonetheless
is preserved in the sense of statistical averages, and therefore in the limit
of large MCNP particle numbers. Its utility is in the manipulation of the
number of particles, sampling just a part of the problem to improve the
precision of selected results obviating a full unbiased calculation—with its
added cost in computing time—to achieve the same results and precision.
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B. Particle Tracks

When a particle starts out from a source, a particle track is created. If
that track is split 2 for 1 at a splitting surface, a second track is created and
there are now two tracks from the original source particle, each with half the
single track weight. If one of the tracks has an (n,2n) reaction, one more
track is started for a total of three. A track refers to each component of a
source particle during its history. Track length tallies use the length of a
track in a given cell to determine a quantity of interest, such as fluence, flux,
or energy deposition. Tracks crossing surfaces are used to calculate fluence,
flux, or pulse-height energy deposition (surface estimators). Tracks under-
going collisions are used to calculate multiplication and criticality (collision
estimators). :

Within a given cell of fixed composition, the method of sampling a colli-
sion along the track is determined using the following theory. The probability
of a first collision for a particle between ! and ! + dl along its line of flight is
given by

p(dl = e~ Zlg,dl,

where L; is the macroscopic total cross section of the medium and is inter-
preted as the probability per unit length of a collision. Setting ¢ the random
number on [0,1), to be

l
= / e T Tids =1 — ™2,
0

it follows that

1
=~ In(1-¢).

But, because 1 — £ is distributed in the same manner as £ and hence may
be replaced by £, we obtain the well-known expression for the distance to
collision,

1
=~ In(¢).

C. Neutron Inte_ractions

When a particle (representing any number of neutrons, depending upon
the particle weight) collides with a nucleus, the following sequence occurs:

1. the collision nuclide is identified;

2. either the S(a, ) treatment is used or the velocity of the target
nucleus is sampled for low—energy neutrons;

3. photons are optionally generated for later transport;

4. neutron capture (that is, neutron disappearance by any process) is
modeled;
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5. unless the S(a, ) treatment is used, either elastic scattering or an
inelastic reaction is selected, and the new energy and direction of the
outgoing track(s) are determined;

6. if the energy of the neutron is low enough and an appropriate S(a, 3)
table is present, the collision is modeled by the S(a,3) treatment
instead of by step 5.

1. Selection of Collision Nuclide

If there are n different nuclides forming the material in which the collision
occurred, and if £ is a random number on the unit interval [0,1), then the
kt* nuclide is chosen as the collision nuclide if

k-1 n k
Zzti < fzzti < Zzti,
=1 1=1 1=1
where Zy; is the macroscopic total cross section of nuclide i. If the energy of
the neutron is low enough (below about 4 eV) and the appropriate S(a, )
table is present, the total cross section is the sum of the capture cross section
from the regular cross-section table and the elastic and inelastic scattering
cross sections from the S(a, 3) table. Otherwise, the total cross section is
“taken from the regular cross-section table and is adjusted for thermal effects
as described below.

2. Free Gas Thermal Treatment

A collision between a neutron and an atom is affected by the thermal
motion of the atom, and in most cases, the collision is also affected by the
presence of other atoms nearby. The thermal motion cannot be ignored in
many applications of MCNP without serious error. The effects of nearby
atoms are also important in some applications. MCNP uses a thermal treat-
ment based on the free gas approximation to account for the thermal motion.
It also has an explicit S(a, 3) capability that takes into account the effects
of chemical binding and crystal structure for incident neutron energies below
about 4 eV, but is available for only a limited number of substances and
temperatures. The S(a, 3) capability is described later on page 2—49.

The free gas thermal treatment in MCNP assumes that the medium is
a free gas and also that, in the range of atomic weight and neutron energy
where thermal effects are significant, the elastic scattering cross section at
zero temperature is nearly independent of the energy of the neutron, and that
the reaction cross sections are nearly independent of temperature. These
assumptions allow MCNP to have a thermal treatment of neutron collisions
that runs almost as fast as a completely nonthermal treatment and that is
adequate for most practical problems.

With the above assumptions, the free gas thermal treatment consists of
adjusting the elastic cross section and taking into account the velocity of the
target nucleus when the kinematics of a collision are being calculated. Note
that Doppler broadening of the inelastic cross sections is assumed to have

2-27 November 16, 1993



CHAPTER 2

Neutrons

already been done in the processing of the cross section libraries. The free
gas thermal treatment effectively applies to elastic scattering only.

a. Adjusting the Elastic Cross Section: The first aspect of the free
gas thermal treatment is to adjust the zero-temperature elastic cross section
by raising it by the factor

F = (1+0.5/a%)er f(a) + ezp(~a’)/(av/7) ,

where a = \/AE/kT, A = atomic weight, E = neutron energy, and T =
temperature. For speed, F' is approximated by F = 1 + 0.5/a? when a > 2
and by linear interpolation in a table of 51 values of aF when a < 2. Both
approximations have relative errors less than 0.0001. The total cross section
also is increased by the amount of the increase in the elastic cross section.

The adjustment to the elastic and total cross sections is done partly in
the setup of a problem and partly during the actual transport calculation. No
adjustment is made if the elastic cross section in the data library was already
processed to the temperature that is needed in the problem. If all of the
cells that contain a particular nuclide have the same temperature, constant
in time, that is different from the temperature of the library, the elastic and
total cross sections for that nuclide are adjusted to that temperature during
the setup so that the transport will run a little faster. Otherwise, these
cross sections are reduced, if necessary, to zero temperature during the setup
and the thermal adjustment is made when the cross sections are used. For
speed, the thermal adjustment is omitted if the neutron energy is greater
than 500 kT/A. At that energy the adjustment of the elastic cross section
would be less than 0.1%.

b. Sampling the Velocity of the Target Nucleus: The second aspect
of the free gas thermal treatment consists of taking into account the velocity
of the target nucleus when the kinematics of a collision are being calculated.
The target velocity is sampled and subtracted from the velocity of the neu-
tron to get the relative velocity. The collision is sampled in the target-at-rest
frame and the outgoing velocities are transformed to the laboratory frame
by adding the target velocity.

There are different schools of thought as to whether the relative energy
between the neutron and target, E,, or the laboratory frame incident neu-
tron energy (target-at-rest), E,, should be used for all the kinematics of the
collision. E, is used in MCNP to obtain the distance-to-collision, select the
collision nuclide, deterinine energy cutoffs, generate photons, generate fission
sites for the next generation of a KCODE criticality problem, for S(a, )
scattering, and for capture. E, is used for everything else in the collision
process, namely elastic and inelastic scattering, including fission and (n,xn)
reactions. It is shown in Eqn. 2.1 that E, is based upon v,.; that is based
upon the elastic scattering cross section, and, therefore, E, is truly valid
only for elastic scatter. However, the only significant thermal reactions for
stable isotopes are absorption, elastic scattering, and fission. !¥1Ta has a 6
keV threshold inelastic reaction; all other stable isotopes have higher inelas-
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tic thresholds. Metastable nuclides like 2™ Am have inelastic reactions all
the way down to zero, but these inelastic reaction cross sections are neither
constant nor 1/v cross sections and these nuclides are generally too massive
to be affected by the thermal treatment anyway. Furthermore, fission is very
insensitive to incident neutron energy at low energies. The fission secondary
energy and angle distributions are nearly flat or constant for incident en-
ergies below about 500 keV. Therefore, it makes no significant difference if
E, is used only for elastic scatter or for other inelastic collisions as well. At
thermal energies, whether E, or E, is used only makes a difference for elastic
scattering.

If the energy of the neutron is greater than 400 kT and the target is not
1H, the velocity of the target is set to zero. Otherwise, the target velocity is
sampled as follows.

The free-gas kernel is a thermal interaction model that results in a good
approximation to the thermal flux spectrum in a variety of applications and
can be sampled without tables. The effective scattering cross section in the
laboratory system for a neutron of kinetic energy E is

| d
s ()= - / / a,(u,,,)v,e,p(V)dv$. (2.1)

Un

Here, v, is the relative velocity between a neutron moving with a scalar
velocity v, and a target nucleus moving with a scalar velocity V, and y; is
the cosine of the angle between the neutron and the target direction-of-flight
vectors. The equation for v,,; is

1
Vret = (V3 + V2% = 20, Vur)3.

The scattering cross section at the relative velocity is denoted by o,(vye1),
and p(V) is the probability density function for the Maxwellian distribution
of target velocities,

_ 4 3 2 —3?v?
P(V)—mBVe

with 3 defined as

AM N\ Y2
B = ,
2kT

where A is the mass of a target nucleus in units of the neutron mass, M, is
the neutron mass in MeV-sh?/cm?, and kT is the equilibrium temperature
of the target nuclei in MeV.

The most probable scalar velocity V' of the target nuclei is 1/8, which
corresponds to a kinetic energy of kT for the target nuclei. This is not the
average kinetic energy of the nuclei, which is 3kT/2. The quantity that
MCNP expects on the TMPn input card is kT and not just T (see page
3-105). Note that kT is not a function of the particle mass and is therefore
the kinetic energy at the most probable velocity for particles of any mass.
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Equation (2.1) implies that the probability distribution for a target ve-
locity V and cosine y; is

Ua(vrcl)vrelp(v)
2a§”(E)v,.

It is assumed that the variation of o,(v,e;) with target velocity can be
ignored. The justification for this approximation is that (1) for light nu-
clei, g4(vye;) is slowly varying with velocity, and (2) for heavy nuclei, where
0s(Vrer) can vary rapidly, the moderating effect of scattering is small so that
" the consequences of the approximation will be negligible. As a result of the
approximation, the probability distribution actually used is

P(Vv F't) =

P(V, ut) x \/v,z, + V2 =2V, pus V2e-AV?

Note that the above expression can be written as

Vvi+VE-2Vuuu,
m+V

P(V, u) (V3e=FV 4 0, V2V
As a consequence, the following algorithm is used to sample the target ve-
locity.

1. With probability & = 1/(1 + (v/TBvn/2)), the target velocity V is
sampled from the distribution Py(V) = 234V3e=#*V* | The transfor-
mation V = ,/y/B reduces this distribution to the sampling distri-
bution for P(y) = ye™V.

2. With probability 1 — a, the target velocity is sampled from the dis-
tribution Py(V) = (48%//m)V2e~#V*. Substituting V = y/8 re-
duces the distribution to the sampling distribution for y: P(y) =
(4/Vm)yte ™.

3. The cosine of the angle between the neutron velocity and the target
velocity is sampled uniformly on the interval —1 < pu¢ < +1.

4. The rejection function R(V, y¢) is computed using

Vi + V= 2Vu,p,
vp+V

R(Va #t) = S 1

With probability R(V, ut), the sampling is accepted; otherwise, the
sampling is rejected and the procedure is repeated. The minimum
efficiency of this rejection algorithm averaged over u; is 68% and
approaches 100% as either the incident neutron energy approaches
zero or becomes much larger than k7.

3. Optional Generation of Photons

Photons are generated if the problem is a combined neutron/photon run
and if the collision nuclide has a nonzero photon production cross section.
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The number of photons produced is a function of neutron weight, neutron
source weight, photon weight limits (entries on the PWT card), photon pro-
duction cross section, neutron total cross section, cell importance, and the
importance of the neutron source cell. No more than 10 photons may be
born from any neutron collision.

Because of the many low-weight photons typically created by neutron col-
lisions, Russian roulette is played for particles with weight below the bounds
specified on the PWT card, resulting in fewer particles, each having a larger
weight. The created photon weight before Russian roulette is

W,o
W, = z X
or

where W, = photon weight
W, = neutron weight
o, = photon production cross section
oT = total neutron cross section.

Both o, and o7 are evaluated at the incoming neutron energy without
the effects of the thermal free gas treatment because nonelastic cross sections
are assumed independent of temperature.

The Russian roulette game is played according to neutron cell impor-
tances for the collision and source cell. For a photon produced in cell :
where the minimum weight set on the PWT card is W™", let I; be the neu-
tron importance in cell : and let I, be the neutron importance in the source
cell. If W, > W"‘"‘ * I,/ I;, one or more photons will be produced. The num-
her of photons ‘created is N,,, where Np = (Wp = I;)/(5 * W™" x I,) + 1.
Np < 10. Each photon is stored in the bank with wexght Wp/Np,. If
Wp < W™ « I/I;, Russian roulette is played and the photon survives
with probablhty W, x I;/ (W™ « I,) and is given the weight W™ « I, /I;.

If weight wmdows are not used and if the weight of the startmg neutrons
is not unity, setting all the W™" on the PWT card to negative values will
make the photon minimum weight relative to the neutron source weight.
This will make the number of photons being created roughly proportional to
the biased collision rate of neutrons. It is recommended for most applications
that negative numbers be used and be chosen to produce from one to four
photons per source neutron. The default values for W™ on the PWT card
are —1, which should be adequate for most problems using cell importances.

If energy-independent weight windows are used, the entries on the PWT
card should be the same as on the WWNI1:P card. If energy-dependent
photon weight windows are used, the entries on the PWT card should be the
minimum WWNn:P entry for each cell, where n refers to the photon weight
window energy group. This will cause most photons to be born within the
weight window bounds.

Any photons generated at neutron collision sites are temporarily stored
in the bank. There are two methods for determining the exiting energies and
directions, depending on the form in which the processed photon production
data are stored in a library. The first method has the evaluated photon pro-
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duction data processed into an “expanded format.”3% In this format, energy-
dependent cross sections, energy distributions, and angular distributions are
explicitly provided for every photon-producing neutron interaction. In the
second method, used with data processed from older evaluations, the evalu-
ated photon production data have been collapsed so that the only information
about secondary photons is in a matrix of 20 equally probable photon ener-
gies for each of 30 incident neutron energy groups. The sampling t. -hniques
used in each method are now described.

a. Expanded Photon Production Method: In the expanded photon
production method, the reaction n responsible for producing the photon is
sampled from

n-1 N n

ZU.‘ <€Zd.‘ < Zdu

=1 1=1 =1
where £ is a random number on the interval [0,1), N is the number of pho-
ton production reactions, and o; is the photon production cross section for
reaction ¢ at the incident neutron energy. Note that there is no correlation
between the sampling of the type of photon production reaction and the
sampling of the type of neutron reaction described on page 2—-34.

Just as every neutron reaction (for example, (n,2n)) has associated
energy-dependent angular and energy distributions for the secondary neu-
trons, every photon production reaction (for example, (n,py)) has associ-
ated energy-dependent angular and energy distributions for the secondary
photons. The photon distributions are sampled in much the same manner
as their counterpart neutron distributions.

All nonisotropic secondary photon angular distributions are represented
by 32 equiprobable cosine bins. The distributions are given at a number of
incident neutron energies. All photon-scattering cosines are sampled in the
laboratory system. The sampling procedure is identical to that described for
secondary neutrons on page 2-35.

Secondary photon energy distributions are also a function of incident
neutron energy. There are two representations of secondary photon energy
distributions allowed in ENDF/B format: tabulated spectra and discrete
(line) photons. Correspondingly, there are three laws used in MCNP for the
determination of secondary photon energies. Law 4 is an exact representation
of tabulated photon spectra. Law 2 is used for discrete photons. Law 44 is
for discrete photon lines with a continuous background. These laws are
described beginning on page 2—39.

The expanded photon production method has clear advantages over the
original 30 x 20 matrix method described below. In coupled neutron/photon
problems, users should attempt to specify data sets that contain photon

production data in expanded format. Such data sets are identified by “YES
P(E)” entries in the GPD column in Table G.2 in Appendix G.

b. 30 x 20 Photon Production Method: For lack of better terminol-

ogy, we will refer to the photon production data contained on older libraries
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as “30 x 20 photon production” data. In contrast to expanded photon pro-
duction data, there is no information about individual photon production
reactions in the 30 x 20 data.

The only secondary photon data are a 30 x 20 matrix of photon energies;
that is, for each of 30 incident neutron energy groups there are 20 equally
probable exiting photon energies. There is no information regarding sec-
ondary photon angular distributions; therefore, all photons are taken to be
produced isotropically in the laboratory system.

There are several problems associated with 30 x 20 photon production
data. The 30 x 20 matrix is an inadequate representation of the actual
spectrum of photons produced. In particular, discrete photon lines are not
well represented, and the high-energy tail of a photon continuum energy
distribution is not well sampled. Also, the multigroup representation is not
consistent with the continuous-energy nature of MCNP. Finally, not all
photons should be produced isotropically. None of these problems exist for
data processed into the expanded photon production format.

4. Capture

Capture is treated in one of two ways: analog or implicit. Either way,
the incident incoming neutron energy does not include the relative velocity
of the target nucleus from the free gas thermal treatment because nonelastic
reaction cross sections are assumed to be nearly independent of temperature.
That is, only the scattering cross section is affected by the free gas thermal
treatment.

a. Analog Capture: In analog capture, the particle is killed with
probability o,/or, where o, and o7 are the absorption and total cross sec-
tions of the collision nuclide at the incoming neutron energy. The absorp-
tion cross section is specially defined for MCNP as the sum of all (n,z)
cross sections, where z is anything except neutrons. Thus o, is the sum of
On,ys Onay Ond, -..etc. For all particles killed by analog capture, the entire
particle energy and weight are deposited in the collision cell.

b. Implicit Capture: For implicit capture, the neutron weight W, is
reduced to W), as follows:

W, =(1- Jay, Wh.
or
If the new weight, W}, is below the problem weight cutoff (specified on the
CUT card), Russian roulette is played, resulting overall in fewer particles
with larger weight.
For implicit capture, a fraction o,/07 of the incident particle weight and
energy is deposited in the collision cell corresponding to that portion of the

particle that was captured. Implicit capture is the default method of neutron
capture in MCNP.

c. Implicit Capture Along a Flight Path: Implicit capture also can
be done continuously along the flight path of a particle trajectory as is the
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common practice in astrophysics. In this case, the distance to scatter, rather
than the distance to collision, is sampled. The distance to scatter is

1
= —-=—In(1-¢).
L]
The particle weight at the scattering point is reduced by the capture loss,

W' = WeTdl ,

where W' = reduced weight after capture loss,
W = weight before capture along flight path,
04 = absorption cross section,
o, = scattering cross section,
oy = 05 + 04 = total cross section,
| = distance to scatter, and
¢ = random number.

Implicit capture along a flight path is a special form of the exponen-
tial transformation coupled with implicit capture at collisions. (See the de-
scription of the exponential transform on page 2—125.) The path length is
stretched in the direction of the particle, 4 = 1, and the stretching parame-
ter is p = X4/%;. Using these values the exponential transform and implicit
capture at collisions yield the identical equations as does implicit capture
along a flight path.

Implicit capture along a flight path is invoked in MCNP as a special
option of the exponential transform variance reduction method. It is most
useful in highly absorbing media, that is, £,/X; approaches 1. When almost
every collision results in capture, it is very inefficient to sample distance to
collision. However, implicit capture along a flight path is discouraged. In
highly absorbing media, there is usually a superior set of exponential trans-
form parameters. In relatively nonabsorbing media, it is better to sample
the distance to collision than the distance to scatter.

5. Elastic and Inelastic Scattering

If the conditions for the S(a,f) treatment are not met, the particle
undergoes either an elastic or inelastic collision. The selection of an elastic
collision is made with probability

Tel Ol

Oin + Ol oT — Oa

where
0.l is the elastic scattering cross section.
Oin is the inelastic cross section; includes any neutron-out process—
(n,n'),(n, f), (n,np),etc.
04 is the absorption cross section; Xo(n,z),# n, that is, all neutron
disappearing reactions.
or is the total cross section, 0; = 0. + Oin + 4.
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Both o and o7 are adjusted for the free gas thermal treatment at thermal
energies.

The selection of an inelastic collision is made with the remaining proba-
bility
Tin
0T — 04

If the collision is determined to be inelastic, the type of inelastic reaction,
n, is sampled from

n—-1 N n
AZU"<EZ""SZU" ;
1=1 1=1

1=1

where ¢ is a random number on the interval [0,1) NV is the number of inelastic
reactions, and the o;’s are the inelastic reaction cross sections at the incident
neutron energy.

For both elastic and inelastic scattering, the direction of exiting parti-
cles usually is determined by sampling angular distribution tables from the
cross-section files. This process is described shortly. For elastic collisions and
discrete inelastic scattering from levels, the exiting particle energy is deter-
mined from two body kinematics based upon the center-of-mass cosine of the
scattering angle. For other inelastic processes, the energy of exiting particles
is determined from secondary energy distribution laws from the cross-section
files, which vary according to the particular inelastic collision modeled.

a. Sampling of Angular Distributions: The direction of emitted par-
ticles is sampled in the same way for most elastic and inelastic collisions. The
cosine of the angle between incident and exiting particle directions, u, is sam-
pled from angular distribution tables in the collision nuclide’s cross-section
library. The angular distribution tables consist of 32 equiprobable cosine
bins and are given at a number of different incident neutron energies. The
cosines are either in the center-of-mass or t~rget-at-rest system, depending
on the type of reaction. If E is the incident neutron energy, if E, is the
energy of table n, and if En4, is the energy of table n + 1, then a value of u
is sampled from table n + 1 with probability (E — E)/(En+1 — Ep) and from
table n with probability (Eat1 — E)/(En+1 — En). A random number £ on
the interval [0,1) is then used to select the i** cosine bin such that i = 326 +1.
The value of u is then computed as

o= pi + (326 = ) (piv1 — i)

If, for some incident neutron energy, the emitted angular distribution
is isotropic, u is chosen from u = &', where £’ is a random number on the
interval [-1,1). (Strictly, in MCNP random numbers are always furnished on
the interval [0,1). Thus, to compute &' on [-1,1) we calculate &' = 26 — 1.,
where £ is a random number on [0,1).)

[§)
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For elastic scattering, inelastic level scattering, and some ENDF/B-VI
inelastic reactions, the scattering cosine is chosen in the center-of-mass sys-
tem. Conversion must then be made to pi,3, the cosine in the target-at-rest

system. For other inelastic reactions, the scattering cosine is sampled directly
in the target-at-rest system.

The incident particle direction cosines, (u,,v,,w,), are rotated to new
outgoing target-at-rest system cosines, (u, v, w), through a polar angle whose
cosine is pigp, and through an azimuthal angle sampled uniformly. For
random numbers §; and §; on the interval [-1,1) with rejection criterion
€% + €2 < 1, the rotation scheme is (Ref. 2, pg. 54):

1- /leab(fluowo = §2v,)

U = Uplhlgp + T ——————
VE +E)1 - wd)
M 1- #f.,;,(&vowo + &2u,)
V = Uglhlgh +

(6§ +&)-wd)
611 = )1 - wd)

W = Wolklgh —
V(€ +¢3)

If 1 —w?~0, then

1- I-‘[zab(fluovo + §a2w,)

U = Uolhlgp + ——F——m———m—————————
V(€ +E)(1 - v3)

611/(1 = uEy)(1 - )

V = Uofhlah — -
(& +€3)
V 1- P%ab(glwovo — &au,)
W = Wolllgh + T

(67 + €)1 - v)

If the scattering distribution is isotropic in the target-at-rest system, it
is possible to use an even simpler formulation that takes advantage of the
exiting direction cosines, (u, v, w), being independent of the incident direction
cosines, (u,,V,,W,). In this case,
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u =26 +26 -1

¢ 1 —u?
=Gl
& + €2

where £; and &; are rejected if £ + €2 > 1.

b. Elastic Scattering: The particle direction is sampled from the ap-
propriate angular distribution tables, and the exiting energy, E,y;, is dictated
by two-body kinematics:

1
Eout = '2'Ein [(1 - a)ﬂcm +1+ a]

_ g [LtAT+24uem
! (1+ A4)2

where E;, = incident neutron encrgy
tem = center-of-mass cosine of the angle between incident and
exiting particle directions

oo (A1)
T \A+1
and A = mass of collision nuclide in units of the mass of a neutron
(atomic weight ratio)

c. Inelastic Scattering: The treatment of inelastic scattering depends
upon the particular inelastic reaction chosen. Inelastic reactions are defined
as (n,y) reactions such as (n,n’), (n,2n), (n, f), (n,n'a) in which y includes
at least one neutron.

For many inelastic reactions, such as (n,2n), more than one neutron can
be emitted for each incident neutron. The weight of each exiting particle
is always the same as the weight of the incident particle minus any implicit
capture. The energy of exiting particles is governed by various scattering
laws that are sampled independently from the cross-section files for each ex-
iting particle. Which law is used is prescribed by the particular cross-section
evaluation used. In fact, more than one law can be specified, and the partic-
ular one used at a particular time is decided with a random number. In an
(n,2n) reaction, for example, the first particle emitted may have an energy
sampled from one or more laws, but the second particle emitted may have
an energy sampled from one or more different laws, depending upon specifi-
cations in the nuclear data library. Because emerging energy and scattering
angle is sampled independently for each particle, there is no correlation be-
tween the emerging particles. Hence energy is not conserved in an individual
reaction because, for example, a 14-MeV particle could conceivably produce
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two 12-MeV particles in a single reaction. But the net effect of many particle
histories is unbiased because on the average the correct amourt of energy
is emitted. Results are biased only when quantities that depend upon the
correlation between the emerging particles are being estimated.

Users should note that MCNP follows a very particular convention. The
exiting particle energy and direction are always given in the target-at-rest
(laboratory) coordinate system. For the kinematical calculations in MCNP
to be performed correctly, the angular distributions for elastic, discrete in-
elastic level scattering, and some ENDF/B-VI inelastic reactions must be
given in the center-of-mass system, and the angular distributions for all other
reactions must be given in the target-at-rest system. MCNP does not stop
if this convention is not adhered to, but the results will be erroneous. In the
checking of the cross-section libraries prepared for MCNP at Los Alamos,
however, careful attention has been paid to ensure that these conventions
are followed.

The exiting particle energy and direction in the target-at-rest (labora-
tory) coordinate system are related to the center—of-mass energy and direc-
tion as follows:!

"
E-F + [E+2,4,,.,,.(A +1)/E Ec,,] and

(A+1)?
[E.. 1 [E
Higb = phem E,"‘m ol ;
where E' = exiting particle energy (laboratory),
E., = exiting particle energy (center-of-mass),
E = incident particle energy (laboratory),
Kem = cosine of center-of-mass scattering angle,
Biab = cosine of laboratory scattering angle,
A = atomic weight ratio (mass of nucleus divided by mass

of incident particle.)
For point detectors it is necessary to convert

dl‘cm
p(l‘lab) - p(#c'n)dﬂlab,

~ g 1 [,
F‘cr? = Hlab Eém A+1 Ea':m

dptem _ E'/Eém

‘_—1-;{%\@'
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d. Nonfission Inelastic Scattering and Emission Laws: Nonfission
inelastic reactions are handled differently trom fission inelastic reactions.
For each nonfission reaction N, particles are emitted, where N, is an integer
quantity specified for each reaction in the cross-section data library of the
collision nuclide. The direction of each emitted particle is independently sam-
pled from the appropriate angular distribution table, as was described earlier.
The energy of each emitted particle is independently sampled from one of
the following scattering or emission laws. Energy and angle are correlated
only for ENDF/B-VI laws 44 and 67. For completeness and convenience
we list all the laws together, regardless of whether the law is appropriate
for nonfission inelastic scattering (for example, Law 3), fission spectra (for
example, Law 11), both (for example, Law 9), or neutron-induced photon
production (for example, Law 2). The conversion from center-of-mass to
target—at-rest (laboratory) coordinate systems is as above.

Law 1 (ENDF law 1): Equiprobable energy bins.
The index ¢ and the interpolation fraction r are found on the incident
energy grid for the incident energy Ei, such that

E, < E,, < E;y and

Ein = Ei + r(Ei+1 — E)).

A random number on the unit interval £ is used to select an equiprob-
able energy bin & from the K equiprobable outgoing energies E

k=&K +1.
Then scaled interpolation is used with random numbers £; and 3 on

the unit interval. Let

Ey=E;; +r(Ei+11 - Eiy)  and
Exk =Ex +r(Eiv1x — Eix);  and
l=1if&>r or
l=1+1if&<r and

E' = Eix + &(E1 k41 — Ep); then

(E' - Ej))(Ex — El)'

Eout = El + El,l\" _ El,l

Law 2 Discrete photon energy.
The value provided in the library is E;. The secondary photon energy
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E,ut is either
Eout = E, for non-primary photons or
E.ut = Eg + [A/(A + 1)]E;y for primary photons,
where A is the atomic weight to neutron weight ratio of
the target and E,, is the incident neutron energy.

Law 3 (ENDF law 3): Inelastic scattering (n,n') from nuclear levels.
The value provided in the library is Q.

Eout = (A—_“i—l)z[z.- —%‘iA—“—)] |

Law 4 Tabular distribution (ENDF law 4).
For each incident neutron energy E; there is a pointer to a table
of secondary energies E;;, probability density functions p;x, and
cumulative density functions c; ;. The index : and the interpolation
fraction r are found on the incident energy grid for the incident energy
E;n such that

E,‘ < Ein < E.‘+1 and

Ein = E; + r(Ei41 — E;).

A random number on the unit interval £; is used to sample a sec-
ondary energy bin k from the cumulative density function

Cik + r(Civrk — Cik) < €1 < Ciks1 + T(Cig1,k41 — Cik+1)-

If these are discrete line spectra, then the sampled energy E' is in-
terpolated between incident energy grids as

E'=Ei;s+r(Eis1k — Eip).

It is possible to have all discrete lines, all continuous spectra, or a
mixture of discrete lines superimposed on a continuous background.
For continuous distributions, the secondary energy bin k is sampled
from

cik < &1 < cClr+1s

where Il =:if &, > rand | = i+1ifé; < r, and £; is a random number
on the unit interval. For histogram interpolation the sampled energy
is

E=E,+ (& - Cl,k).
Pk

" For linear-linear interpolation the sampled energy is
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2 Plk+1 — DLk _ _
. \/pl,k +2 [m—k} (€1 — c1k) — Pk
= L, + i
¢ [Pl,k+l = Plk ]

Eik+1 — Erg

For neutron-induced photons, E,,; = E' and the angle is selected
as described on page 2—35. That is, the photon secondary energy is
sampled from either of the two bracketing incident energy bins, | =1
orl=1+1.

The neutron secondary energy must be interpolated between the in-
cident energy bins ¢ and : + 1 to properly preserve thresholds. Let

Ey=Ei +r(Eis10— Eip)  and

Ex =E, gk +r(Eiy1,xk — Eik); then

(E' - Ei1)(Ex — Ev)
(EiLkx — Ein)
The outgoing neutron energy is then adjusted to the laboratory sys-

tem, if it is in the center-of-mass system, and the outgoing angle is
selected as described on page 2—35.

Eout = El +

(ENDF law 3): General evaporation spectrum.
The function g(z) is tabulated versus x and the energy is tabulated
versus incident energy E;,. The law is then

f(Ein = Eout) = ¢ (Tﬁ::“_:.))

This density function is sampled by

Eout = X(§)T(Ein),

where T(E;») is a tabulated function of the incident energy and
x(€) is a table of equiprobable x values.

(ENDF law 7): Simple Maxwell Fission Spectrum.

f(Ei'n - Eout) =Cx* ‘/Eout e—Ecuz/T(Em)

The nuclear temperature T(E;,) is a tabulated function of the inci-
dent energy. The normalization constant C is given by

T8/ [(_\éj) erf (\/(EmT— U)) 3 \/(EMT— U) ~(Em-0)/T
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U is a constant provided in the library and limits E,,; to 0 < Eyput <
Ein —U. In MCNP this density function is sampled by the rejection
scheme

Eout = "'T(Em) [61 In 63 +1 64] ’

where £, £, €3, and {4 are random numbers on the unit interval. ¢,
and &; are rejected if £ + &2 > 1.

Law 9 (ENDF law 9): Evaporation spectrum.

f(Eln — Eout) =C Eoute-Eo.“/T(Em) ’

where the nuclear temperature T(E;,) is a tabulated function of the
incident energy. The energy U is provided in the library and is as-
signed so that E,y; is limited by 0 < Eyys < Ein — U. The normal-
ization constant C is given by

C7' =12 [1 - e EnONT(1 4 (E;p - U)/T)
In MCNP this density function is sampled by

Eout = _T(Ein)ln(EIEZ) ’

where £; and §; are random numbers on the unit interval, and &; and
€2 are rejected if Eoyy > Eipn — U.

Law 11 (ENDF law 11): Energy Dependent Watt Spectrum.
f(Ein = Eout) = Ce™ /() sinh /b Ein) Eout

The constants a and b are tabulated functions of incident energy and
U is a constant from the library. The normalization constant C is
given by

oot = e (3) o (VBT ) oo (BT )

—aexp [-(—QI'G'—U)] sinh \/b(Ein — U)

where the constant U limits the range of outgoing energy so that
0 < Eout £ Ein — U. This density function is sampled as follows. Let

- _
gz\/(1+%b) —1+<1+%IZ). Then Eout = —aglné;.
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E,ut is rejected if

[(1-9)(1-1né&) —In&)® > bEout,
where £; and £; are random numbers on the unit interval.
(UK law 2): Tabular linear functions of incident energy out.
Tables of P;j, C;j, and T;; are given at a number of incident energies
E,. f E; < Ei, < E;4) then the ith P;;, Cij, and T;; tables are used.
Eout = Cit(Ein — Tik),

where k is chosen according to

k k+1
Z P.<€¢<L ZP,‘,’ y
=1 =1

where £ is a random number on the unit interval [0,1).

(UK law 6): Equiprobable energy multipliers. The law is

Eout = EinT( Et'n)

The library provides a table of K equiprobable energy multipliers
T; x for a grid of incident neutron energies E;. For incident energy
E;n such that

Ei< Ein < Ei4y

the random numbers £; and &; on the unit interval are used to find
T:
k=6 K+1

T=Tix+&(Tixs1 —Tik)  and then
Eout = Et'n T

Tabular Distribution (ENDF/B-VI file 6 law=1 lang=2, Kalbach-87
correlated energy-angle scattering). Law 44 is a generalization of law
4. For each incident neutron energy E; there is a pointer to a table
of secondary energies E; , probability density functions p; x, cumula-
tive density functions ¢, x, precompound fractions R, i, and angular
distribution slope values A, . The index i and the interpolation frac-
tion r are found on the incident energy grid for the incident energy
Ein such that

E; < Ein < Eixy  and

Ein = E; + r(Eiy1 — E)).
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A random number on the unit interval £; is used to sample a sec-
ondary energy bin k from the cumulative density function

ik +r(Cigrk — Cik) < €1 < Cike1 + T(Cig1, k41 — Ciks1)-

If these are discrete line spectra, then the sampled energy E' is in-
terpolated between incident energy grids as

E'=E + r(Eiy14 — Ei).

It is possible to have all discrete lines, all continuous spectra, or a
mixture of discrete lines superimposed on a continuous background.
For continuous distributions, the secondary energy bin k is sampled
from

cik < &1 < clk+l

where l = 1if £ > rand | = i+1if {3 < r, and £; is a random number
on the unit interval. For histogram interpolation the sampled energy
is

(&1 —cix)
Plk
For linear-linear interpolation the sampled energy is

E'=E;+

’

E“=E*+ ,
[ PlLk+1 — Pik ]

Eiky1— Eri

Plk+1 — PLk
\/Pzz.k +2 [m] (&1 = ctE) = puk

Unlike Law 4, the sampled energy is interpolated between the inci-
dent energy bins ¢ and ¢ + 1 for both neutron-induced photons and
neutrons. Let

E\=Eiy +r(Ei+11 - Ei;) and

Ex =E;k +r(Eis1,x — Eik); then

(E' - Ej))(Eg — Ey)
(Evx — En)

For neutron-induced photons, the outgoing angle is selected as de-
scribed on page 2—35. For neutrons, Eoy is always in the center-of-
mass system and must be adjusted to the laboratory system. The
outgoing neutron center-of-mass scattering angle u is sampled from
the Kalbach-87 density function

-&N=Eh+
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1
E; ==
P([J-, lmEout) 2sinh(A)

using the random numbers &3 and &4 on the unit interval as follows.
If £ > R, then let

[cosh(Ap) + Rsinh(Ap))

T = (284 — 1)sinh(A) and

u=In(T+ VT +1)/A,

or if {3 < R, then

p=ln[Get + (1 - €)™ /A
R and A are interpolated on both the incident and outgoing energy
grids. For discrete spectra,
A=Ak +r(Aisrk — Aig),
R=Rx+r(Rij1k — Rik)

For continuous spectra with histogram interpolation,

A= Ay,
R =Ry

For continuous spectra with linear-linear interpolation,

A=A+ (Argsr — Aig)(E' = E1)/(Eik+1 = Eig),
R=Rik + (Rig+1 — Rit)(E' — Eig)/(Eik+1 — Er).

The Kalbach-87 formalism (Law 44) is also characterized by an energy-
dependent multiplicity in which the number of neutrons emerging

from a collision varies. If the number is less than one, Russian

roulette is played and the collision can result in a capture. If the num-

ber is greater than one, the usual MCNP approach is taken whereby

the additional particles are banked and only the first one contributes

to detectors and DXTRAN.

Law 66 N-body phase space distribution (ENDF/B-VI file 6 law 6).
The phase space distribution for particle i in the center-of-mass co-
ordinate system is:

Pi(p, Einy Eout) = Cu v/ Eout(ET™® = Eout)™*™*

where all energies and angles are also in the center-of-mass system
and E%* is the maximum possible energy for particle ¢, u and E,y;.
The C, normalization constants for n = 3,4,5 are:
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-
- r(EMeE)?
_ 105
 32(EMery/z
_ 256
- 14x(EMa*)S
E™* is a fraction of the energy available, E,,
M—-m;
M

where M is the total mass of the n particles being treated, m;, is the
mass of particle 7, and

Cs

Csy and

Cs

maz __
EM =

E, ,

mrt

Ein+Q ’

Ea=__
myp + mr

where mr is the target mass and m, is the projectile mass. For
neutrons,

mr A
mp+mT_A+1

and for a total mass ratio A, = M/m;,

M Ap
Thus,
Ap-1, A
maz _ P .
E Ap (A+1E"'+Q)

The total mass A, and the number of particles in the reaction n
are provided in the data library. The outgoing energy is sampled as
follows.

Let &, ¢ = 1,9 be random numbers on the unit interval. Then from
rejection technique R28 from the Monte Carlo Sampler,® accept §;
and &3 if

G+ <1
and accept £3 and &4 if

g+e <1
Then let

p=¢& iof n=3 ,
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p=6s€ if n=4 , and

p=2¢&86€18s if n=5

and let
_ i@+
=T@+g "
="§31n(f§+§2)_1 d
E+en P
T=—— ;
=
then

Eou = TE]™®

The cosine of the scattering angle is always sampled isotropically in
the center-of-mass system using another random number ¢; on the
unit interval:

p=2§-1

Law 67 Correlated energy-angle scattering (ENDF/B-VI file 6 law 7).
For each incident neutron energy, first the exiting particle direction
p is sampled as described on page 2—35. In other Law data, first
the exiting particle energy is sampled and then the angle is sampled.
The index : and the interpolation fraction r are found on the incident
energy grid for the incident energy E,,, such that

E,<Ei, <E;y and

Ein = Ei + r(Eiy1 - E;).

For each incident energy E; there is a table of exiting particle di-
rection cosines u;; and locators L; ;. This table is searched to find
which ones bracket u, namely,

Hij < B < Wi j+1-

Then the secondary energy tables at L;; and L; ;41 are sampled for
the outgoing particle energy. The secondary energy tables consist
of a secondary energy grid E, ;x, probability density functions p; j ,
and cumulative density functions ¢; ;. A random number £; on the
unit interval is used to pick between incident energy indices: if {; < r
then | = ¢ 4+ 1; otherwise, [ = i. Two more random numbers £; and
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§3 on the unit interval are used to determine interpolation energies.
If & < (u = pij)/(Kij+1 — pij), then

Eixr=Ejsix and m=j+1, if I=i.
Otherwise,

Eiv =E;jjz and m=]}, if  l=u.

If {3 < (4 — pit+1,5)/(Bi+1,j+1 = His1,5), then
Eimi=Ei41416 and m=j+1, if l=i+1.
Otherwise,
Eimr=Ei;k and m=j, if l=1+4+1.

A random number {4 on the unit interval is used to sample a sec-
ondary energy bin k from the cumulative density function

Amk < €4 < Clmk+1-
For histogram interpolation the sampled energy is

El - El’m'k + (64 - Cl,m,k).

Plm.k
For linear-linear interpolation the sampled energy is

2 Plm.k+1 — Dl.m k _ _
¢p"m'l‘ +2 [ I,mk+1 — I.m.k] (64 Cl,m,k) Plm.k

E =Eimi+

[ Plm.k+1 — Plm, k ]
Eimi+1 = Eimp

The final outgoing energy E,y: uses scaled interpolation. Let
Ey, = E;) + r(Eiy11 — Ei)
and ,EK = E; k +r(Eis1,x — E; )

(E' - E1)(Eg - El).

Then E,u = E; +
out ' (Evx — Eiry)

e. Fission Inelastic Scattering: For any fission reaction a number of neu-
trons, N,, are emitted according to the value of #( E;n). The average number
of neutrons per fission, ¥( E,,), is either a tabulated function of energy or a
polynomial function of energy. If I is the largest integer less than v(E,,),
then

November 16, 1993 2—-48



CHAPTER 2
Neutrons

Ny=T+1 ifé < v(Eiq) -1

Ny=1 ifé > v(E;y) — I, where £ is a random number.

The direction of each emitted neutron is sampled independently from the
appropriate angular distribution table by the procedure described on page
2-35.

The energy of each fission neutron is determined from the appropriate
(that is, as specified in the evaluation) emission law. The three laws used
for fission neutron spectra are 7, 9, and 11. These laws are discussed in the
preceding section, starting on page 2—41. MCNP then models the transport
of the first neutron out after storing all other neutrons in the bank.

6. The S(a. () treatment

The S(a, 3) thermal scattering treatment is a complete representation
of thermal neutron scattering by molecules and crystalline solids. Two pro-
cesses are allowed: (1) inelastic scattering with cross section o;, and a cou-
pled energy-angle representation derived from an ENDF /B S(a, 3) scattering
law, and (2) elastic scattering with no change in the outgoing neutron en-
ergy for solids with cross section o,; and an angular treatment derived from
lattice parameters. The elastic scattering treatment is chosen with prob-
ability o.i/(0et + oin). This thermal scattering treatment also allows the
representation of scattering by multiatomic molecules (for example, BeO).

For the inelastic treatment, the distribution of secondary energies is rep-
resented by a set of equally probable final energies (typically 16 or 32) for
each member of a grid of initial energies from an upper limit of typically
4 eV down to 107° eV, along with a set of angular data for each initial and
final energy. The selection of a final energy E' given an initial energy E can
be characterized by sampling from the distribution

N
1
P(E'|Ei<E<Eiq1)=+ ) §[E —pEi; —(1-p)Eit1,]
N

1=1
where E; and E;4; are adjacent elements on the initial energy grid,

_Eij-FE
p—Ei+1—Ei ’

N is the number of equally probable final energies, and E;; is the j th discrete
final energy for incident energy E.

There are two allowed schemes for the selection of a scattering cosine
following selection of a final energy and final energy index j. In each case,
the (i,7)*® set of angular data is associated with the energy transition E =
E; - E'=E;;.

(1) The data consist of sets of equally probable discrete cosines y; ;i for

k =1,...,v with v typically 4 or 8. An index k is selected with
probability 1/v, and u is obtained by the relation

Bo=ppijk+ (1= p)tisr,jk
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(2) The data consist of bin boundaries of equally probable cosine bins. In
this case, random linear interpolation is used to select one set or the
other, with p being the probability of selecting the set corresponding
to incident energy E;. The subsequent procedure consists of sampling
for one of the equally probable bins and then choosing u uniformly
in the bin.

For elastic scattering, the above two angular representations are allowed
for data derived by an incoherent approximation. In this case, one set of an-
gular data appears for each incident energy and is used with the interpolation
procedures on incident energy described above.

For elastic scattering, when the data have been derived in the coherent
approximation, a completely different representation occurs. In this case,
the data actually store:: are the set of parameters D, where

0t = Diy/E  for Egy < E < Epip

0 =0 for E < Ep
and Ep; are Bragg energies derived from the lattice parameters. For incident
energy E such that Egy < E < Eggy,

P;=D;/Difori=1,...,k

represents a discrete cumulative probability distribution that is sampled to
obtain index i, representing scattering from the i** Bragg edge. The scatter-
ing cosine is then obtained from the relationship

p=1-2Ep/E

Using next event estimators such as point detectors with S(a, ) scatter-
ing cannot be done exactly because of the discrete scattering angles. MCNP
uses an approximate scheme?®#! that in the next event estimation calculation
replaces discrete lines with histograms of width

bu<.1
See also page 2—82.

D. Photon Interactions

Sampling of a collision nuclide, analog capture, implicit capture, and
many other aspects of photon interactions such as variance reduction, are
the same as for neutrons. The collision physics are completely different.

MCNP has two photon interaction models: simple and detailed.

The simple physics treatment ignores coherent (Thomson) scattering and
fluorescent photons from photoelectric absorption. It is intended for high-
energy photon problems or problems where electrons are free and is also
important for next event estimators such as point detectors, where scatter-
ing can be nearly straight ahead with coherent scatter. The simple physics
treatment uses implicit capture unless overridden with the CUT:P card, in
which case it uses analog capture.
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bins will be for positrons (positive scores), electrons (negative scores), and
total. The total bin will be the same as the single bin with the first ELC
option above (usually with negative scores because there are more electrons
than positrons).

5. U lificats

If the above capabilities do not provide the user with exactly what is
desired, tallies can be modified by a user-supplied TALLYX subroutine (FU
card). As with a user-supplied SOURCE subroutine, which lets the user
provide his own specialized source, the TALLYX subroutine lets the user
modify any tally, with all the programming changes convemently located in
a single subroutine.

6. Tally output format

Not only can users change the contents of MCNP tallies, the output for-
mat can be modified as well. Any desired descriptive comment can be added
to the tally title by the tally comment (FC) card. The printing order can
be changed (FQ card) so that instead of, for instance, getting the default
output blocks in terms of time vs energy, they could be printed in blncks of
segment vs cosine. The tally bin that is monitored for the tally fluc:uation
chart printed at the problem end and used in the statistical analysis of the
tally can be selected (TF card). Detector tally diagnostic prints are con-
trolled with the DD card. Finally, the PRINT card controls what optional
tables are displayed in the output file.

VI. ESTIMATION OF THE MONTE CARLO PRECISION

Monte Carlo results represent an average of the contributions from many
histories sampled during the course of the problem. An important quantity
equal in stature to the Monte Carlo answer (or tally) itself is the statistical
error or uncertainty associated with the result. The importance of this error
and its behavior vs the number of histories cannot be overemphasized because
the user not only gains insight into the quality of the result, but also can
determine if a tally appears statistically well behaved. If a tally is not well
behaved, the estimated error associated with the result generally will not
reflect the true confidence interval of the result and, thus, the answer could
be completely erroneous. MCNP contains several quantities that aid the user
in assessing the quality of the confidence interval.

The purpose of this section is to educate MCNP users about the proper
interpretation of the MCNP estimated mean, relative error, variance of the
variance, and history score probability density function. Carefully check tally
results and the associated tables in the tally fluctuation charts to ensure a
well-behaved and properly converged tally.
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A. Monte Carlo Means, Variances, and Standard Deviations

Monte Carlo results are obtained by sampling possible random walks and
assigning a score z; (for example, z; = energy deposited by the i** random
walk) to each random walk. Random walks typically will produce a range of
scores depending on the tally selected and the variance reduction chosen.

Suppose f(z) is the history score probability density function for selecting
a random walk that scores z to the tally being estimated. The true answer
(or mean) is the expected value of z, E(z), where

E(z) = /:vf(z:)dz = true mean.

The function f(z) is seldom explicitly known; thus, f(z) is implicitly sampled
by the Monte Carlo random walk process. The true mean then is estimated
by the sample mean z where

T= -1% Zz.' , (2.15)

where z; is the value of ¢ selected from f(z) for the i** history and N is
the number of histories calculated in the problem. The Monte Carlo mean
T is the average value of the scores z; for all the histories calculated in the
problem. The relationship between E(z) and Z is given by the Strong Law of
Large Numbers! that states that if E(z) is finite, Z tends to the limit E(z)
as N approaches infinity.

The variance of the population of z values is a measure of the spread in
these values and is given by!

7t = [(z - B@)f(a)de = E() - (B(z))

The square root of the variance is o, which is called the standard deviation
of the population of scores. As with E(z), ¢ is seldom known but can be
estimated by Monte Carlo as S, given by (for large N)

N (zi-%)? —
SZ = Es:jlv(‘t' : I) ~zl - 52 (2160)
and
_ 1 N
2 = N Zl 1‘,2 . (2.160)
1=

The quantity S is the estimated standard deviation of the population of ¢
based on the values of z; that were actually sampled.
The estimated variance of Z is given by

52

s§=/—v-

(2.17)
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These formulae do not depend on any restriction on the distribution of z or
% (such as normality) beyond requiring that E(z) and o2 exist and are finite.
The estimated standard deviation of the mean Z is given by S;.

It is important to note that S; is proportional to 1/v/N, which is the
inherent drawback to the Monte Carlo method. To halve S;, four times
the original number of histories must be calculated, a calculation that can
be computationally expensive. The quantity S; can also be reduced for a
specified N by making S smaller, reducing the inherent spread of the tally
results. This can be accomplished by using variance reduction techniques
such as those discussed in section VII of this chapter.

B. Precision and Accuracy

There is an extremely important difference between precision and accu-
racy of a Monte Carlo calculation. As illustrated in Fig. 2.10, precision is
the uncertainty in Z caused by the statistical fluctuations of the z,'s for the
portion of physical phase space sampled by the Monte Carlo process. Im-
portant portions of physical phase space might not be sampled because of
problem cutoffs in time or energy, inappropriate use of variance reduction
techniques, or an insufficient sampling of important low-probability events.
Accuracy is a measure of how close the expected value of Z, E(z), is to
the true physical quantity being estimated. The difference between this true
value and E(z) is called the systematic error, which is seldom known. Error
or uncertainty estimates for the results of Monte Carlo calculations refer only
to the precision of the result and not to the accuracy. It is quite possible to
calculate a highly precise result that is far from the physical truth because
nature has not been modeled faithfully.

SYSTEMATIC
<§—— ERROR

| |
TRUTH E[x]
Figure 2.10

1. Factors Affecting Problem Accuracy

Three factors affect the accuracy of a Monte Carlo result: (1) the code,
(2) problem modeling, and (3) the user. Code factors encompass: the physics
features included in a calculation as well as the mathematical models used;
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uncertainties in the data, such as the transport and reaction cross sections,
Avogadro’s number, atomic weights, etc.; the quality of the representation of
the differential cross sections in energy and angle; and coding errors (bugs).
All of the applicable physics must be included in a calculation to produce
accurate results. Even though the evaluations are not perfect, more faithful
representation of the evaluator’s data should produce more accurate results.
The descending order of preference for Monte Carlo data for calculations is
continuous energy, thinned continuous energy, discrete reaction, and multi-
group. Coding errors can always be a problem because no large code is
bug-free. MCNP, however, is a very mature, heavily used production code.
With steadily increasing use over the years, the likelihood of a serious coding
error continues to diminish.

The second area, problem-modeling factors, can quite often contribute
to a decrease in the accuracy of a calculation. Many calculations produce
seemingly poor results because the model of the energy and angular distri-
bution of the radiation source is not adequate. Two other problem-modeling
factors affecting accuracy are the geometrical description and the physical
characteristics of the materials in the problem.

The third general area affecting calculational accuracy involves user er-
rors in the problem input or in user-supplied subroutines and patches to
MCNP. The user can also abuse variance reduction techniques such that
portions of the physical phase space are not allowed to contribute to the
results. Checking the input and output carefully can help alleviate these
difficulties. A last item that is often overlooked is a user’s thorough un-
derstanding of the relationship of the Monte Carlo tallies to any measured
quantities being calculated. Factors such as detector efficiencies, data reduc-
tion and interpretation, etc., must be completely understood and included
in the calculation, or the comparison is not meaningful.

. Factors Affecting Problem Precisi

The precision of a Monte Carlo result is affected by four user-controlled
choices: (1) forward vs adjoint calculation, (2) tally type, (3) variance re-
duction techniques, and (4) number of histories run.

The choice of a forward vs adjoint calculation depends mostly on the
relative sizes of the source and detector regions. Starting particles from a
small region is easy to do, whereas transporting particles to a small region
is generally hard to do. Because forward calculations transport particles
from source to detector regions, forward calculations are preferable when the
detector (or tally) region is large and the source region is small. Conversely,
because adjoint calculations transport particles backward from the detector
region to the source region, adjoint calculations are preferable when the
source (or tally) region is large and the detector region is small. MCNP can
be run in multigroup adjoint mode. There is no continuous-energy adjoint
capability.

As alluded to above, the smaller the tally region, the harder it becomes
to get good tally estimates. An efficient tally will average over as large a
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region of phase space as practical. In this connection, tally dimensionality
is extremely important. A one-dimensional tally is typically 10 to 100 times
easier to estimate than a two-dimensional tally, which is 10 to 100 times
easier than a three-dimensional tally. This fact is illustrated in Fig. 2.15
later in this section.

Variance reduction techniques can be used to improve the precision of a
given tally by increasing the nonzero tallying efficiency and by decreasing the
spread of the nonzero history scores. These two components are depicted in
a hypothetical f(z) shown in Fig. 2.11. See page 2—99 for more discussion
about the empirical f(z) for each tally fluctuation chart bin. A calculation
will be more precise when the history-scoring efficiency is high and the vari-
ance of the nonzero scores is low. The user should strive for these conditions
in difficult Monte Carlo calculations. Examples of these two components of
precision are given on page 2—95.

More histories can be run to improve precision (see section C following).
Because the precision is proportional to 1/ VN, running more particles is
often costly in computer time and therefore is viewed as the method of last
resort for difficult problems.

ZQ@ros
FREQUENCY
OF
SAMPLING
0 E[x]
TALLY/HISTORY

Figure 2.11

C. The Central Limit Theorem and Monte Carlo Confidence Intervals

To define confidence intervals for the precision of a Monte Carlo result,
the Central Limit Theorem! of probability theory is used, stating that

ﬁ 2
Jm e [B@ +ate <z < B+ s = [Tetma

where a and 3 can be any arbitrary values and Pr{Z] means the probability
of Z. In terms of the estimated standard deviation of Z, Sz, this may be
rewritten in the following approximation for large V:

i - E(z) ] 1 /f’ _a)
P S —_— <S5 ~ —= dt
r{" 2SN <P~ e
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This crucial theorem states that for large values of N (that is, as N tends
to infinity) and identically distributed independent random variables z; with
finite means and variances, the distribution of the Z’s approaches a normal
distribution. Therefore, for any distribution of tallies (an example is shown
in Fig. 2.11), the distribution of resulting z's will be approximately normally
distributed, as shown in Fig. 2.10, with a mean of E(z). If S is approximately
equal to o, which is valid for a statistically significant sampling of a tally
(i.e, N has tended to infinity), then

T—-S:<E(z)<Z+ S:,~ 68% of the time (2.18q)

and
T —-25: < E(z) <% +2S:,~ 95% of the time (2.18b)

from standard tables for the normal distribution function. Eq. (2.18a) is a
68% confidence interval and Eq. (2.18b) is a 95% confidence interval.

The key point about the validity of these confidence intervals is that
the physical phase space must be adequately sampled by the Monte Carlo
process. If an important path in the geometry or a window in the cross
sections, for example, has not been well sampled, both z and S; will be
unknowingly incorrect and the results will be wrong, usually tending to be
too small. The user must take great care to be certain that adequate sampling
of the source, transport, and any tally response functions have indeed taken
place. Additional statistical quantities to aid in the assessment of proper
confidence intervals are described in later portions of section VI.

D. Estimated Relative Errors in MCNP

All standard MCNP tallies are normalized to be per starting particle
history (except for some criticality calculations) and are printed in the output
with a second number, which is the estimated relative error defined as

R=S:/z . (2.19a)

The relative error is a convenient number because it represents statistical
precision as a fractional result with respect to the estimated mean.

Combining Egs. (2.15), (2.16), and (2.17), R can be written (for large
N) as

1/2
— 1/2 N
2 N 2
R=|L (%1 _ Lx%_i , (2.195)
N\z (ZN :c~) N
=13

Several important observations about the relative error can be made from
Eq. (2.19b). First, if all the z;’s are nonzero and equal, R is zero. Thus,
low-variance solutions should strive to reduce the spread in the z;’s. If the
z;'s are all zero, R is defined to be zero. If only one nonzero score is made,
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R approaches unity as N becomes large. Therefore, for z,’s of the same sign,
Sz can never be greater than Z because R never exceeds unity. For positive
and negative z;’s, this is not be true. The range of R values for z;’s of the
same sign is therefore between zero and unity.

To determine what values of R lead to results that can be stated with
confidence using Eqs. (2.6), consider Eq. (2.19b) for a difficult problem in
which nonzero scores occur very infrequently. In this case,

2 Z.N=1 z}
N € (Z:[il 1’")2

For clarity, assume that there are n out of N (n « N) nonzero scores that
are identical and equal to z. With these two assumptions, R for “difficult
problems” becomes

(2.20a)

nz? 1/2 1
~ ———— _— e—— f)
Rp.p [nzxz] v <N (2.20b)

This result is expected because the limiting form of a binomial distribution
with infrequent nonzero scores and large N is the Poisson distribution, which
is the form in Eq. (2.20b) used in detector “counting statistics.”

Table 2.2
Estimated Relative Error R vs Number of Identical Tallies n for Large N

n 1 4 16 25 100 400
R 1.0 0.5 0.25 020 0.10 0.05

Through use of Eqgs. (2.8), a table of R values versus the number of tallies
or “counts” can be generated as shown in Table 2.2. A relative error of 0.5
is the equivalent of four counts, which is hardly adequate for a statistically
significant answer. Sixteen counts is an improvement, reducing R to 0.25,
but still is not a large number of tallies. The same is true for n equals 25.
When n is 100, R is 0.10, so the results should be much improved. With 400
tallies, an R of 0.05 should be quite good indeed.

Based on this qualitative analysis and the experience of Monte Carlo
practitioners, Table 2.3 presents the recommended interpretation of the es-
timated lo confidence interval (1 + R) for various values of R associated
with an MCNP tally. These guidelines were determined empirically, based on
years of experience using MCNP on a wide variety of problems. Just before
the tally fluctuation charts, a “Status of Statistical Checks” table prints how
many tally bins of each tally have values of R exceeding these recommended
guidelines.

Point detector tallies generally require a smaller value of R for valid
confidence interval statements because some contributions, such as those near
the detector point, are usually extremely important and may be difficult to
sample well. Experience has shown that for R less than 0.05, point detector
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Table 2.3
Guidelines for Interpreting the Relative Error R®

Range of R Quality of the Tally

0.5to1l Garbage

0.2t00.5 Factor of a few

0.1 to 0.2 Questionable

< 0.10 Generally reliable except

for point detector
< 0.05 Generally reliable for

point detector

®R = S;/% and represents the estimated statistical relative error at
the 1o level. These interpretations of R assume that all portions of
the problem phase space have been well sampled by the Monte Carlo
process.

results are generally reliable. For an R of 0.10, point detector tallies may
only be known within a factor of a few and sometimes not that well (see the
pathological example on page 2—109.)

MCNP calculates the relative error for each tally bin in the problem using
Eq. (2.19b). Each z, is defined as the total contribution from the i** starting
particle and all resulting progeny. This definition is important in many
variance reduction methods, multiplying physical processes such as fission
or (n,zn) neutron reactions that create additional neutrons, and coupled
neutron/photon/electron problems. The i** source particle and its offspring
may thus contribute many times to a tally and all of these contributions are
correlated because they are from the same source particle.

Figure 2.12 represents the MCNP process of calculating the first and
second moments of each tally bin and relevant totals using three tally storage
blocks of equal length for each tally bin. The hypothetical grid of tally bins
in the bottom half of Fig. 2.12 has 24 tally bins including the time and energy
totals. During the course of the i*? history, sums are performed in the first
MCNP tally storage block. Some of the tally bins receive no contributions
and others receive one or more contributions. At the conclusion of the itk
history, the sums are added to the second MCNP tally storage block. The
sums in the first MCNP tally storage block are squared and added to the
third tally storage block. The first tally storage block is then filled with
zeros and history ¢ + 1 begins. After the last history N, the estimated
tally means are computed using the second MCNP tally storage block and
Eq. (2.15). The estimated relative errors are calculated using the second and
third MCNP tally storage blocks and Eq. (2.19b). This method of estimating
the statistical uncertainty of the result produces the best estimate because
the batch size is one, which minimizes the variance of the variance.54:6%

Note that there is no guarantee that the estimated relative error wii!
decrease inversely proportional to the /N as required by the Central Limit
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Time 0000¢ Grand
Total ox X X Total

X=§core from the present history

Figure 2.12

Theorem because of the statistical nature of the tallies. Early in the problem,
R will generally have large statistical fluctuations. Later, infrequent large
contributions may cause fluctuations in S; and to a lesser extent in z and
therefore in R. MCNP calculates a FOM for one bin of each numbered tally
to aid the user in determining the statistical behavior as a function of N and
the efficiency of the tally.

E. MCNP Figure of Merit

The estimated relative error squared R? should be proportional to 1/N,
as shown by Eq. (2.19a). The computer time T used in an MCNP problem
should be directly proportional to N; therefore, R?*T should be approxi-
mately a constant within any one Monte Carlo run. It is convenient to

define a figure of merit (FOM) of a tally to be

1
MCNP prints the FOM for one bin of each numbered tally as a function
of N, where the unit of computer time T is minutes. The table is printed
in particle increments of 1000 up to 20 000 histories. Between 20 000 and
40 000 histories, the increment is doubled to 2000. This trend continues,
producing a table of up to 20 entries. The default increment can be changed

by the 5th entry on the PRDMP card.
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The FOM is a very important statistic about a tally bin and should be
studied by the user. It is a tally reliability indicator in the sense that if the
tally is well behaved, the FOM should be approximately a constant with the
possible exception of statistical fluctuations very early in the problem. An
order-of-magnitude estimate of the expected fractional statistical fluctuations
in the FOM is 2R. This result assumes that both the relative statistical
uncertainty in the relative error is of the order of the relative error itself and
the relative error is small compared to unity. The user should always examine
the tally fluctuation charts at the end of the problem to check that the FOMs
are approximately constant as a function of the number of histories for each
tally.

The numerical value of the FOM can be better appreciated by consid-

ering the relation
R=1/VFOMx«T (2.21b)

Table 2.4 shows the expected value of R that would be produced in a one-
minute problem (T = 1) as a function of the value of the FOM. It is clearly
advantageous to have a large FOM for a problem because the computer
time required to reach a desired level of precision is proportionally reduced.
Examination of Eq. (2.21b) shows that doubling the FOM for a problem
will reduce the computer time required to achieve the same R by a factor of
two.

Table 2.4
R Values as a Function of the FOM for T = 1 Minute

FOM 1 10 100 1000 10000
R 1.0 032 0.10 0.032 0.010

In summary, the FOM has three uses. The most important use is as a
tally reliability indicator. If the FOM is not approximately a constant (ex-
cept for statistical fluctuations early in the problem), the confidence intervals
may not overlap the expected score value, E(z), the expected fraction of the
time. A second use for the FOM is to optimize the efficiency of the Monte
Carlo calculation by making several short test runs with different variance re-
duction parameters and then selecting the problem with the largest FOM.
Remember that the statistical behavior of the FOM (i.e., R) for a small
number of histories may cloud the selection of techniques competing at the
same level of efficiency. A third use for the FOM is to estimate the computer
time required to reach a desired value of R by using T ~ 1/R?FOM.

F. Separation of Relative Error into Two Components

Three factors that affect the efficiency of a Monte Carlo problem are
(1) history-scoring efficiency, (2) dispersions in nonzero history scores, and
(3) computer time per history. All three factors are included in the FOM.
The first two factors control the value of R; the third is T'.
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The relative error can be separated into two components: the nonzero

history-scoring efficiency component Rff s and the intrinsic spread of the

nonzero z; scores R%,. Defining ¢ to be the fraction of histories producing

nonzero z,’'s, Eq. 2.19b can be rewritten as
Re_Zimz 1 _ Tep 1 _ Teged 1 1-g

1

B N~ N -+

A
(2.22a)

Note by Eq. 2.19b that the first two terms are the relative error of the ¢V
nonzero scores. Thus defining,

X 2
R, = —Z-:—’-‘-‘Lf-—z - LN and (2.225)
(Zz;;éo l',') 1
Rl;;=(1-9q)/(gN)  yields (2.22¢)
R®*=RY +RE, . (2.22d)

For identical nonzero z,’s, R?,, is zero and for a 100% scoring efficiency,
RE is zero. It is usually possible to increase g for most problems using one or
more of the MCNP variance reduction techniques. These techniques alter the
random walk sampling to favor those particles that produce a nonzero tally.
The particle weights are then adjusted appropriately so that the expected
tally is preserved. This topic is described in Sec. VII (Variance Reduction)
beginning on page 2—112. The sum of the two terms of Eq. (2.22d) produces
the same result as Eq. (2.19b). Both R?,, and R/, are printed for the tally
fluctuation chart bin of each tally so that the dominant component of R can
be identified as an aid to making the calculation more efficient.

These equations can be used to better understand the effects of scoring
inefficiency; that is, those histories that do not contribute to a tally. Ta-
ble 2.5 shows the expected values of R, as a function of ¢ and the number
of histories N. This table is appropriate for identical nonzero scores and
represents the theoretical minimum relative error possible for a specified ¢
and N. It is no surprise that small values of ¢ require a compensatingly large
number of particles to produce precise results.

Table 2.5
Expected Values of R.sy as a Function of ¢ and N
q| 0.001 0.01 0.1 0.5
N

10%] 0.999 0.315 0.095 0.032
10¢| 0.316 0.099 0.030 0.010
10%| 0.100 0.031 0.009 0.003
10| 0.032 0.010 0.003 0.001
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A practical example of scoring inefficiency is the case of infrequent high-
energy particles in a down-scattering-only problem. If only a small fraction
of all source particles has an energy in the highest energy tally bin, the dom-
inant component of the relative error will probably be the scoring efficiency
because only the high-energy source particles have a nonzero probability of
contributing to the highest energy bin. For problems of this kind, it is often
useful to run a separate problem starting only high-energy particles from the
source and to raise the energy cutoff. The much-improved scoring efficiency
will result in a much larger FOM for the high-energy tally bins.

To further illustrate the components of the relative error, consider the five
examples of selected discrete probability density functions shown in Fig. 2.13.
Cases [ and II have no dispersion in the nonzero scores, cases III and IV have
100% scoring efficiency, and case V contains both elements contributing to
R. The most efficient problem is case III. Note that the scoring inefficiency
contributes 75% to R in case V, the second worst case of the five.

FIVE CASES WITH A MEAN OF 0.5

E[(x]=0.5(0+1)=0.5

0.5
: e I . I ReR . =1/8qzt (W)
0 1 nut-o
0.78 E(x]=0x1/4+2/3x3/4=1/2
II ¢ ReR . ,=0.58/8qzt (W)
0.28
L Ryne =0

0.5 E(x]=1/2x1/3+1/2x2/3=0.5
III ¢ | I M I ReR, . =0.33/sqzrt (W)
Rege=0
0.5 E(x]=1/2x1/4+1/2%3/4=0.5%
v ¢ | I m I RoR e =0-5/8qzt (W)
Rege=0

1/3 E(x]=0x1/3+1/3x1/2+41/3x1=0.5
v ¢ R=0.82/sqrt (W)
005 1 Rine0.41/sqrt(W) 254
H Regs=0.71/sqzt (W) 5%
Figure 2.13

G. Variance of the Variance

Previous sections have discussed the relative error R and figure of merit
FOM as measures of the quality of the mean. A quantity called the rela-
tive variance of the variance (VOV) is another useful tool that can assist
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the user in establishing more reliable confidence intervals. The VOV is the
estimated relative variance of the estimated R. The VOV involves the esti-
mated third and fourth moments of the empirical history score probability
density function (PDF) f(z) and is much more sensitive to large history
score fluctuations than is R. The magnitude and NPS behavior of the VOV
are indicators of tally fluctuation chart (TFC) bin convergence. Early work
was done by Estes and Cashwell®* and Pederson®® later reinvestigated this
statistic to determine its usefulness.

The VOV is a quantity that is analogous to the square of the R of the
mean, except it is for R instead of the mean. The estimated relative VOV
of the mean is defined as

VOV = 5%(8})/S3

where S2 is the estimated standard deviation of 7 and S%( 52) is the estimated
variance in S2. The VOV is a measure of the relative statistical uncertainty
in the estimated R and is important because S must be a good approximation

of o to use the Central Limit Theorem to form confidence intervals.
The VOV for a tally bin% is

VOV =3 (2 = 3)*/(} (2: - T)%)? - 1/N. (2.23)

This is the fourth central moment minus the second central moment squared
normed by the product of N and the second central moment squared.
When Eq. (2.23) is expanded in terms of sums of powers of z;, it becomes

vov < Zat =4 a D al/N +6 T (T et /N? - (Ta)t/N 1
(To7— (St /NP N

or

VoV = M&Z_‘?m_‘*m")zmz — 4= )N = (BN
(T2 = (X =)4n)?

(2.24)

Now consider the truncated Cauchy formula for the following analysis.
The truncated Cauchy is similar in shape to some difficult Monte Carlo tal-
lies. After numerous statistical experiments on sampling a truncated positive
Cauchy distribution

Cauchyf(z) =2/7(1+ £%),0 < z < Zmaz, (2.25)

it is concluded that the VOV should be below 0.1 to improve the probability
of forming a reliable confidence interval. The quantity 0.1 is a convenient
value and is why the VOV is used for the statistical check and not the square
root of the VOV (R of the R). Multiplying numerator and denominator of
Eq. (2.24) by 1/N converts the terms into T" averages and shows that the
VOV is expected to decrease as 1/N.
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It is interesting to examine the VOV for the n identical history scores z
(n < N) that were used to analyze R in Table 2.2, page 2—92. The VOV
behaves as 1/n in this limit. Therefore, ten identical history scores would
be enough to satisfy the VOV criterion, a factor of at least ten less than
the R criterion. There are two reasons for this phenomenon: 1) it is more
important to know R well than the VOV in forming confidence intervals;
and 2) the history scores will ordinarily not be identical and thus the fourth
moment terms in the VOV will increase rapidly over the second moment
terms in R.

The behavior of the VOV as a function of N for the TFC bin is printed
in the OUTP file. Because the VOV involves third and fourth moments, the
VOV is a much more sensitive indicator to large history scores than the R,
which is based on first and second moments. The desired VOV behavior is
to decrease inversely with N. This criterion is deemed to be a necessary,
but not sufficient, condition for a statistically well-behaved tally result. A
tally with a VOV that matches this criteria is NOT guaranteed to produce
a high quality confidence interval because undersampling of high scores will
also underestimate the higher score moments.

To optionally calculate the VOV of every tally bin, put a nonzero 15th
entry on the DBCN card. This option creates two additional history score
moment tables each of length MXF in the TAL array to sum z? and z?
(see Fig. 2.12). This option is not the default because the amount of tally
storage will increase by 2/5, which could be prohibitive for a problem with
many tally bins. The magnitude of the VOV in each tally bin is reported
in the “Status of Statistical Checks” table. History—dependent checks of the
VOV of all tally bins can be done by printing the tallies to the output file at
some frequency using the PRDMP card.

H. Empirical History Score Probability Density Function f(z)
1. Introduction

This section discusses another statistic that is useful in assessing the
quality of confidence intervals from Monte Carlo calculations. Consider a
generic Monte Carlo problem with difficult to sample, but extremely im-
portant, large history scores. This type of problem produces three possible
scenarios.

The first, and obviously desired, case is a correctly converged result that
produces a statistically correct confidence interval. The second case is the
sampling of an infrequeat, but very large, history score that causes the mean
and R to increase and the FOM to decrease significantly. This case is easily
detectable by observing the behavior of the FOM and the R in the TFCs.

The third and most troublesome case yields an answer that appears sta-
tistically converged based on the accepted guidelines described previously,
but in fact may be substantially smaller than the correct result because the
large history tallies were not well sampled. This situation of too few large
history tallies is difficult to detect. The following sections discuss the use of
the empirical history score probability density function (PDF) f(z) to gain
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insight into the TFC bin result. A pathological example to illustrate the
third case follows.

2. The History Score Probability Density Function f(z)

A history score posted to a tally bin can be thought of as having been
sampled from an underlying and generally unknown history score PDF f(z),
where the random variable z is the score from one complete particle history
to a tally bin. The history score can be either positive or negative. The
quantity f(z)dz is the probability of selecting a history score between z and
z + dz for the tally bin. Each tally bin will have its own f(z).

The most general form for expressing f(z) mathematically is

f(2) = fo(a) + D _ pib(z — z4),
1=1

where fc(z) is the continuous nonzero part and } ., pié(z — z;) represents
the n different discrete components occurring at z; with probability p;. An
f(z) could be composed of either or both parts of the distribution. A history
score of zero is included in f(z) as the discrete component §(z — 0).

By the definition of a PDF,

/_ : f(z)dz = 1.

As discussed on page 2—87, f(z) is used to estimate the mean, variance, and
higher moment quantities such as the VOV.

3. The C | Limit T} | £(z)

As discussed on page 2—90, the Central Limit Theorem (CLT) states
that the estimated mean will appear to be sampled from a normal distribu-
tion with a KNOWN standard deviation o/v/N when N approaches infinity.
In practice, ¢ is NOT known and must be approximated by the estimated
standard deviation S. The major difficulty in applying the CLT correctly to
a Monte Carlo result to form a confidence interval is knowing when N has
approached infinity.

The CLT requires the first two moments of f(z) to exist. Nearly all
MCNP tally estimators (except point detectors with zero neighborhoods in
a scattering material and some exponential transform problems) satisfy this
requirement. Therefore, the history score PDF f(z) also exists. One can also
examine the behavior of f(z) for large history scores to assess if f(z) appears
to have been “completely” sampled. If “complete” sampling has occurred,
the largest values of the sampled z’s should have reached the upper bound
(if such a bound exists) or should decrease faster than 1/z% so that E(z?) =
f'_”oo z?f(z)dr exists (o is assumed to be finite in the CLT). Otherwise, N
is assumed not to have approached infinity in the sense of the CLT. This
is the basis for the use of the empirical f(z) to assess Monte Carlo tally
convergence.
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The argument should be made that since S must be a good estimate of o,
the expected value of the fourth history score moment E(z*) = ffooo 2t f(r)dz
should exist. It will be assumed that only the second moment needs to exist
so that the f(z) convergence criterion will be relaxed somewhat. Neverthe-

less, this point should be kept in mind.

4. Analytic Study of f(z) for Two-State Monte Carlo Problems

Booth®”:68 examined the distribution of history scores analytically for
both an analog two-state splitting problem and two exponential transform
problems. This work provided the theoretical foundation for statistical studies®?
on relevant analytic functions to increase understanding of confidence inter-
val coverage rates for Monte Carlo calculations.

It was found that the two—state splitting problem f(z) decreases geo-
metrically as the score increases by a constant increment. This is equivalent
to a negative exponential behavior for a continuous f(z). The f(z) for the
exponential transform problem decreases geometrically with geometrically
increasing z. Therefore, the splitting problem produces a linearly decreasing
f(z) for the history score on a lin-log plot of the score probability versus
score. The exponential transform problem generates a linearly decreasing
score behavior (with high score negative exponential roll off) on a log-log
plot of the score probability versus score plot. In general, the exponential
transform problem is the more difficult to sample because of the larger impact
of the low probability high scores.

The analytic shapes were compared with a comparable problem calcu-
lated with a modified version of MCNP. These shapes of the analytic and
empirical f(z)s were in excellent agreement.5

5. Proposed Uses for the Empirical f(z) in Each TFC Bin

Few papers discuss the underlying or empirical f(z) for Monte Carlo
transport problems.”® MCNP provides a visual inspection and analysis of the
empirical f(z) for the TFC bin of each tally. This analysis helps to determine
if there are any unsampled regions (holes) or spikes in the empirical history
score PDF f(z) at the largest history scores.

The most important use for the empirical f(z) is to help determine if
N has approached infinity in the sense of the CLT so that valid confidence
intervals can be formed. It is assumed that the underlying f(z) satisfies the
CLT requirements; therefore, so should the empirical f(z). Unless there is
a largest possible history score, the empirical f(z) must eventually decrease
more steeply than z~3 for the second moment ( ffoco z2f(z)dz) to exist. It is

postulated’! that if such decreasing behavior in the empirical f(z) with no
upper bound has not been observed, then N is not large enough to satisfy
the CLT because f(z) has not been completely sampled. Therefore, a larger
N is required before a confidence interval can be formed. It is important to
note that this convergence criterion is NOT affected by any correlations that
may exist between the estimated mean and the estimated R. In principle,
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this lack of correlation should make the f(z) diagnostic robust in assessing
“complete” sampling.

Both the analytic and empirical history score distributions suggest that
large score fill-in and one or more extrapolation schemes for the high score
tail of the f(z) could provide an estimate of scores not yet sampled to help
assess the impact of the unsampled tail on the mean. The magnitude of the
unsampled tail will surely affect the quality of the tally confidence interval.

5. Creati { £(z) for TFC Bi

The creation of the empirical f(z) in MCNP automatically covers nearly
all TFC bin tallies that a user might reasonably be expected to make, includ-
ing the effect of large and small tally multipliers. A logarithmically spaced
grid is used for accumulating the empirical f(z) because the tail behavior
is assumed to be of the form 1/z",n > 3 (unless an upper bound for the
history scores exists). This grid produ ~s an equal width histogram straight
line for f(z) on a log-log plot that decreases n decades in f(z) per decade
increase in z.

Ten bins per z decade are used and cover the unnormalized tally range
from 10730 to 10%0. The term “unnormalized” indicates that normalizations
that are not performed until the end of the problem, such as cell volume
or surface area, are not included in f(z). The user can multiply this range
at the start of the problem by the 16th entry on the DBCN card when the
range is not sufficient. Both history score number and history score for the
TFC bin are tallied in the z grid.

With this z grid in place, the average empirical f(Z7) between z; and
z;+1 is defined to be

f(T%) = (number of history scores in i** score bin)/(N(z**! - &')),

where z'*! = 1.2589z'. The quantity 1.2589 is 10°! and comes from 10
equally spaced log bins per decade. The calculated f(Z;)s are available on
printed plots or by using the “z” plot option (MCPLOT) with the TFC
command mnemonics. Any history scores that are outside the r grid are
counted as either above or below to provide this information to the user.

Negative history scores can occur for some electron charge deposition
tallies. The MCNP default is that any negative history score will be lumped
into one bin below the lowest history score in the built-in grid (the default
is 1 x 10730). If DBCN(16) is negative, f(—z) will be created from the
negative scores and the absolute DBCN(16) value will be used as the score
grid multiplier. Positive history scores then will be lumped into the lowest
bin because of the sign change.

Figures 2.14 and 2.15 show two simple examples of empirical f(z)s from
MCNP for 10 million histories each. Figure 2.14 is from an energy leakage
tally directly from a source that is uniform in energy from 0 to 10 MeV. The
analytic f(z) is a constant 0.1 between 0 and 10 MeV. The empirical f(z)
shows the sampling, which is 0.1 with statistical noise at the lower r bins
where fewer samples are made in the smaller bins.
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Figure 2.15 shows the sampled distance to first collision in a material that
has a macroscopic cross section of about 0.1 cm~!. This analytic function
is a negative exponential given by f(z) = Texp~%* (see page 2—26) with a
mean of 10. The empirical f(z) transitions from a constant 0.1 at values of
T less than unity to the expected negative exponential behavior.
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7. Pareto Fit to the Largest History Scores for the TFC Bin

The slope n in 1/z™ of the largest history tallies £ must be estimated to
determine if and when the largest history scores decrease faster than 1/z3.
The 201 largest history scores for each TFC bin are continuously updated
and saved during the calculation. A generalized Pareto function’

Pareto f(z)=a"'(1+ kz/a)-(l/k)—l

is used to fit the largest z’s. This function fits a number of extreme value dis-
tributions including 1/z", exponential (k = 0), and constant (k = —1). The
large history score tail fitting technique uses the robust “simplex” algorithm,’?
which finds the values of a and k that best fit the largest history scores by
maximum likelihood estimation.

The number of history score tail points used for the Pareto fit is a maxi-
mum of 201 points because this provides about 10% precision’? in the slope
estimator at n = 3. The precision increases for smaller values of n and vice
versa. The number of points actually used in the fit is the lesser of 5% of the
nonzero history scores or 201. The minimum number of points used for a
Pareto fit is 25 with at least two different values, which requires 500 nonzero
history scores with the 5% criterion. If less than 500 history scores are made
in the TFC bin, no Pareto fit is made.

From the Pareto fit, the slope of f(zi4rg.) is defined to be

SLOPE = (1/k) + 1.

A SLOPE value of zero is defined to indicate that not enough f(zigrg.) tail
information exists for a SLOPE estimate. The SLOPE is not allowed to
exceed a value of 10 (a “perfect score”), which would indicate an essentially
negative exponential decrease. If the 100 largest history scores all have values
with a spread of less than 1%, an upper limit is assumed to have been reached
and the SLOPE is set to 10. The SLOPE should be greater than 3 to satisfy
the second moment existence requirement of the CLT. Then, f(z) will appear
to be “completely” sampled and hence N will appear to have approached
infinity.

A printed plot of f(z) is automatically generated in the QUTP file if the
SLOPE is less than 3 (or if any of the other statistical checks described in
the next section do not pass). If 0 < SLOPE < 10, several “S’s” appear on
the printed plot to indicate the Pareto fit, allowing the quality of the fit to
the largest history scores to be assessed visually. If the largest scores are not
Pareto in shape, the SLOPE value may not reflect the best estimate of the
largest history score decrease. A new SLOPE can be estimated graphically.
A blank or 162 on the PRINT card also will cause printed plots of the first
two cumulative moments of the empirical f(z) to be made. Graphical plots
of various f(z) quantities can be made using the “z” plot option (MCPLOT)
with the TFC plot command. These plots should be examined for unusual
behavior in the empirical f(z), including holes or spikes in the tail. MCNP
tries to assess both conditions and prints a message if either condition is
found.
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I. Forming Statistically Valid Confidence Intervals

The ultimate goal of a Monte Carlo calculation is to produce a valid
confidence interval for each tally bin. Section VI has described different
statistical quantities and the recommended criteria to form a valid confidence
interval. Detailed descriptions of the information available in the output for
all tally bins and the TFC bins are now discussed.

1. Information Available for Forming Statistically Valid Confidence
Intervals for All Tally Bins

The R is calculated for every user-specified tally bin in the problem.
The VOV and the shifted confidence interval center, discussed below, can be
obtained for all bins with a nonzero entry for the 15th entry on the DBCN
card at problem initiation.

a. R Magnitude Comparisons With MCNP Guidelines: The quality
of MCNP Monte Carlo tallies historically has been associated with two sta-
tistical checks that have been the responsibility of the user: 1) for all tally
bins, the estimated relative error magnitude rules—of-thumb that are shown
in Fig. 2.3 (i.e., R< 0.1 for nonpoint detector tallies and R< 0.05 for point
detector tallies); and 2) a statistically constant FOM in the user-selectable
(TFn card) TFC bin so that the estimated R is decreasing by 1/v/N as
required by the CLT.

In an attempt to make the user more aware of the seriousness of checking
these criteria, MCNP provides checks of the R magnitude for all tally bins.
A summary of the checks is printed in the “Status of Statistical Checks”
table. Messages are provided to the user giving the results of these checks.

b. Asymmetric Confidence Intervals: A correlation exists between

the estimated mean and the estimated uncertainty in the mean.5¢ If the
estimated mean is below the expected value, the estimated uncertainty in
the mean Sz will most likely be below its expected value. This correlation
is also true for higher moment quantities such as the VOV. The worst sit-
uation for forming valid confidence intervals is when the estimated mean is
much smaller than the expected value, resulting in smaller than predicted
coverage rates. To correct for this correlation and improve coverage rates,
one can estimate a statistic shift in the midpoint of the confidence interval
to a higher value. The estimated mean is unchanged.

The shifted confidence interval midpoint is the estimated mean plus a
term proportional to the third central moment. The term arises from an
Edgeworth expansion®® to attempt to correct the confidence interval for non-

normality effects in the estimate of the mean. The adjustment term is given
by

SHIFT = E(x,. -7)%)/(28%N).

Substituting for the estimated mean and expanding produces

SHIFT = (32 =33 a8 3 an + 2D =) w22(v 322 = (3 20%).
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The SHIFT should decrease as 1/N. This term is added to the es-
timated mean to produce the midpoint of the now asymmetric confidence
interval about the mean. This value of the confidence interval midpoint can
be used to form the confidence interval about the estimated mean to improve
coverage rates of the true, but unknown, mean E(z). The estimated mean
plus the SHIFT is printed automatically for the TFC bin for all tallies. A
nonzero entry for the 15th DBCN card entry produces the shifted value for
all tally bins.

This correction approaches zero as N approaches infinity, which is the
condition required for the CLT to be valid. Kalos™ uses a slightly modified
form of this correction to determine if the requirements of the CLT are
“substantially satisfied”. His relation is

1Y (zi-7)* |« S*VN,

which is equivalent to
SHIFT < Sz/2.

The user is responsible for applying this check.

c. Forming Valid Confidence Intervals for Non-TFC Bins: The amount
of statistical information available for non-TFC bins is limited to the mean
and R. The VOV and the center of the asymmetric confidence can be ob-
tained for all tally bins with a nonzero 15th entry on the DBCN card in the
initial problem. The magnitude criteria for R (and the VOV, if available)
should be met before forming a confidence interval. If the shifted confidence
interval center is available, it should be used to form asymmetric confidence
intervals about the estimated mean.

History dependent information about R (and the VOV, if available) for
non-TFC bins can be obtained by printing out the tallies periodically during
a calculation using the PRDMP card. The N-dependent behavior of R
can then be assessed. The complete statistical information available can be
obtained by creating a new tally and selecting the desired tally bin with the
TFn card.

2. Information Available for Forming Statistically Valid Confidence
Int ) 1

Additional information about the statistical behavior of each TFC bin
result is available. A TFC bin table is produced by MCNP after each tally to
provide the user with detailed information about the apparent quality of the
TFC bin result. The contents of the table are discussed in the following sub-
sections, along with recommendations for forming valid confidence intervals
using this information.

a. TFC Bin Tally Information: The first part of the TFC bin table
contains information about the TF'C bin result including the mean, R, scoring
efficiency, the zero and nonzero history score components of R (see page
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2-95), and the shifted confidence interval center. The two components of
R can be used to improve the problem efficiency by either improving the
history scoring efficiency or reducing the range of nonzero history scores.

b. The Largest TFC Bin History Score Occurs on the Next History:
There are occasions when the user needs to make a conservative estimate of
a tally result. Conservative is defined so that the results will not be less
than the expected result. One reasonable way to make such an estimate is
to assume that the largest observed history score would occur again on the
very next history, N + 1.

MCNP calculates new estimated values for the mean, R, VOV, FOM, and
shifted confidence interval center for the TFC bin result for this assumption.
The results of this proposed occurrence are summarized in the TFC bin infor-
mation table. The usér can assess the impact of this hypothetical happening
and act accordingly.

c. Description of the 10 Statistical Checks for the TFC Bin: MCNP
prints the results of ten statistical checks of the tally in the TFC bin at each
print. In a “Status of Statistical Checks” table, the results of these ten
checks are summarized at the end of the output for all TFC bin tallies. The
quantities involved in these checks are the estimated mean, R, VOV, FOM,
and the large history score behavior of f(z). Passing all of the checks should
provide additional assurance that any confidence intervals formed for a TFC
bin result will cover the expected result the correct fraction of the time. At
a minimum, the results of these checks will provide the user with more in-
formation about the statistical behavior of the result in the TFC bin of each
tally.

The following 10 statistical checks are made on the TFCs printed at the
end of the output for desirable statistical properties of Monte Carlo solutions:
MEAN

(1) a nonmonotonic behavior (no up or down trend) in the estimated

mean as a function of the number histories V for the last half of the

problem;
R _
(2) an acceptable magnitude of the estimated R of the estimated mean
(< 0.05 for a point detector tally or < 0.10 for a non-point detector
tally);
(3) a “monotonically” decreasing R as a function of the number histories
N for the last half of the problem;
(4) a 1/V/N decrease in the R as a function of NV for the last half of the
problem;
Yov

(5) the magnitude of the estimated VOV should be less than 0.10 for all
types of tallies;

(6) a “monotonically” decreasing VOV as a function of N for the last
half of the problem;

(7) a 1/N decrease in the VOV as a function of N for the last half of the
problem;
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FOM

(8) a statistically constant value of the FOM as a function of N for the

last half of the problem;

(9) a non-monotonic behavior in the FOM as a function of NV for the last

half of the problem; and
£(z)

(10) the SLOPE (see page 2—104) of the 25 to 201 largest positive (neg-
ative with a negative DBCN(16) entry) history scores z should be
greater than 3.0 so that the second moment ff; 22 f(z)dz will exist
if the SLOPE is extrapolated to infinity.

The seven N-dependent checks for the TFC bin are for the last half
of the problem. The last half of the problem should be well behaved in the
sense of the CLT to form the most valid confidence intervals. “Monotonically
decreasing” in checks 3 and 5 allows for some increases in both R and the
VOV. Such increases in adjacent TFC entries are acceptable and usually do
not, by themselves, cause poor confidence intervals. A TFC bin R that does
not pass check 3, by definition in MCNP, does not pass check 4. Similarly, a
TFC bin VOV that does not pass check 6, by definition, does not pass check
7.

A table is printed after each tally for the TFC bin result that summarizes
the results and the pass or no pass status of the checks. Both asymmetric and
symmetric confidence intervals are printed for the one, two, and three o levels
when all of the statistical checks are passed. These intervals can be expected
to be correct with improved probability over historical rules of thumb. This is
NOT A GUARANTEE, however; there is always a possibility that some as-
yet—unsampled portion of the problem would change the confidence interval
if more histories were calculated. A WARNING is printed if one or more
of these ten statistical checks is not passed, and one page of printed plot
information about f(z) is produced for the user to examine.

An additional information-only check is made on the largest five f(z)
score grid bins to determine if there are bins that have no samples or if there
is a spike in an f(z) that does not appear to have an upper limit. The result
of the check is included in the TFC summary table for the user to consider.
This check is not a pass or no pass test because a hole in the tail may be
appropriate for a discrete f(z) or an exceptional sample occurred with so
little impact that none of the ten checks was affected. The empirical f(z)
should be examined to assess the likelihood of “complete” sampling.

d. Forming “/alid TFC Bin Confidence Intervals: For TFC bin re-
sults, the highest probability of creating a valid confidence interval occurs
when all of the statistical checks are passed. Not passing several of the checks
is an indication that the confidence interval is less likely to be correct. A
monotonic trend in the mean for the last half of the problem is a strong
indicator that the confidence interval is likely to produce incorrect coverage
rates. The magnitudes of R and the VOV should be less than the recom-
mended values to increase the likelihood of a valid confidence interval. Small
jumps in the R, VOV, and/or the FOM as a function of N are not threat-

November 16, 1993 2-108



CHAPTER 2

Errors

ening to the quality of a result. The slope of f(r) is an especially strong
indicator that N has not approached infinity in the sense of the CLT. If the
slope appears too shallow (< 3), check the printed plot of f(z) to see that
the estimated Pareto fit is adequate. The use of the shifted confidence inter-
val is recommended, although it will be a small effect for a well-converged
problem.

The last half of the problem is determined from the TFC. The more
information available about the last half of the problem, the better the N-
dependent checks will be. Therefore, a problem that has run 40,000 histories
will have 20 TFC N entries, which is more N entries than a 50,000 history
problem with 13 entries. It is possible that a problem that passes all tests at
40,000 may not pass all the tests at 40,001. As is always the case, the user is
responsible for deciding when a confidence interval is valid. These statistical
diagnostics are designed to aid in making this decision.

J. A Statistically Pathological Output Ezample

A statistically pathological test problem is discussed in this section. The
problem calculates the surface neutron leakage flux above 12 MeV from an
isotropic 14 MeV neutron point source of unit strength at the center of a
30 cm thick concrete shell with an outer radius of 390 cm. Point and ring
detectors were deliberately used to estimate the surface neutron leakage flux
with highly inefficient, long-tailed f(z)s. The input is shown on page 5—-50
if you want to run this problem yourself.

The variance reduction methods used were implicit capture with weight
cutoff, low-score point detector Russian roulette, and a 0.5 mean free path (4
cm) neighborhood around the detectors to produce large, but finite, higher
moments. Other tallies or variance reduction methods could be used to
make this calculation much more efficient, but that is not the object of this
example. A surface flux estimator would have been over a factor of 150 to
30,000 times more efficient than ring and point detectors, respectively.

Figure 2.16 shows MCNP plots of the estimated mean, R, VOV and slope
of the history score PDF as a function of N values of 20,000 (left column)
and 5 million (right column). The ring detector results are shown as the
solid line and the point detector result is the dashed line.

Column 1 shows the results as a function of N for 20,000 histories. The
point detector result at 14,000 histories (not shown) was 1.41x10~% n/cm?/s
(R=0.041). The FOM varied somewhat randomly between about 800 and
1160 for the last kalf of the problem. With no other information, this result
could be accepted by even a careful Monte Carlo practitioner. However, the
VOV never gets close to the required 0.1 value and the slope of the unbounded
f(z) is less than 1.4. This slope could not continue indefinitely because even
the mean of f(z) would not exist. Therefore, a confidence interval should
not be formed for this tally. At 20,000 histories, R increases substantially
and the FOM crashes, indicating serious problems with the result.

The ring detector result is having problems of its own. The ring detec-
tor result for 14,000 histories was 4.60x10~% n/cm?/s (R=0.17, VOV =0.35,
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slope=2.1, FOM=67). None of the plotted quantities satisfies the required
convergence criteria.

The correct detector result, obtained from a 5 million history ring detec-
tor tally, is 5.72x1078 n/cm?/s (R=0.0169, VOV =0.023, slope=4.6, FOM=19).
The apparently converged 14,000 history point detector result is a factor of
four below the correct result!

If you were to run 200,000 histories, you would see the point detec-
tor result increasing to 3.68x10~% n/cm?/s (R=0.20, VOV =0.30, slope=1.6,
FOM=1.8). The magnitudes of R and the VOV are much too large for the
point detector result to be accepted. The slope of f(z) is slowly increas-
ing, but has only reached a value of 1.6. This slope is still far too shallow
compared to the required value of 3.0.

The ring detector result of 5.06x10~% n/cm?/s (R=0.0579, VOV=0.122,
slope=2.8, FOM=22) at 192,000 histories is interesting. All of these values
are close to being acceptable, but just miss the requirements. The ring
detector result is more than two estimated standard deviations below the
correct result.

Column 2 shows the results as a function of N for 5 million histories.
The ring detector result of 5.72x10~% n/cm?/s (R=0.0169, VOV =0.023,
slope=4.6, FOM=19) now appears very well behaved in all categories. This
tally passed all 10 statistical checks. There appears to be no reason to ques-
tion the validity of this tally. The point detector result is 4.72x10~® n/cm?/s
(R=0.11, VOV=0.28, slope=2.1, FOM=0.45). The result is clearly improv-
ing, but does not meet the acceptable criteria for convergence. This tally
did not pass 3 out 10 statistical checks.

When you compare the empirical point detector f(z)s for 14,000 and
200 million histories you see that the 14,000 history f(z) clearly has unsam-
pled regions in the tail, indicating incomplete f(z) sampling.”! For the point
detector, seven decades of z have been sampled by 200 million histories com-
pared to only three decades for 14,000 histories. The largest z's occur from
the extremely difficult to sample histories that have multiple small energy
loss collisions close to the detector. The 200 million history point detector re-
sult is 5.41x10~% n/cm?/s (R=0.035, VOV =0.60, slope=2.4, FOM=0.060).
The point detector f(z) slope is increasing, but still is not yet completely
sampled. This tally did not pass 6 of 10 checks with 200 million histories.
The result is about 1.5 estimated standard deviations below the correct an-
swer. [t is important to note that calculating a large number of histories
DOES NOT guarantee a precise result. The more compact empirical ring
f(z) for 20 million histories appears to be completely sampled because of
the large slope.

For difficult to sample problems such as this example, it is possible that
an even larger history score could occur that would cause the VOV and pos-
sibly the slope to have unacceptable values. The mean and RE will be much
less affected than the VOV. The additional running time required to reach
acceptable values for the VOV and the slope could be prohibitive. The large
history score should NEVER be discarded from the tally result. It is impor-
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tant that the cause for the large history score be completely understood. If
the score was created by a poorly sampled region of phase space, the prob-
lem should be modified to provide improved phase space sampling. It is
also possible that the large score was created by an extremely unlikely set of
circumstances that occurred “early” in the calculation. In this situation, if
the RE is within the guidelines, the empirical f(z) appears to be otherwise
completely sampled, and the largest history score appears to be a once in
a lifetime occurrence, a good confidence interval can still be formed. If a
conservative (large) answer is required, the printed result that assumes the
largest history score occurs on the very next history can be used.

Comparing several empirical f(z)s for the above problem with 200 million
histories that have been normalized so that the mean of each f(z) is unity,
you see that the point.detector at 390 cm clearly is quite Cauchy-like (see
Eq. (2.25) for many decades.”” The point detector at 4000 cm is a much
easier tally (by a factor of 10,000) as exhibited by the much more compact
empirical f(z). The large-score tail decreases in a manner similar to the
negative exponential f(z). The surface flux estimator is the most compact
f(z) of all. The blip on the high-score tail is caused by the average cosine
approximation of 0.05 between cosines of 0 and 0.1 (see page 2—70 ). This
tally is 30,000 times more efficient than the point detector tally.

VII. VARIANCE REDUCTION
A. General Considerations

1. Variance Reduction and Accuracy

Variance-reducing techniques in Monte Carlo calculations reduce the
computer time required to obtain results of sufficient precision. Note that
precision is only one requirement for a good Monte Carlo calculation. Even a
zero variance calculation cannot accurately predict natural behavior if other
sources of error are not minimized. Factors affecting accuracy were discussed
in Section VI beginning on page 2—86.

2. Two Choices That Affect Efficiency

The efficiency of a Monte Carlo calculation is affected by two choices,
tally type and random walk sampling. The tally choice (for example, point
detector flux tally vs surface crossing flux tally) amounts to trying to obtain
the best results from the random walks sampled. The chosen random walk
sampling amounts to preferentially sampling “important” random walks at
the expense of “unimportant” random walks. (A random walk is important
if it has a large affect on a tally.) These two choices usually affect the time
per history and the history variance as described in Sec. 3 below.

MCNP estimates tallies of the form

<T>= / dF / dv / dtN(F,7,t)T(F, 7, 1)
2-112
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Correlated sampling should not be confused with more elaborate Monte
Carlo perturbation schemes that calculate differences and their variances
directly. MCNP has no such scheme at present.

VIII. CRITICALITY CALCULATIONS

. . .
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trons, is characterized by k. sy, the eigenvalue to the neutron transport equa-
tion. In reactor theory, k.ss is thought of as the ratio between the number of
neutrons in successive generations, with the fission process regarded as the
birth event that separates generations of neutrons.’® For critical systems,
kesr = 1 and the chain reaction will just sustain itself. For subcritical sys-
tems, k.fs < 1 and the chain reaction will not sustain itself. For supercritical
systems, k.fy > 1 and the number of fissions in the chain reaction will in-
crease with time. In addition to the geometry description and material cards,
all that is required to run a criticality problem is a KCODE card, described
below, and an initial spatial distribution of fission points using either the
KSRC card, the SDEF card, or an SRCTP file.

Calculating k.sy consists of estimating the mean number of fission neu-

trons produced in one generation per fission r-'itron started. A generation is

he life of a neutron from birth in fission to death by escape, parasitic capture,
or absorption leading to fission. In MCNP, the computational equivalent of
a fission generation is a k.ss cycle; i.e., a cycle is a computed estimate of an
actual fission generation. Processes such as (n,2n) and (n, 3n) are considered
internal to a cycle and do not act as termination. Because fission neutrons
are terminated in each cycle to provide the fission source for the next cycle,
a single history can be viewed as continuing from cycle to cycle. The effect
of the delayed neutrons is included by using the total #. The spectrum of
delayed neutrons is assumed to be the same as neutrons from prompt fission.
MCNP uses three different estimators for k.fs. We recommend using, for
the final k.ss result, the statistical combination of all three.?!

It is extremely important to emphasize that the result from a criticality
calculation is a confidence interval for k.f; that is formed using the final
estimated k.fs and the estimated standard deviation. A properly formed
confidence interval from a valid calculation should include the true answer
the fraction of time used to define the confidence interval. There will always
be some probability that the true answer lies outside of a confidence interval.

Reference 92 is an introduction to using MCNP for criticality calcula-
tions, focusing on the unique aspects of setting up and running a criticality
problem and interpreting the results. A quickstart chapter gets the new
MCNP user on the computer running a simple criticality problem as quickly
as possible.

A. Criticality Program Flow

Because the calculation of k. sy entails running successive fission cycles,
criticality calculations have a different program flow than MCNP fixed source
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problems. They require a special criticality source that is incompatible with
the surface source and user-supplied sources. Unlike fixed source problems,
where the source being sampled throughout the problem never changes, the
criticality source changes from cycle to cycle.

]Q.-]o E]] DE..

To set up a criticality calculation, the user initially supplies an INP file

that includes the KCODE card with the following information:

a) the nominal number of source histories, N, per ks cycle;

b) an initial guess of k. y;

c) the number of source cycles, I, to skip before k, ff accumulation;
d) the total number of cycles, I, in the problem.

Other KCODE entries are discussed in Chapter 3, page 3—57. The initial
spatial distribution of fission neutrons can be entered by using (1) the KSRC
card with sets of z,y, z point locations, (2) the SDEF card to define points
uniformly in volume, or (3) a file (SRCTP) from a previous MCNP criticality
calculation. If the SDEF card is used, the default WGT value should not
be changed. Any KSRC points in geometric cells that are void or have
zero importance are rejected. The remaining KSRC points are duplicated or
rejected enough times so the total number of points M in the source spatial
distribution is approximately the nominal source size N. The energy of each
source particle for the first k. s cycle is selected from a generic Watt thermal
fission distribution if it is not available from the SRCTP file.

2. Particle Transport for Each ks Cycle

In each k.ss cycle, M source particles are started isotropically. For the
first cycle, these M points come from one of three user selected source possi-
bilities. For subsequent cycles, these points are the ones written at collision
sites from neutron transport in the previous cycle. The weight of each source
particle is N/M, so all normalizations occur as if N rather than M particles
started in each cycle.

Source particles are transported through the MCNP geometry by the
standard random walk process, except that fission is treated as capture,
either analog or implicit as defined on the PHYS:N card. At each collision
point the following four steps are performed for the cycle:

1) the prompt neutron lifetimes by absorption and collision estimates are
accurnulated;

2) if fission is possible; the three k.(s estimates are accumulated; and

3) if fission is possible, n > 0 fission sites (including the sampled outgoing
energy of the fission neutron) at each collision are stored for use as source
points in the next cycle,

wheren = Wo(oy/a¢)(1/k.ss) + random number;

W = particle weight (before implicit capture weight reduction or
analog capture);
v = average number of neutrons produced by fission at the
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incident energy of this collision, with either prompt v or
total U (default) used,;

o5 microscopic material fission cross section;

o¢ = microscopic material total cross section; and

k.ss = estimated collision k.sy from previous cycle.
For first cycle, the second KCODE card entry.

M = 3" n = number of fission source points to be used in next cycle. The
number of fission sites n stored at each collision is rounded up or down to
an integer (including zero) with a probability proportional to its closeness to
that integer. If the initial guess of k.sy is too low or too high, the number of
fission sites written as source points for the next cycle will be, respectively,
too high or too low relative to the desired nominal number N. A bad initial
guess of k. ¢ causes only this consequence.

A very poor initial guess for the spatial distribution of fissions can cause
the first cycle estimate of k.ss to be extremely low. This situation can occur
when only a fraction of the fission source points enter a cell with a fissionable
material. As a result, one of two error messages can be printed: (1) no new
source points were generated, or (2) the new source has overrun the old
source. The second message occurs when the MCNP storage for the fission
source points is exceeded because the small k,.f; that results from a poor
initial source causes n to become very large.

The fission energy of the next-cycle neutron is sampled separately for
each source point and stored for the next cycle. It is sampled from the same
distributions as fissions would be sampled in the random walk based on the
incident neutron energy and fissionable isotope. The geometric coordinates
and cell of the fission site are also stored.

4) The collision nuclide and reaction are sampled (after steps 1, 2, and 3)
but the fission reaction is not allowed to occur because fission is treated as
capture. The fission neutrons that would have been created are accrued
in three different ways to estimate k.sy for this cycle.

3. k.ss Cycle Termination

At the end of each k.¢s cycle, a new set of M source particles has been
written from fissions in that cycle. The number M varies from cycle to cycle
but the total starting weight in each cycle is a constant N. These M particles
are written to the SRCTP file at certain cycle intervals. The SRCTP file can
be used as the initial source in a subsequent criticality calculation with a
similar, though not necessarily identical, geometry. Also, k.ss quantities are
accumulated, as is described below.

The first I, cycles in a criticality calculation are inactive cycles, where the
spatial source changes from the initial definition to the correct distribution
for the problem. No kg or tally information is accrued for inactive cycles.
I is an input parameter on the KCODE card for the number of k. s cycles to
be skipped before k. sy and tally accumulation. After the first I; cycles, the
fission source spatial distribution is assumed to have achieved equilibrium,
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active cycles begin, and k.ss and tallies are accumulated. Cycles are run
until either a time limit is reached or the total cycles on the KCODE card
in the problem have been completed.

B. Estimation of k.ss Confidence Intervals and Prompt Neutron Life-
times

The criticality eigenvalue k.fs and various prompt neutron lifetimes,
along with their standard deviations, are automatically estimated in every
criticality calculation in addition to any user-requested tallies. k.fs and the
lifetimes are estimated for every active cycle, as well as averaged over all
active cycles. k.ss is estimated in three different ways; the lifetimes are
estimated in two ways. These estimates are combined®! using observed sta-
tistical correlations to provide the optimum final estimate of k.s; and its
standard deviation.

It is known® that the power iteration method with a fixed source size
produces a very small negative bias Ak.ss in k.ss that is proportional to
1/N. This bias is negligible®? for all practical problems where N is greater
than about 200 neutrons per cycle and as long as too many active cycles are
not used. It has been shown®? that this bias is less, probably much less, than
one-half of one standard deviation for 400 active cycles when the ratio of the
true k.ss standard deviation to k.ss is 0.0025 at the problem end.

ollision Estimators

The collision estimate for k.sy for any active cycle is:
2 f VWF;.]
ks NZW[ 2k fror, ’
where ¢ is summed over all collisions in a cycle where fission is possible;
k is summed over all isotopes of the material involved in
the it# collision;
oT, = total microscopic cross section;
o F, = microscopic fission cross section;
Ur = average number of prompt or total neutrons produced per
fission by the collision isotope at the incident energy;
fi = atomic fraction for nuclide k;
N = nominal source size for cycle; and

Wi = weight cf particle entering collision.
Because W; represents the number of neutrons entering the i** collision,

W, [Zg fkl'/kdﬂ.]
2k fron,
is the expected number of neutrons to be produced from all fission processes
in the collision. Thus keC is the mean number of fission neutrons pro-
duced per cycle. The collision estimator tends to be best, sometimes only
marginally so, in very large systems.
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The collision estimate of the removal lifetime for any active cycle is

_ 1 S fi(oa, +oF, ]
[Z Wt [ >k fror, * Z WCTC} ’
where 7 4,is the microscopic absorption cross section excluding fission,
T; is the time from birth of the particle to the collision,
W, is the weight from particle birth to escape, summed over
histories that escape, and
T, is elapsed time from particle birth to escape, summed over
histories that escape.
The removal lifetime is simply the average time required for a fission source
neutron to be removed from the system by either absorption, fission, or

escape. The absorption, fission, or escape lifetimes are similar, except the
time for each designated process is used.

2. Absorption Estimators

The absorption estimators for k.ss are made when a neutron interacts
with a fissionable isotope. The estimators differ for analog capture and
implicit capture. For analog capture,

OF,
= Wiy ——=—
eff z u aAk+th

where 7 is summed over each analog capture event in the k** isotope. Note
that in analog capture, the weight is the same both before and after the
collision. Because analog capture includes fission in criticality calculations,
the frequency of analog capture at each collision with isotope k is (04, +
oF,)/oT,- The analog absorption k. estimate is very similar to the collision
estimator of k. except that only the k** absorbing nuclide, as sampled in
the collision, is used rather than averaging over all nuclides.
‘For implicit capture, the following is accumulated:

OF,
= W ——
Cff Z U aAk+th

where : is summed over all colhsxons in which fission is possible and W} =
Wi(oa, + oF.)/oT, is the weight absorbed in the implicit capture. The dif-
ference between tie implicit absorption estimator lcc 7 and the collision es-

timator kC is that only t“e nuclide involved in the collision is used for
the absorption kefs estimate rather than an average of all nuclides in the
material for the collision k.s¢ estimator.

The absorption estimator with analog capture is likely to produce the
smallest statistical uncertainty of the three for systems where the ratio
vkor,/(0a, + oF,) is nearly constant. Such would be the case for a ther-
mal system with a dominant fissile isotope such that the 1/velocity cross
section variation would tend to cancel.
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For analog capture, the absorption removal lifetime is accumulated as
Ry = (1/N) 3 ;WiT; at analog capture events and system leakage. For
implicit capture, the absorption removal lifetime is accumulated as R, =
(1/N) ¥, W/T; at all collisions and system leakage, using the appropriate
time.

3. Track Length Estimator of ks

The track length estimator of k. s is accumulated every time the neutron
traverses a distance d in a fissionable material cell:

where 1 is summed over all neutron trajectories,

pis the atomic density in the cell, and

dis the trajectory track length from the last event.
Because pd Y, fivxoF, is the expected number of fission neutrons produced
along trajectory d, sz[} is a third estimate of the mean number of fission
neutrons produced in a cycle per nominal fission source neutron.

The track length estimator tends to display the lowest variance for opti-
cally thin fuel cells (e.g., plates) and fast systems where large cross-section
variations because of resonances may cause high variances in the other two
estimators.

There is no track length estimator for neutron lifetimes.

4. Combined k.¢s Estimators

MCNP provides a number of combined k.¢s estimators that are combi-
nations of the three individual k.ss estimators using two at a time or all
three. The combined k.fss are computed by using a maximum likelihood
estimate, as outlined by Halperin® and discussed further by Urbatsch.?!
This technique, which is a generalization of the inverse variance weighting
for uncorrelated estimators, produces the maximum likelihood estimate for
the combined average k. s, which, for multivariate normality, is the almost-
minimum variance estimate. It is “almost” because the covariance matrix is
not known exactly and must be estimated. The three-combined k.sy esti-
mator is the best final estimate from an MCNP calculation.’!

This method of combining estimators can exhibit one feature that is dis-
concerting: sometiines (usually with highly positively correlated estimators)
the combined estimate will lie outside the interval defined by the two or three
individual average estimates. Statisticians at Los Alamos have shown®! that
this is the best estimate to use for a final k. sy value. Reference 81 shows the
results of one study of 500 samples from three highly positively correlated
normal distributions, all with a mean of zero. In 319 samples, all three es-
timators fell on the same side of the expected value. This type of behavior
occurs with high positive correlation because if one estimator is above or
below the expected value, the others have a good probability of being on the
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same side of the expected value. The advantage of the three—combined esti-
mator is that the Halperin algorithm correctly predicts that the true value
will lie outside of the range.

5. k.ss Error Estimation and Estimator Combination

After the first I, inactive cycles, during which the fission source spatial
distribution is allowed to come into spatial equilibrium, MCNP begins to
accumulate the estimates of k.fs and the prompt neutron lifetimes with
those estimates from previous active (after the inactive) cycles. The relative
- error R of each quantity is estimated in the usual way as

1 [z2 - 32
R=N7r—3

where M = the number of active cycles,

5=%;zm, and 7:7‘4&;;

where z,, = a quaatity, such as kec £ from cycle m. This assumes that
the cycle-to—cycle estimates of each k. s are uncorrelated. This assumption
generally is good for k.¢y, but not for the eigenfunction (fluxes) of optically
large systems.?

MCNP also combines the three estimators in all possible ways and deter-
mines the covariance and correlations. The simple average of two estimators
is defined as z'7 = (1/2)(z" +z’), where, for example, z* may be the collision
estimator kecf and z’/ may be the absorption estimator k;“ f

The “combined average” of two estimators is weighted {y the covariances

as

i @ = 2)Ci = Cy) _ (Cy5 = Ciy)at +(Cis = Cij)a?
(Cii + Cj; — 2Cy5) (Cii + Cj5 = 2Cy5) ’

Y =

where the covariance C;; is

o3 S (£ 5o) (3 5 4)
m m m

Note that C;; = z2 — 72 for estimator i.
The “correlation” between two estimators is a function of their covari-
ances and is given by

VICiiCjjl
The correlation will be between unity (perfect positive correlation) and
minus one (perfect anti or negative correlation). If the correlation is one, no

correlation =
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new information has been gained by the second estimator. If the correlation
is zero, the two estimators appear statistically independent and the combined
estimated standard deviation should be significantly less than either. If the
correlation is negative one, even more information is available because the
second estimator will tend to be low, relative to the expected value, when
the first estimator is high and vice versa. Even larger improvements in the
combined standard deviation should occur.

The combined average k.¢s and the estimated standard deviation of all
three k.ss estimators are based on the method of Halperin®® and is much
more complicated that the two combination case. The improvements to
the standard deviation of the three combined estimator will depend on the
magnitude and sign of the correlations as discussed above. The details and
analysis of this method are given in Ref. 81.

For many problems, all three estimators are positively correlated. The
correlation will depend on what variance reduction (e.g., implicit or analog
capture) is used. Occasionally, the absorption estimator may be only weakly
correlated with either the collision or track length estimator. It is possible
for the absorption estimator to be significantly anticorrelated with the other
two estimators for some fast reactor compositions and large thermal systems.
Except in the most heterogeneous systems, the collision and track length
estimators are likely to be strongly positively correlated.

There may be a negative bias®? in the estimated standard deviation of
kess for systems with dominance ratios (second largest to largest eigenvalue)
close to unity. These systems are typically large with small neutron leakage.
The magnitude of this effect can be estimated by batching the cycle k s
values in batch sizes much greater than one cycle,®? which MCNP provides
automatically. For problems where there is a reason to suspect the results,
a more accurate calculation of this effect can be done by making several
independent calculations of the same problem (using different random num-
ber sequences) and observing the variance of the population of independent
kesss. The larger the number of independent calculations that can be made,
the better the distribution of k.¢s values can be assessed.

6. Creating and Interpreting k.s; Confidence Intervals

The result of a Monte Carlo criticality calculation (or any other type of
Monte Carlo calculation) is a confidence interval. For criticality, this means
that the result is not just k.ss, but k.ss plus and minus some number of
estimated standard deviations to form a confidence interval (based on the
Central Limit Theorem) in which the true answer is expected to lie a certain
fraction of the time. The number of standard deviations used (e.g., from a
Student’s t Table) determines the fraction of the time that the confidence
interval will include the true answer, for a selected confidence level. For
example, a valid 99% confidence interval should include the true result 99%
of the time. There is always some probability (in this example, 1%) that
the true result will lie outside of the confidence interval. To reduce this
probability to an acceptable level, either the confidence interval must be
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increased according to the desired Student’s t percentile, or more histories
need to be run to get a smaller estimated standard deviation.

MCNP uses three different estimators for k.ss;. The advantages of each
estimator vary with the problem: no one estimator will be the best for all
problems. All estimators and their estimated standard deviations are valid
under the assumption that they are unbiased and consistent, therefore repre-
sentative of the true parameters of the population. This statement has been
validated empirically®! for all MCNP estimators for small dominance ratios.
The batched k.sy results table should be used to estimate if the calculated
batch-size-of-one k.ss standard deviation appears to be adequate.

The confidence interval based on the three statistically com-
bined k.s; estimator is the recommended result to use for all final
k.ss confidence interval quotations because all of the available infor-
mation has been used in the final result. This estimator often has a lower
estimated standard deviation than any of the three individual estimators and
therefore provides the smallest valid confidence interval as well. The final
estimated k.¢s value, estimated standard deviation, and the estimated 68%,
95%, and 99% confidence intervals (using the correct number of degrees of
freedom) are presented in the box on the k.ys results summary page of the
output. If other confidence intervals are wanted, they can be formed from
the estimated standard deviation of k.fs. At least 30 active cycles need to be
run for the final k. s results box to appear. Thirty cycles are required so that
there are enough degrees of freedom to form confidence intervals using the
well known estimated standard deviation multipliers. (When constructing a
confidence interval using any single k.ss estimator, its standard deviation,
and a Student’s t Table, there are I; — I, — 1 degrees of freedom. For the
two and three combined k.ss estimators, there are I; — I, —2 and I; — I, — 3
degrees of freedom, respectively.)

All of the k.5 estimators and combinations by two or three are provided
in MCNP so that the user can make an alternate choice of confidence interval
if desired. Based on statistical studies, using the individual k.fs estimator
with the smallest estimated standard deviation is not recommended. Its
use can lead to confidence intervals that do not include the true result the
correct fraction of the time.’! The studies have shown that the standard
deviation of the three combined k. estimator provides the correct coverage
rates, assuming that the estimated standard deviations in the individual
kss estimators are accurate. This accuracy can be verified by checking the
batched k.sy results table. When significant anti-correlations occur among
the estimators, the resultant much smaller estimated standard deviation of
the three combined average has been verified®! by analyzing a number of
independent criticality calculations.

7. Analysis to Assess the Validity of a Criticality Calculation

The two most important requirements for producing a valid criticality
calculation for a specified geometry are sampling all of the fissionable mate-
rial well and ensuring that the fundamental spatial mode was achieved before
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and maintained during the active k.sf cycles. MCNP has checks to assess
the fulfillment of both of these conditions.

MCNP verifies that at least one fission source point was generated in
each cell containing fissionable material. A WARNING message is printed
on the ks results summary page that includes a list of cells that did not
have any particles entering, and/or no collisions, and/or no fission source
points. For repeated structures geometries, a source point in any one cell
that is repeated will satisfy this test. For example, assume a problem with
a cylinder and a cube that are both filled with the same universe, namely
a sphere of uranium and the space outside the sphere. If a source point is
placed in the sphere inside the cylinder but not in the sphere inside the cube,
the test will be satisfied.

One basic assumption that is made for a good criticality calculation is
that the normal spatial mode for the fission source has been achieved after
I, cycles were skipped. MCNP attempts to assess this condition in several
ways. The estimated combined k.ss and its estimated standard deviation
for the first and second active cycle halves of the problem are compared.
A WARNING message is issued if either the difference of the two values
of combined col/abs/track-length k.ss does not appear to be zero or the
ratio of the larger to the smaller estimated standard deviations of the two
col/abs/track-length k.ss is larger than expected. Failure of either or both
checks implies that the two active halves of the problem do not appear to be
the same and the output from the calculation should be inspected carefully.

MCNP checks to determine which number of cycles skipped produces the
minimum estimated standard deviation for the combined k.s estimator. If
this number is larger than I, it may indicate that not enough inactive cycles
were skipped. The table of combined k,s-by-number—of-cycles skipped
should be examined to determine if enough inactive cycles were skipped.

It is assumed that N is large enough so that the collection of active cycle
k.ss estimates for each estimator will be normally distributed if the funda-
mental spatial mode has been achieved in I, cycles and maintained for the
rest of the calculation. To test this assumption, MCNP performs normality
checks33®¢ on each of the three k.;s estimator cycle data at the 95% and
99% confidence levels. A WARNING message is issued if an individual k.sf
data set does not appear to be normally distributed at the 99% confidence
level. This condition will happen to good data about 1% of the time. Unless
there is a high positive correlation among the three estimators, it is expected
to be rare that all three k. s estimators will not a; pear normally distributed
at the 99% confidence level when the normal spatial mode has been achieved
and maintained. When the condition that all three sets of k.ss estimators
do not appear to be normal at the 99% confidence level occurs, the box with
the final k.fs will not be printed. The final confidence interval results are
available elsewhere in the output. Examine the calculation carefully to see if
the normal mode was achieved before the active cycles began. The normality
checks are also made for the batched-k.ss and k. s¢-by- cycles-skipped tables
so that normality behavior can be studied by batch size and I..
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These normality checks test the assumption that the individual cycle
k.ss values behave in the assumed way. Even if the underlying individual
cycle kesy values are not normally distributed, the three average k, ;s values
and the combined k.gs estimator will be normally distributed if the condi-
tions required by the Central Limit Theorem are met for the average. If
required, this assumption can be tested by making several independent cal-
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to be normally distributed with the same population variance as estimated
by MCNP.

MCNP tests for a monotonic trend of the three combined k. sy estimator
over the last ten active cycles. This type of behavior is not expected in a
well converged solution for k.ss and could indicate a problem with achieving
or maintaining the normal spatial mode. A WARNING message is printed
if such a monotonic trend is observed.

8. Normalization of Standard Tallies in a Criticality Calculation

Track length fluxes, surface currents, surface fluxes, heating and detectors—
all the standard MCNP tallies—can be made during a criticality calculation.
The tallies are for one fission neutron generation. Biases may exist in these
criticality results, but appear to be smaller than statistical uncertainties.%?
These tallied quantities are accumulated only after the I. inactive cycles
are finished. The tally normalization is per active source weight w, where
w = N*(Iy - I.), and N is the nominal source size (from the KCODE card);
I is the total number of cycles in the problem; and I. is the number of inac-
tive cycles (from KCODE card). The number w is appropriately adjusted if
the last cycle is only partially completed. If the tally normalization flag (on
the KCODE card) is turned on, the tally normalization is the actual number
of starting particles during the active cycles rather than the nominal weight
above. Bear in mind, however, that the source particle weights are all set
to W = N/M so that the source normalization is based upon the nominal
source size N for each cycle.

An MCNP tally in a criticality calculation is for one fission neutron being
born in the system at the start of a cycle. The tally results must be scaled
either by the total number of neutrons in a burst or by the neutron birth
rate to produce, respectively, either the total result or the result per unit
time of the source. The scaling factor is entered on the Fm card.

The statistical errors that are calculated for the tallies assume that all
the neutron histories are independent. They are not independent because
of the cycle-to—cycle correlations that become worse as the dominance ratio
approaches one. In this limit, each k.ss cycle effectively provides no new
source information. For extremely large systems (dominance ratio > 0.995),
the estimated standard deviation for a tally that involves only a portion of
the problem could be underestimated by a factor of five or more (see Ref.
84, page 42-44). This value also is a function of the size of the tally region.
In the Ref. 84 slab reactor example, the entire problem (i.e., k.fs) standard
deviation was not underestimated at all. An MCNP study®” of the FFTF
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fast reactor with a smaller dominance ratio indicates that 90% coverage
rates for flux tallies are good, but that 2 out of 300 tallies were beyond
four estimated standard deviations. Independent runs can be made to study
the real eigenfunction distribution (i.e., tallies) and the estimated standard
deviations for difficult criticality calculations. This method is the only way
to determine accurately these confidence intervals for large dominance ratio
problems.

9. Neutron Tallies and the MCNP Net Multiplication Factor

The MCNP net multiplication factor M printed out on the problem sum-
mary page differs from the k.ss from the criticality code. We will examine a
simple model to illustrate the approximate relationship between these quan-
tities and compare the tallies between standard and criticality calculations.

Assume we run a standard MCNP calculation using a fixed neutron
source distribution identical in space and energy to the source distribution
obtained from the solution of an eigenvalue problem with k.sf < 1. Each
generation will have the same space and energy distribution as the source.
The contribution to an estimate of any quantity from one generation is re-
duced by a factor of k.ss from the contribution in the preceding generation.
The estimate Ej; of a tally quantity obtained in a criticality eigenvalue cal-
culation is the contribution for one generation produced by a unit source of
fission neutrons. An estimate for a standard MCNP fixed source calculation,
E,, is the sum of contributions for all generations starting from a unit source.

E,=Ep+kegEx + k2 Ex + ki iEv+ ... = Et /(1= kegf) . (2.26)

Note that 1/(1 — k.ss) is the true system multiplication. The above re-
sult depends on our assumptions about the unit fission source used in the
standard MCNP run. Usually, E, will vary considerably from the above
result, depending on the difference between the fixed source and the eigen-
mode source generated in the eigenvalue problem. E, will be a fairly good
estimate if the fixed source is a distributed source roughly approximating the
eigenmode source. Tallies from a criticality calculation are appropriate only
for a critical system and the tally results can be scaled to a desired fission
neutron source (power) level or total neutron pulse strength.

In a fixed source MCNP problem, the net multiplication M is defined
to be unity plus the gain Gy in neutrons from fission plus the gain G, from
nonfission multiplicative reactions. Using neutron weight balance (creation
equals loss),

M=1+Gs+G, =W .+ W, , (2.27)

where W, is the weight of neutrons escaped per source neutron and W, is the
weight of neutrons captured per source neutron. In a criticality calculation,
fission is treated as an absorptive process; the corresponding relationship for
the net multiplication is then
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M =1+G =W +W2+W} | (2.28)

where the superscript o designates results from the criticality calculation and
W7 is the weight of neutrons causing fission per source neutron. Because
kess is the number of fission neutrons produced in a generation per source
neutron, we can also write

keff = l_/W; R (2.29)

where 7 is the average number of neutrons emitted per fission for the entire
problem. Making the same assumptions as above for the fixed source used
in the standard MCNP calculation and using equations (2.26), (2.27), and
(2.28), we obtain

we+we M°-Wy

M= We+We= 1=kegs — 1—kegy

or, by using (2.28) and (2.29),

po Mt 1M
1= kess 1= kess

Often, the nonfission multiplicative reactions G2 « 1. This implies that

kess can be approximated by kf}‘s} (from an appropriate Fixed Source

calculation)

M-1
keps ki = I (2.30)
v

when the two fission neutron source distributions are nearly the
same. The average value of ¥ in a problem can be calculated by dividing
the fission neutrons gained by the fission neutrons lost as given in the totals
of the neutron weight balance for physical events. Note, however, that the
above estimate is subject to the same limitations as described in Eq. 2.26.

C. Recommendations for Making a Good Criticality Calculation

1. Problem Set-Up

As with any calculation, the geometry must be adequately and correctly
specified to represent the true physical situation. Geometry plots should be
made and cells, materials, and masses checked for correctness. The appro-
priate nuclear data, including S(a, 3) thermal data, at the correct material
temperatures should be specified. Do as good a job as possible to put initial
fission source points in every cell with fissionable material. Try running short
problems with both analog and implicit capture (see the PHYS:N card) to
improve the figure of merit for the combined k. ¢ and any tallies being made.
Follow the tips for good calculations listed at the end of Chapter 1.
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2. Number of Neutrons per Cycle and Number of Cycles

Criticality calculations can suffer from two potential problems. The first
is the failure to sufficiently converge the spatial distribution of the fission
source from its initial guess to a distribution fluctuating around the funda-
mental eigenmode solution. It is recommended that you make an initial run
with a relatively small number of source particles per generation (perhaps
500) and generously allow a large enough number of cycles so that the eigen-
value appears to be fluctuating about a constant value. You should examine
the results and continue the calculation if any trends in the eigenvalue are
noticeable. The SRCTP file from the last k.fs cycle of the initial run can
then be used as the source for the final production run to be made with a
larger number of histories per cycle.

This convergence procedure can be extended for very slowly convergent
problems, typically large, thermal, low-leakage systems, where a convergence
run might be made with 500 histories per cycle. Then a second convergence
run would be made with 1000 histories per cycle, using the SRCTP file from
the first run as an initial fission source guess. If the results from the second
run appear satisfactory, then a final run might be made using 4000 particles
per cycle with the SRCTP file from the second run as an initial fission source
guess. In the final run, only a few cycles should need to be skipped. The
bottom line is this: skip enough cycles so that the normal spatial mode is
achieved.

The second potential problem arises from the fact that the criticality
algorithm produces a very small negative bias in the estimated eigenvalue.
The bias depends upon 1/N, where N is the number of source particles per
generation. Thus it is desirable to make N as large as possible. Any value
of N > 200 should be sufficient to reduce the bias to a small level.

The eigenvalue bias Ak, s has been shown®? to be

L-1)
~akyy =) (o, ) (21

where o, ,, is the true standard deviation for the final k¢,
Oapproz 1S the approximate standard deviation computed assuming
the individual k.ss values are statistically independent, and
o2 >oai ..
kess approz
The sta.mia.rd deviations are computed at the end of the problem. Because
the o2s decrease as 1/(I; — I.), Ak, is independent of the number of active
cycles. Recall that Ak.ss is proportional to 1/N, the number of neutrons
per k.fs cycle.

Eqn. (2.31) can be written3? as the following inequality:

|Akeff| < (It - IC)Uke/j
Tkeyy 2kess

(2.32)

This inequality is useful for determining an upper limit to the number of
active cycles that should be used for a calculation without having Ak,
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dominate oy,,,. If o,,,/kess 1s 0.0025, which is a reasonable value for crit-
icality calculations, and I; — I; is 400, then |Ak.ff|/ok,,, < 0.5 and Ak.gy
will not dominate the k.ss confidence interval. If oy,,, is reasonably well
approximated by MCNP’s estimated standard deviation, this ratio will be
much less than 0.5.

The total running time for the active cycles is proportional to N(I; — I;),
and the standard deviation in the estimated eigenvalue is proportional to
1/4/N(I; — I.). From the results of the convergence run, the total number of
histories needed to achieve the desired standard deviation can be estimated.

It is recommended that 200 to 400 active cycles be used, assuming that
the above |Ak,s¢|/o%,,, is much less than unity in doing so. This large num-
ber of cycles will provide large batch sizes of ks cycles (e.g., 40 batches of
10 cycles each for 400 active cycles) to compare estimated standard devia-
tions with those obtained for a batch size of one k.5 cycle. For example, for
400 active cycles, 40 batches of 10 k.sss are created and analyzed for a new
average k.ss and a new estimated standard deviation. The behavior of the
average k.ss by a larger number of cycles can also be observed to ensure a
good normal spatial mode. Fewer than 30 active cycles is not recommended
because trends in the average k.ss may not have enough cycles to develop.

3. Analysis of Criticality Problem Results

The goal of the calculation is to produce a k.fs confidence interval that
includes the true result the desired fraction of the time. Check all WARNING
messages. Understand their significance to the calculation. Study the results
of the checks that MCNP makes that were described starting on page 2—149.

The criticality problem output contains a lot of useful information. Study
it to make sure that: 1) the problem terminated properly; 2) enough cycles
were skipped to ensure that the normal spatial mode for fission sources was
achieved; 3) all cells with fissionable material were sampled; 4) the average
combined k.fs appears to be varying randomly about the average value for
the active cycles; 5) the average combined k. ss-by-cycles—skipped does not
exhibit a trend during the latter stages of the calculation; 6) the confidence
intervals for the batched (with at least 30 batch values) combined k.f; do
not differ significantly from the final result; 7) the impact of having the
largest of each of the three k.s; estimators occurring on the next cycle is
not too great on the final confidence interval; and 8) the combined k.
figure of merit should be stable. The combined k.ss figure of merit should
be reasonably stzble, but not as stable as a tally figure of merit because
the number of histories for each cycle is not exactly the same and combined
kefs relative error may experience some changes because of changes in the
estimated covariance matrix for the three individual estimators.

Plots (using the z option) can be made of the three individual and average
kess estimators by cycle, as well as the three estimator combined k.ss. Use
these plots to better understand the results.

If there is concern about a calculation, the k. s-by-cycles-skipped table
presents the results that would be obtained in :he final result box for differing
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numbers of cycles skipped. This information can provide insight into fission
source spatial convergence, normality of the k.s; data sets, and changes in
the 95% and 99% confidence intervals. If concern persists, a problem could
be run that tallies the track length estimator k.ss using an F4:n tally and
an FM card using the -6 and -7 reaction multipliers (see Chapter 4 for an
example). In the most drastic cases, several independent calculations can be
made and the variance of the k.s; values (and any other tallies) could be
computed from the individual values.

If a conservative (too large) k. sy confidence interval is desired, the results
from the largest k.fs occurring on the next cycle table can be used. This
situation could occur with a maximum probability of 1/(I; — I.) for highly
positively correlated k.gss to 1/(I; — I.)} for no correlation.

Finally, keep in mind the discussion in starting on page 2—151. For large
systems with a dominance ratio close to one, the estimated standard devia-
tions for tallies could be much smaller than the true standard deviation. The
cycle-to—cycle correlations in the fission sources are not taken into account,
especially for any tallies that are not made over the entire problem. The
only way to obtain the correct statistical errors in this situation is to run a
series of independent problems using different random number sequences and
analyze the sampled tally results to estimate the statistical uncertainties.

IX. VOLUMES AND AREAS®®

The particle flux in Monte Carlo transport problems often is estimated
as the track length per unit volume or the number of particles crossing a
surface per unit area. Therefore, knowing the volumes and surface areas
of the geometric regions in a Monte Carlo problem is essential. Knowing
volumes is useful in calculating the masses and densities of cells and thus in
calculating volumetric or mass heating. Furthermore, calculation of the mass
of a geometry is frequently a good check on the accuracy of the geometry
setup when the mass is known by other means.

Calculating volumes and surface areas in modern Monte Carlo trans-
port codes is nontrivial. MCNP allows the construction of cells from unions
and/or intersections of regions defined by an arbitrary combination of second-
degree surfaces, toroidal fourth-degree surfaces, or both. These surfaces can
have different orientations or be segmented for tallying purposes. The cells
they form even can consist of several disjoint subcells. Cells can be con-
structed from quadralateral or hexagonal lattices or can be embedded in
repeated structures universes. Although such generality greatly increases
the flexibility of MCNP, computing cell volumes and surface areas under-
standably requires increasingly elaborate computational methods.

MCNP automatically calculates volumes and areas of polyhedral cells
and of cells or surfaces generated by surfaces of revolution about any axis,
even a skew axis. If a tally is segmented, the segment volumes or areas are
computed. For nonrotationally symmetric or nonpolyhedral cells, a stochas-
tic volume and surface area method that uses ray tracing is available. See
page 2—158.
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CHAPTER 3
DESCRIPTION OF MCNP INPUT

Input to MCNP consists of several files, but the main one supplied by the
user is the INP (the default name) file. which contains the input information
necessary to describe the problem Only a small subset of all available input

carde will ha nasadad ne narticnlar neahlam Tha s ¢ ~anda ara
vald uo "lll UL uctucu lll m;.y l.lm U‘\-u{ﬂl yl.uulcxu J.Lu: ‘.llyull Lcaludo al< Du‘.ll-

marized by card type on page 3—123. The word “card” is used throughout
this manual to describe a single line of input up to 80 characters.

Maximum dimensions exist for some MCNP input items; they are sum-
marized on page 3—126. The user can increase any of these maximum values
by altering the code and recompiling.

All features of MCNP should be used with caution and knowledge. This
is especially true of detectors and variance reduction schemes; you are en-
couraged to read the appropriate sections of Chapter 2 before using them.

The units used throughout MCNP are given in Chapter 1 on page 1—-19.

I. INP FILE

The INP file ~an have two forms, initiate-run and continue-run. Ei-
ther can contain an optional message block that replaces or supplements the
MCNP execution line information.

A. Message Block

A user may optionally put a set of cards called the message block before
the problem identification title card in the INP file. In computer environ-
ments where there are no execution line messages, the message block is the
only means for giving MCNP an execution message. Less crucially, it is a
convenient way to avoid retyping an often-repeated message. The message
block starts with the string MESSAGE: and is limited to columns 1-80. Al-
phabetic characters can be upper, lower, or mixed case. All cards before
the blank line delimiter are continuation cards. A $ and & in the message
block are end-of-line markers. The message block ends with a blank line
delimiter before the title card. The syntax of the message is the same as for
the regular execution line message discussed on page 1-29. The meanings
of the components of the message are the same as for the execution line
message, subject to the following rules, which are needed to resolve conflicts
between the message block and execution line message if the two are used
simultaneously. Information in the execution line takes precedence over the
same information in the message block, in particular:

a. INP = filename is not a legitimate entry in the message block. The name
INP may be changed on the MCNP execution line only.

b. In the case of A = B (filename substitution), if the construct A = appears
in both the execution line message and in the message block, the message
block entry is ignored.
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function 5 describes the required surface transformations. According to the
SI5 card, surfaces 6 and 7 are related to surfaces 3 and 2, respectively, by
transformation TR4; surfaces 12 and 13 are related to 3 and 2 by TR5. The
physical probability of starting on surfaces 6 and 7 is 40% according to the
SPS5 card, and the physical probability of starting on surfaces 12 and 13 is
60%. The SBS5 card causes the particles from surfaces 3 and 2 to be started
on surfaces 6 and 7 30% of the time with weight multiplier 4/3 and to be
started on surfaces 12 and 13 70% of the time with weight multiplier 6/7.

Example 2: Original run: SSW 3 SYM 1
Current run: SSR AXS001 EXT D99

SI99 -1 5 1
SP99C .75 1
SB990 .5 .5

All particles written to surface 3 in the original problem will be started
on surface 3 in the new problem, which must be exactly the same because no
OLD, NEW, COL, or TR keywords are present. Because this is a spherically
symmetric problem, indicated by the SYM 1 flag in the original run, the
position on the sphere can be biased. It is biased in the z-direction with a
cone bias described by distribution 99.

9. KCODE  Criticality Source Card

Form: KCODE NSRCK RKK IKZ KCT MSRK KNRM MRKP

NSRCK = nominal source size per cycle

RKK = initial guess for k.ff

IKZ = number of cycles to be skipped before beginning
tally accumulation

KCT = number of cycles to be done

MSRK = number of source points to allocate storage for

KNRM = method of tally normalization.

0 means normalize tallies by weight
not zero means normalize tallies to number of particles
MRKP = number of k.fs cycle values stored in RKPL array

Defaults: NSRCK=no default; RKK=1.0; IKZ=5; KCT=0, that is, do not
terminate on the number of cycles; MSRK=4500 or 1.5*NSRCK,
whichever is larger; KNRM=0; and MRKP=201 or 2*KCT, which-
ever is lacger.

Use: This card is required for criticality calculations.

The KCODE card specifies the MCNP criticality source that is used
for determining k.ss. The criticality source uses total fission nubar values
unless overridden by a TOTNU NO card. The KCODE source applies only
to neutron problems. See Chapter 1 for further information.
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The NSRCK entry is the nominal source size for each cycle and is fre-
quently taken to be in the range of 300 < NSRCK < 3000. The IKZ entry
is the number of cycles to skip before beginning tally accumulation (this is
important if the initial source guess is poor). The KCT entry specifies the
number of cycles to be done before the problem ends. A zero entry means
never terminate on the number of cycles but terminate on time. The MSRK
is the maximum number of source points for which storage will be allocated.
If an SRCTP file with a larger value of MSRK is read for the initial source,
the larger value is used.

Fission sites for each cycle are those points generated by the previous
cycle. For the initial cycle, fission sites can come from an SRCTP file from a
similar geometry, from a KSRC card, or from a volume distribution specified
by an SDEF card.

If in the first cycle the source being generated overruns the current source,
the initial guess (RIKK) is probably too low. The code then proceeds to print
a comment, continues without writing a new source, calculates k/ £ reads
the initial source back in, and begins the problem using k., ff instead of RKK.
If the generated source again overruns the current source ai{ter the first cycle,
the job terminates and either a better initial guess (RKK) or more source
space (MSRK) shouid be specified on the next try.

10. KSRC Source Points for KCODE Calculation

Form: KSRC Ty Y131 T2Y222...
Ti, ¥i, zi = location of initial source points

Default: None. If this card is absent, an SRCTP source file or SDEF card
must be supplied to provide initial source points for a criticality
calculation.-

Use: Optional card for use with criticality calculations.

This card contains up to NSRCK (z,y, z) triplets, which are locations of
initial source points for a KCODE criticality calculation. At least one point
must be in a cell containing fissile material. The points must be away from
cell boundaries. It is not necessary to input all NSRCK coordinate points.
MCNP will start approximately (NSRCK/number of points) particles at each
point. Usually one point in each fissile region is adequate, because MCNP
will quickly calculate and use the new fission source distribution. The energy
of each particle in the initial source is sampled from a Watt fission spectrum
hardwired into MCNP, with the values a = 0.965MeV and b = 2.20MeV L.

An SRCTP file from a previous criticality calculation may be used instead
of a KSRC card. If the current problem has a lot in common with the previous
problem, using the SRCTP file may save some computer time. Even if the
problems are quite different, the SRCTP file may still be usable if some of
the points in the SRCTP file are in cells containing fissile material in the
current problem. Points in void or zero importance cells will be deleted.

November 16, 1993 3-38



CHAPTER 3
Tally Cards

The number of particles actually started at each point will be such as to
produce approximately NSRCK initial source particles.

An SDEF card also can be used to sample initial source points in fissile
material regions. The SDEF card parameters applicable to volume sampling
can be used: CEL, POS, RAD, EXT, AXS, X, Y, Z; and CCC, ERG, and
EFF. If a uniform volume distribution is chosen, the early values of k, £f will
likely be low because too many particles are put near where they can escape,
just the opposite of the usual situation with the KSRC card. Do not change
the default value of WGT for a KCODE calculation.

11. Subroutines SOURCE and SRCDX

If SDEF, SSR, or KCODE cards are not present in the INP file, a
user supplied source is assumed and is implemented by calling subroutine
SOURCE, which the user must provide. Chapter 4 has examples of a
SOURCE subroutine and discusses the SRCDX subroutine. The parame-
ters that must be specified within the subroutine are listed and defined on
page 3—39.

Prior to calling subroutine SOURCE, isotropic direction cosines u, v, w
(UUU,VVV,WWW) are calculated. Therefore, you need not specify the
direction cosines if you want an isotropic distribution.

The SIn, SPn, and SBn cards also can be used with the SOURCE sub-
routine, although modifications to other parts of MCNP may be required
for proper initialization and to set up storage. A random number generator
RANG() is available for use by SOURCE for generating random numbers
between 0 and 1. Up to 50 numerical entries can be entered on each of the
IDUM and RDUM cards for use by SOURCE. The IDUM entries must be
integers and the RDUM entries floating point numbers.

If you are using a detector or DXTRAN and your source has an anisotrop-
< angular distribution, you will need to supply an SRCDX subroutine to
specify PSCs for each detector or DXTRAN sphere (see Chapters 2 and 4).

There are unused variables stored in the particle bank that are reserved
or the user called SPARE(M), M=1 MSPARE, where MSPARE=3. De-
vending on the application, you may need to reset them to 0 in SOURCE
or each history; MCNP does not reset them.

E. Tally Specification

The tally cards are used to specify what type of information the user
wants to gain from the Monte Carlo calculation; that is, current across a
surface, flux at a point, heating in a region, etc. This information is requested
by the user by using a combination of the following cards. To obtain tally
results, only the Fn card is required; the other tally cards provide various
optional features.
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1. Mm Material Card

Form: Mm ZAID, fractiony ZAID; fraction; ...keyword=value ...

m corresponds to the material number on the cell cards
ZAID; = either a full ZZZAAA .nnX or partial ZZZAAA element
or nuclide identifier for constituent i where ZZZ is
the atomic number, AAA is the atomic mass, nn is the
library identifier, and X is the class of data
fraction; = atomic fraction (or weight fraction if entered as
a negative number) of constituent i in the material.
keyword = value, where = sign is optional. Keywords are:
GAS = m flag for density—effect correction to electron
stopping power.
m = 0 calculation appropriate for material in the
condensed (solid or liquid) state used.
m = 1 calculation appropriate for material in the
gaseous state used.

ESTEP = n causes the number of electron substeps per energy step
to be increased to n for the material. If n is smaller
than the built-in default found for this material,
the entry is ignored. Both the default value and the
ESTEP value actually used are printed in Table 85.

td changes the default neutron table identifier to the
string id. The neutron default is a blank string, which
selects the first matching entry in XSDIR.

PLIB =:d changes the default photon table identifier to id.

ELIB =1d changes the default electron table identifier to id.

NLIB

Default: None for ZAID fraction; GAS=0; ESTEP internally set; NLIB,
PLIB, and ELIB=first match in XSDIR.

Use: Optional, but required if you want materials in cells.

Neutrons. For naturally occurring elements, AAA = 000. Thus, ZAID =

74182.01 represents the isotope '82W and ZAID = 74000.01 represents the
element tungsten. Natural elements not available from among those listed
in Appendix G must be constructed on an Mm card by adding together the
individual isotopes if they are available.

If the density for cells with AAA = 000 is input in g/cm®, MCNP will
assume the atomic weight for the natural element.

The ZZZ and AAA quantities are determined for neutrons by looking at
the list of cross sections in Appendix G and finding the appropriate ZAID
associated with an evaluation that you want.

Photons and electrons. If neutrons are not being run, the AAA can be
set to 000 and the nnX can be omitted. Cross sections are specified exactly
like the neutron cross sections, but ZZZAAA.nnX equals ZZZ000. There
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is no distinction between isotope and element for photons and electrons.
However, if the isotopic distribution for the element differs from the natural
element, the atom density should be entered on the cell cards to ensure the
correct atom density for these cells.

Nuclide Fraction. The nuclide fractions may be normalized to 1.0 or left
unnormalized. For instance, if the material is H,O the atom fractions can
be entered as 0.667 and 0.333 or as 2 and 1 for H and O respectively. If
the fractions are entered with negative signs they are assumed to be weight
fractions. Weight fractions and atom fractions cannot be mixed on the same
Mm card.

There is no limit to the number of “nuclide fraction” entries or the total
number of different cross-section tables allowed.

Default Library Hierarchy. When NLIB=:d is included on an Mm card,
the default neutron table identifier for that material is changed to id. Fully
specifying a ZAID on that Mm card, ZZZAAA .nnX, overrides the NLIB=:d
default.

Example: M1 NLIB=50D 1001 2 8016.50C 1 6012 1
This material consists of three isotopes. Hydrogen (1001) and carbon (6012)
are not fully specified and will use the default neutron table that has been
defined by the NLIB entry to be 50D, the discrete reaction library. Oxygen
(8016.50C) is fully specified and will use the continuous energy library. The
same default override hierarchy also applies to photon and electron specifi-
cations.

2. DRXS Discrete Reaction Cross-Section Card

Form: DRXS ZAID, ZAID, ...ZAID; ...

or blank

Z AID;= ldentifying number of the form ZZAAA.nn, where ZZ
is the atomic number, AAA the mass number, and nn
the neutron library identifier.

Default: Continuous-energy cross-section treatment if DRXS is absent.
Use: Optional. Applies only to neutron cross sections.

Nuclides listed on the optional DRXS card are given a discrete energy
treatment instead of the regular fully continuous-energy cross-section treat-
ment if the necessary discrete data are available. Check the list in Ap-
pendix G for availability. If the DRXS card is present but has no entries
after the mnemonic, discrete cross sections will be used for every nuclide, if
available.

Unless you are transporting neutrons in an energy region where reso-
nances and hence self-shielding are of little importance, it is not recom-
mended that this card be used. However, if the problem under consideration
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meets this criterion, using the DRXS card can reduce computer storage re-
quirements and enhance timesharing.

All discrete reaction libraries are based on a 262 energy group structure.
Groups below 1 eV make the discrete treatment appropriate for thermal
neutron problems near room temperature. Also, all discrete reaction libraries
(except for DRL79) have photon production data given in expanded format.

Use of these discrete cross sections will not result in the calculation be-
ing what is commonly referred to as a multigroup Monte Carlo calculation
because the only change is that the cross sections are represented in a his-
togram form rather than a continuous-energy form. The angular treatment
used for scattering, energy sampling after scattering, etc., is performed using
identical procedures and data as in the continuous-energy treatment. The
user wanting to make a truly multigroup Monte Carlo calculation should use
the MGOPT card multigroup capability.

3. TOTNU Total Fission Card

Form: TOTNU NO

or blank

Default: If the TOTNU card is absent, prompt 7 is used for non-KCODE
calculations and total ¥ is used for KCODE calculations.

Use: All steady-state problems should use this card.

In a non-KCODE problem, the absence of a TOTNU card causes prompt
v to be used for all fissionable nuclides for which prompt 7 values are avail-
able. If a TOTNU card is present but has no entry after it, total 7 will be
used for those fissionable nuclides for which total values are available. A
TOTNU card with NO as the entry is the same as if the card were absent,
that is, prompt ¥ is used.

In a KCODE calculation, the absence of a TOTNU card causes total v
to be used for all fissionable nuclides for which total values are available. If
a TOTNU card is present but has no entry after it, total ¥ is again used.
A TOTNU card with NO as the entry causes prompt 7 to be used for all
fissionable nuclides for which prompt values are available.

The nuclide list of Appendix G indicates data available for each fission-
able nuclide. The MCNP neutron cross-section summary print from XACT
will show whether prompt or total was used.

4. NONU Fission Turnoff Card

Form: NONU aja; ... @i ... Gmza
or blank

a; = 0 fission in cell ; treated as capture; gammas produced
=1 fission in cell : treated as real; gammas produced
= 2 fission in cell i treated as capture; gammas not produced
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mza =  number of cells in the problem
Default: If the NONU card is absent, fission is treated as real fission.
Use: Optional, as needed.

This card allows turning off fission in any cell. The fission is then treated
as simple capture and accounted for on the loss side of the problem summary
as the “Loss to fission” entry. If the NONU card is not used, all cells are
given their regular treatment of real fission, that is, the same as if all entries
were one. If the NONU card is present but blank, all a;’s are assumed to be
zero and fission in all cells is treated like capture. The NONU card cannot
be added to a continue-run.

Sometimes it is desirable to run a problem with a fixed source in a multi-
plying medium. For example, an operating reactor power distribution could
be specified as a function of position in the core either by an SDEF source
description or by writing the fission source from a KCODE calculation to
a WSSA file with a CEL option on an SSW card. The non-KCODE cal-
culation would be impossible to run because of the criticality of the system
and because fission neutrons have already been accounted for. Using the
NONU card in the non-KCODE mode allows this problem to run correctly
by treating fission as simple capture.

A value of 2 treats fission as capture and, in addition, no fission gamma
rays are produced. This option should be used with KCODE fission source
problems written to surface source files. Suppressing the creation of new
fission neutrons and photons is important because they are already accounted
for in the source.

5. AWTAB  Atomic Weight Card

Form: AWTAB ZAID, AW, ZAID; AW, ...

ZAID; = ZAID used on the Mm material card but not including
the nn specification.
AW; = atomic weight ratios.

Default: If the AWTAB card is absent, MCNP will use the atomic weight
ratios from the cross-section directory file XSDIR and cross-section
tables.

Use: Optional, as needed.

Entries on this card override the existing atomic weight ratios as con-
tained in both the cross-section directory file XSDIR and the cross-section
tables. The AWTAB card is needed when atomic weights are not available
in an XSDIR file. Also, for fission products, ZAID=50120.35, the atomic
weight of tin (}3°Sn) will be used, so the following AWTAB card is needed:

AWTAB 50120.35 116.490609
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WARNING: Using atomic weight ratios different from the ones in the cross-
section tables in a neutron problem can lead to negative neutron energies,
which will cause the problem to terminate prematurely.

6. XSn Cross-Section File Card

Use: Optional, as an alternative to the directory part of the XSDIR file.

The XSn card can be used to load cross-section evaluations not listed in
the XSDIR file directory. You can use XSn cards in addition to the XSDIR
file. Each XSn card, with n = 1 to 999, is used to describe one cross section
table. The entries for the XSn card are identical to those in XSDIR except
that the + is not used for continuation. A detailed description of the required
entries is provided in Appendix F.

7. VOID Material Void Card

Form: VOID no entries
or: VOID C, C; ... C;

C; = cell number
Default: None.
Use: Debugging geometry and calculating volumes.

The first form is used when calculating volumes stochastically (see page
2—-158) and in checking for geometry errors (see page 3—8). When there
are no entries on the VOID card, all cells in the problem are made void by
setting the material number and density to zero, FM cards are turned off,
heating tallies are turned into flux tallies, and, if there is no NPS card, the
effect of an NPS 100000 card is created. If there is a TALLYX subroutine,
it may need to be changed, too.

The second form is used to selectively void cells instead of replacing the
material number and density on each selected cell card by a zero by hand.
It can be a convenience if you want to check whether the presence of some
object in your geometry makes any significant difference in the answers.

8. PIKMT Photon-Production Bias Card

Form: PIKMT Zl IPIKI MTI,I PMT]VI"' MTI,IPIK] PMTI,IP!K]
Zn IPIKn NITn'l PMTH,I"'MTI\,IP[K“ PMTn,lP[Kn

Z; = the ZAID of the ith entry. Full or partial ZAIDs can be
specified, that is, 29000 is equivalent to 29000.50.

IPIK; = the parameter that controls the biasing for ZAID;.
If IPIK; = 0, there is no biasing for ZAID;; photons from
ZAID; are produced with the normal sampling technique.
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If IPIK; = -1, no photons are produced from ZAID;.
This is the default, so that if no entries are made on the
PIKMT card for a particular ZAID, there will be no
photons produced from that ZAID.

If IPIK; > 0, there is biasing for ZAID;. The value of IPIK;
is the number of partial photon-production reactions

to be sampled.

and PMT; j are only required for ZAIDs with IPIK; > 0.
In these cases, IPIK; pairs of entries of MTs and PMTs
are necessary. The MTs are the identifiers for the partial
photon-production reactions to be sampled. The PMTs
control, to a certain extent, the frequency with which the
specified MTs are sampled. The entries need not be
normalized. For a ZAID with a positive value of IPIK,
any reaction that is not identified with its MT on

the PIKMT card will not be sampled.

MTi,j

Default: If the PIKMT card is absent, there is no biasing of neutron-induced
photons.

Use: Optional; see caveats below.

For several classes of coupled neutron-photon calculations, the desired
result is the intensity of a small subset of the entire photon energy spec-
trum. Two examples are discrete—energy (line) photons and the high-energy
tail of a continuum spectrum. In such cases, it may be profitable to bias
the spectrum of neutron-induced photons to produce only those that are of
interest.

1. The most important thing to realize when using the PIKMT card is that
nonzero probability events may be completely excluded. In other words,
the biasing game is not necessarily a fair one. While neutron tallies will
be unaffected (within statistics), the only reliable photon tallies will be
those with energy bins immediately around the energies of the discrete
photons produced.

2. Users need information about the MT identifiers of the reactions that
produce discrete-energy photons. This information is available for Los
Alamos users in a document stored on the CFS as /X6XS/CTSS
/DISCEGAM. Send the file to the HSP with the =V, —UC and —CC
options.

3. The feature is also useful for biasing the neutron-induced photon spec-
trum to produce very high energy photons (for example, E, > 10 MeV).
Without biasing, these high-energy photons are produced very infre-
quently; therefore, it is difficult to extract reliable statistical information
about them. An energy cutoff can be used to terminate a track when
it falls below the energy range of interest. See Ref. 4 when using the
PIKMT card for this application.
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Example: PIKMT 26000.55 1 102001 1 7014 0

29000 2 3001 2 3002 1
8016 -1

This example results in normal sampling of all photon-production re-

actions for

14N

All photons from neutron collisions with Fe are from the

reaction with MT identifier 102001. Two photon-production reactions with
Cu are allowed. Because of the PMT parameters the reaction with MT iden-
tifier 3001 is sampled twice as frequently relative to the reaction with MT
identifier 3002 than otherwise would be the case. No photons are produced
from 160 or from any other isotopes in the problem that are not listed on

the PIKMT card.

9. MGOPT

Multigroup Adjoint Transport Option

Form: MGOPT
MCAL

IGM

IPLT

ISB

ICW

FNW

RIM

November 16, 1993

MCAL IGM IPLT ISB ICW FNW RIM

= F for forward problem
A for adjoint problem

= the total number of energy groups for all kinds of particles
in the problem. A negative total indicates a special
electron-photon problem.

= indicator of how weight windows are to be used.

= 0 means that IMP values set cell importances. Weight
windows, if any, are ignored for cell importance
splitting and Russian roulette.

= 1 means that weight windows must be provided and are
transformed into energy-dependent cell importances.
‘A zero weight-window lower bound produces an
importance equal to the lowest nonzero importance
for that energy group.

= 2 means that weight-windows do what they normally do.

= Controls adjoint biasing for adjoint problems only
(MCAL=A).

= 0 means collisions are biased by infinite-medium fluxes.

= 1 means collisions are biased by functions derived from
weight—windows, which must be supplied.

= 2 means collisions are not biased.

= name of the reference cell for generated weight windows.

= 0 means weight windows are not generated.

# 0 requires volumes be supplied or calculated for all cells
of nonzero importance.

= normalization value for generated weight windows. The
value of the weight-window lower bound in the most
important energy group in cell ICW is set to FNW.

= compression limit for generated weight windows. Before
generated weight windows are printed out, the weight
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windows in each group separately are checked to see that
the ratio of the highest to the lowest is less than RIM.
If not, they are compressed.

Default: IPLT=0, ISB=0, ICW=0, FNW=1, RIM=1000. MCAL and IGM
must be specified.

Use: Required for multigroup calculation.

MCAL and IGM are required parameters. The others are optional. “J”
is not an acceptable value for any of the parameters.

At this time, the standard MCNP multigroup neutron cross sections are
given in 30 groups and photons are given in 12 groups. Thus, an existing
continuous—energy input file can be converted to a multigroup input file
simply by adding one of the following cards:

MGOPT F 30 $MODEN
MGOPT F 42 SMODENP
MGOPT F 12 S$MODEP

A negative IGM value allows a single cross-section table to include
data for more than one sort of particle. This feature applies currently to
electron/photon multigroup calculations only. A problem with 50 electron
groups followed by 30 photon groups in one table would have IGM=-80. A
negative IGM value also means that the energy variable in the source and in
tallies is group number rather than MeV. The particles can be separated in
tallies by using the PTT option on the FTn tally card.

An input file for an adjoint problem can have both an IMP card and
weight window cards (IPLT=0 ISB=1). The entries on the weight window
cards are not weight windows in the normal sense but biasing functions. If
IPLT=1 the values on a weight window card become energy-dependent cell
importances. Until now, importances have been energy independent.

See Appendix G for a more complete discussion of multigroup libraries.

G. Energy and Thermal Treatment Specification

The following cards control energy and other physics aspects of MCNP:

Mnemonic Card Type Page
PHYS Energy physics cutoff 3-100
ESPLT Energy splitting and roulette 3-104
T™P Free-gas thermal temperature 3-105
THTME Thermal times 3-105
MTm S(a, ) material 3-106

All energy entries on these cards are in units of MeV, and all times are
in shakes.
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Default: Zero; temperature is not time dependent.
Use: Optional. Use with TMP card.

The THTME card specifies the times at which the thermal temperatures
on the TMPn cards are provided. The temperatures on the TMP1 card
are at time t; on the THTME card, the temperatures on the TMP2 card
are at time t; on the THTME card, etc. The times must be monotonically

increasing: t, < tp41. For each entry on the THTME card there must be a
TMPn card.

5. MTm  S(a, ) Material Card

Form: MTm X; X, ...

Xi = S(a,p) identifier corresponding to a particular component
on the Mm card.

Default: None.
Use: Optional, as needed.

For any material defined on an Mn card, a particular component of that
material (represented by a ZAID number) may be associated through an
MTm card with an S(a, 3) data set if that data set exists. The S(a, 3) data
for that ZAID are used in every cell in which that material is specified. For
a particular ZAID in a material, the free-gas treatment may be used down
to the energy where S(a, 3) data are available. At that point, the S(a, )
treatment automatically overrides the free-gas treatment (that is, there is no
mixing of the two treatments for the same ZAID in the same material at a
given energy).

Typically the free-gas model will be used for a particular ZAID of a
material down to 4 eV and then the S(a,3) treatment will take over. In
general, S(a, ) effects are most significant below 2 eV.

The S(a, B) treatment is invoked by identifiers on MTm cards. The m
refers to the material m defined on a regular Mm card. The appearance of
an MTm card will cause the loading of the corresponding S(a, §) data from
the thermal data file.

The currently available S(a,3) identifiers for the MTm card are listed
in Table G.1 of Appendix G.

S(a, B) contributions to detectors or DXTRAN spheres are approximate.

Examples: M1 1001 2 80161 light water
MT1 LWTR.07

M14 10012 60121 polyethylene
MT14 POLY.03

M8 6012 1 graphite
MTS8 GRPH.01
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IV. KCODE

The problem selected to illustrate the output from a criticality calculation
is the one-dimensional model of the GODIVA critical assembly, composed
of about 94% 23°U. This assembly is one of several fast neutron critical
assemblies discussed in LA-4208 entitled “Reevaluated Critical Specifications
of Some Los Alamos Fast-Neutron Systems” by G. E. Hansen and H. C.
Paxton (September 1964).

An MCNP input file that models GODIVA and performs only the criti-
cality calculation with no separate tallies would be only 11 lines long. The
KCODE card indicates that the problem is a criticality calculation for the
k.ss eigenvalue. To perform this same calculation with neutron-induced pho-
ton production, add the MODE N P card. Any tallies that are made in a
criticality problem are normalized to the starting weight (default) or number
of particles as defined by the user (see Chapter 2, section VIII for details).
Tallies should be scaled for the appropriate steady state neutron generation
rate.

Following is a partial listing of the output from a KCODE calculation.
The pages selected emphasize the criticality aspects of the problem.
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N1

N2
N3
N4

Ns

imcnp version 4a 1d=10/01/93 10/01/93 11:04:27
L T T T
inp=godiva

1- bare u(94) sphere ref. 1a-4208, g. e. hansen and h. c. paxton, 1969, page 4
2- 1 10 0.048146 -1

3- 2 01

‘_

6- 1 so 8.7037

6_

7- imp:n 1 0

8- m10 92235.50c 0.045217 92238.50c 0.0024355 92234.50c 0.0004935

9- kccde 3000 1. 6 35

warning. tallies are normed per fission neutron for one generation.
10- ksrc 0. 0. O.

11- print

12- [

13- c tallies

14- c

15- fi:n 1

16- f2:n 1

17- f4:n 1

18- fi4:n 1

19- fc14 total neutron fluence, total fissions, total fission neutrons,
20- total neutron absorptions, and neutron heating (mev/gram)

21- fql4 e m

22- fm14 (2761.85) (-2761.85 10 (-6) (-6 -7) (-2)) (-0.053183 10 1 -4)
23- £f24:n 1

24- fc24 total neutron fluence, total fissions, total fission neutrons,
25- total neutron absorptions, and neutron heating (mev/gram)

26- e24 1.67-4 4.54e-4 1.235e-3 3.35-3 9.12-3 0.0248 0.0676 0.184

27- 0.303 0.50 0.823 1.353 1.738 2.232 2.865 3.68

28- 6.07 7.79 10.0 12.0 13.5 15.0 20.0

29- fq24 e »

30- fm24 (2761.85) (-2761.85 10 (-6) (-6 -7) (-2)) (-0.053183 10 1 -4)
31- f6:n 1

32- £f7:n 1

probid =
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33- C
34- c use the sixteen group hansen-roach energy structure as the default
356- c

Ne 36- el 1-7 4-7 1-6 3-6 1-56 3-5 1-4 5.5-4 3-3 1.7-2 0.1 0.4 0.9 1.4 3 20

N7 1 initial source froam ksrc card.
original number of points 1
points not in any cell
points in cells of zero importance
points in void cells
points in ambiguous cells
total points rejected
points remaining "1
points after expansion or contraction 3000
nominal source size 3000
initial guess for k(eff.) 1.000000
cycles to skip before tallying 5
number of keff cycles that can be stored 201
total fission nubar data are being used.
SKIP 198 LINES IN OUTPUT
N8 1material composition
material
nuaber component nuclide, atom fraction
10 92235, 0.93916 92238, 0.05059 92234, 0.01025
material
number component nuclide, mass fraction
10 92235, 0.93860 92238, 0.05120 92234, 0.01020
N9 1cell volumes and masses
cell atom gram input calculated
density density volume volume mass pieces
1 1 4.81460E-02 1.88030E+01 0.00000E+00 2.76185E+03 §5.19311E+04 1
2 2 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00  0.00000E+00 0
SKIP 67 LINES IN OUTPUT
N10 1cross-section tables
table length

oo oo

tables from file endf5p2
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print table 90

print table 40

print table 50

reason volume
not calculated

infinite

print table 100



N11

N12

N13

varning. nubar of 92234.50c may be either prompt or total.

92234.50c 89429 njoy ( 1394) 79/10/17.
tables from file rmccs2

92235.50c 49913 njoy total nu ( 1395%) 79/09/12.

92238.50c 75725 njoy total nu ( 1398) 79/09/13.

total 215067

varning. neutron energy cutoff is below some cross-section tables.
decimal words of dynamically allocated storage

general 42654
tallies ) 24548
bank 3902
cross sections 215067
total 286171
LA A A T AT AT AT IE DO IR L L T T T Ty
dump no. 1 on file runtpe nps = 0 coll = 0 ctm = 0.00 nrn = 0
source distribution written to file srctp cycle = 0
3 warning messages so far.
1  starting mcrun. field length = 0 cp0 = 0.01 print table 110
bare u(94) sphere¢ ref. 1a-4208, g. e. hansen and h. c. paxton, 1969, page 4
nps x y z cell surf u v v energy veight time
1 0.000E+00 0.000E+00 0.000E+00 1 0 5.085E-01 4.733E-01 7.193E-01 2.209E+00 1.000E+00 0.000E+00
2 0.000E+00 0.000E+00 0.000E+00 1 0 8.952E-01 -4.447E-01 -2.944E-02 4.904E+00 1.000E+00 0.000E+00
3 0.000E+00 0.000E+00 0.000E+00 1 0 -6.184E-01 -4.495E-01 6.446E-01 3.809E-01 1.000E+00 0.000E+00
4 0.000E+00 0.000E+00 0.000E+00 1 0 9.710E-01 -5.665E-02 -2.323E-01 1.331E+00 1.000E+00 0.000E+00
5 0.000E+00 0.000E+00 0.000E+00 1 0 5.861E-01 1.496E-01 -7.963E-01 1.902E+00 1.000E+00 0.000E+00
6 0.000E+00 0.000E+00 0.000E+00 1 0 -6.489E-02 -1.626E-01 9.845E-01 4.410E-01 1.000E+00 0.000E+00
7 0.000E+00 0.000E+00 O0.000E+00 1 0 -7.068E-02 3.263E-02 -9.970E-01 4.750E-01 1.000E+00 0.000E+00
8 0.000E+00 0.000E+00 0.000E+00 1 0 -3.915E-01 4.664E-01 -7.932E-01 4.136E+00 1.000E+00 0.000E+00
9 0.000E+00 0.000E+00 0.000E+00 1 0 -2.368E-01 9.215E-01 -3.079E-01 7.453E-02 1.000E+00 0.000E+00
10 0.000E+00 0.000E+00 0.000E+00 1 0 1.946E-01 -3.204E-01 9.271E-01 3.128E+00 1.000E+00 0.000E+00
11 0.000E+00 0.000E+00 0.000E+00 1 0 -6.698E-01 -7.177E-01 -1.905E-01 1.014E+00 1.000E+00 0.000E+00
12 0.000E+00 0.000E+00 0.000E+00 1 0 -8.398E-01 -4.129E-01 3.524E-01 1.395E+00 1.000E+00 0.000E+00
13 0.000E+00 0.000E+00 0.000E+00 1 0 -1.714E-01 -8.572E-01 4.857E-01 7.748E-01 1.000E+00 0.000E+00
14 0.000E+00 0.000E+00 0.000E+00 1 0 -2.489E-01 -5.118E-01 -8.222E-01 1.101E+00 1.000E+00 0.000E+00
156 0.000E+00 0.000E+00 0.000E+00 1 0 -2.959E-01 2.119E-01 9.314E-01 1.951E+00 1.000E+00 0.000E+00
16 0.000E+00 0.000E+00 0.000E+00 1 0 1.395E-01 -9.829E-01 1.202E-01 2.186E+00 1.000E+00 0.000E+00
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.039E-01 -1.460E-01 8.513E-01
.080E-01 §5.487E-01 5.738E-01
.932E-01 9.304E-01 -2.199E-01
.47T5E-01 -3.993E-01 -3.497E-01
.200E-01 -9.196E-01 -3.743E-01
.085E-01 5.879E-01 3.904E-01
.261E-01 9.046E-01 9.254E-03
.431E-01 4.270E-01 -7.230E-01

0S3E-01 -9.805E-01 1.658E-01

1.368849 removal lifetime(abs) 8.1998E-01
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CHAPTER 5

KCODE

cycle 2 k(collision) 1.149004 removal lifetime(abs) 6.6818E-01 source points generated 2514

cycle 3 k(collision) 1.064388 removal lifetime(abs) 5.9757E-01 source points generated 2715
cycle 4 Kk(collision) 1.027978 removal lifetime(abs) 5.7907E-01 source points generated 2895

cycle 5 k(collision) 0.998419 removal lifetime(abs) 5.6734E-01 source points generated 2928

N14 cycle 6 k(collision) 1.004871 removal lifetime(abs) 5.5494E-01 source points generated 3043

estimator cycle 7 ave of 2 cycles combination simple average combined average corr
k(collision) 0.996358 1.000614 0.0043 k{(col/abs) 0.000000 0.0000 0.000000 0.0000 0.0000
k(absorption) 0.995886 1.000718 0.0048 k(abs/tk 1ln) 0.000000 0.0000 0.000000 0.0000 0.0000
k(trk length) 0.986257 0.995187 0.0090 k(tk 1n/col) 0.000000 0.0000 0.000000 0.0000 0.0000
rea life(col) 5.7053E-01 6.6276E-01 0.0138
rem life(abs) 5.7000E-01 5.6247E-01 0.0134 life(col/abs) 0.0000E+00 0.0000 0.0000E+00 0.0000 0.0000
source points generated 2995 :

estimator cycle 8 ave of 3 cycles combination simple average combined average corr
k(collision) 0.986610 0.995946 0.0053 k(col/abs) 0.995736 0.0056 0.999506 0.0007 1.0000
k(absorption) 0.985140 0.9955626 0.0059 k(abs/tk 1n) 0.995011 0.0050 0.994857 0.0070 0.5862
k(trk length) 0.993112 0.994495 0.0052 k(tk 1n/col) 0.995221 0.0047 0.995196 0.0068 0.5793
rem life(col) 5.6716E-01 5.6423E-01 0.0084
rea life(abs) 5.6740E-01 5.6411E-01 0.0082 life(col/abs) 5.6417E-01 0.0083 5.6343E-01 0.0119 0.9990
source points generated 2970

estimator cycle 9 ave of 4 cycles combination simple average combined average corr
k(collision) 0.972349 0.990047 0.0071 k(col/abs) 0.990069 0.0070 0.990168 0.0084 0.9959
k(absorption) 0.973789 0.990091 0.0069 k(abs/tk 1n) 0.989256 0.0068 0.989477 0.0086 0.8635
k(trk length) 0.970192 0.988420 0.0072 k(tk 1n/col) 0.989233 0.0069 0.989354 0.0088 0.8834
rem life(col) 5.4357E-01 6.5906E-01 0.0110 k(col/abs/tk 1n) 0.989519 0.0068 0.989164 0.0117
rem life(abs) 5.4411E-01 6.56911E-01 0.0107 life(col/abs) 5.5909E-01 0.0108 5.6007E-01 0.0092 0.9997
source points generated 2982

estimator cycle 10 ave of 6 cycles combination simple average combined average corr
k(collision) 1.014685 0.994974 0.0074 k(col/abs) 0.995188 0.0074 0.993642 0.0087 0.9968
k(absorption) 1.016646 0.995402 0.0075 k(abs/tk 1n) 0.993627 0.0068 0.991426 0.0085 0.8923
k(trk length) 1.005583 0.991852 0.0065 k(tk 1n/col) 0.993413 0.0068 0.991464 0.0085 0.9105
rem life(col) 5.6633E-01 5.6052E-01 0.0089 k(col/abs/tk 1n) 0.994076 0.0070 0.991424 0.0104

rem life(abs) 5.6772E-01 6.6084E-01 0.0088 life(col/abs) 65.6068E-01 0.0088 65.6121E-01 0.0113 0.9979
source points generated 3221

source distribution eritten to file srctp cycle = 10

SKIP 190 LINES IN OUTPUT
estimator cycle 34 ave of 29 cycles combination simple average combined average corr
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CHAPTER 5

KCODE
k(collision) 1.019305 1.001219
k(absorption) 1.020357 1.000843
k(trk length) 0.999241 0.999072
rem life(col) 5.6280E-01 5.6736E-01
rem life(abs) 5.6314E-01 6.6739E-01
source points generated 3102

N15 estimator cycle 35 ave of 30

k(collision) 1.001426 1.001225
k(absorption) 1.003589 1.000934
k(trk length) 0.997927 0.999034
rem life(col) 65.5761E-01 65.6703E-01
rem life(abs) 5.5822E-01 5.6708E-01
source points generated 2814

Ni1eé

source distribution written to file srctp

iproblem summary

0.0024
0.0024
0.0027
0.0047
0.0047

cycles
0.0023
0.0023
0.0026
0.0046
0.0046

cycle =

k(col/abs)
k(abs/tk 1n)
k(tk 1ln/col)
k(col/abs/tk 1n)
life(col/abs)

combination
k(col/abs)
k(abs/tk 1n)
k(tk 1n/col)
k(col/abs/tk 1n)
life(col/abs)

35

1.001031 0.0024
0.999968 0.0024
1.000145 0.0024
1.000378 0.0023
5.6737E-01 0.0047

simple average
1.001080 0.0023
0.999984 0.0023
1.000130 0.0023
1.000398 0.0022
5.6706E-01 0.0046

1.001208 0.0025
1.000343 0.0024
1.000668 0.0024
1.000605 0.0025
5.6744E-01 0.0048

combined average
1.001219 0.0024
1.000394 0.0023
1.000664 0.0023
1.000615 0.0024
5:.6719E-01 0.0047

0.9906
0.7067
0.7217

0.9989

corr
0.9900
0.7055
0.7215

0.9989

run terminated when 35 kcode cycles were done.
+ 10/01/93 11:10:32
bare u(94) sphere ref. 1a-4208, g. e. hansen and h. c. paxton, 1969, page 4 probid = 10/01/93 11:04:27
0
neutron creation tracks veight energy neutron loss tracks veight energy
(per source particle) (per source particle)
source 105024 9.9977E-01 2.0208E+00 escape 90246 6.6753E-01 9.4295E-01
energy cutoff 0 0. 0.
time cutoff 0 0. 0.
veight window 0 0. 0. weight window 0 0. 0.
cell importance 0 0. 0. cell importance 0 0. 0.
weight cutoff 0 3.3083E-02 1.7558E-02 veight cutoff 15112 3.3216E-02 1.6986E-02
energy importance 0 0. 0. energy importance 0 0. 0
dxtran 0 0. 0. dxtran 0 0. 0.
forced collisions 0 0. 0. forced collisions 0 0. 0.
exp. transform 0 0. 0. exp. transform 0 0. 0.
upscattering 0 0. 0. downscattering (] 0. 4.2719E-01
capture 0 4.3242E-02 3.1207E-02
(n,xm) 668 3.8288E-03 2.3678E-03 loss to (n,xm) 334 1.9144E-03 1.4723E-02
fission 0 0. 0. loss to fission 0 3.9078E-01 6.0765E-01
total 106692 1.0367E+00 2.0407E+00 total 106692 1.0367E+00 2.0407E+00
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number of neutrons banked 334 average lifetime, shakes
neutron tracks per source particle 1.0064E+00 escape 5.8357E-01
neutron collisions per source particle 3.9639E+00 capture 5.6931E-01

416304
1.0019E+00 0.0002
65.24 minutes
5.23 minutes

capture or escape 5.7739E-01
any termination 6.2340E-01
maxisum number ever in bank
bank overflows to backup file
field length

most random numbers used vas

total neutron collisions

net multiplication
computer time so far in this run
computer time in mcrun
source particles per minute 2.0094E+04
random numbers generated 5016855
range of sampled source weights = 7.2816E-01 to 1.1933E+00
ineutron activiiy in each cell

CHAPTER 5

KCODE
cutoffs
tco 1.0000+120
eco 0.0000E+00
wcl -5.0000E-01
wc2 -2.5000E-01
1
0
V]
490 in history 19010

print table 126

tracks population collisions collisions number flux average average
cell entering * weight veighted veighted track weight track afp
(per history) energy energy (relative) (cm)
1 1 105024 105358 416304 2.6059E+00 9.5293E-01  1.5486E+00 6.7268E-01 2.6767E+00
total 105024 105358 416304 2.6059E+00
ineutron weight balance in each cell -- external events print table 130
cell entering source energy time exiting total
cutoff cutoff
1 1 0.0000E+00 9.9977E-01 0.0000E+00 0.0000E+00 -5.6753E-01 4.3224E-01
total 0.0000E+00 9.9977E-01  0.0000E+00  0.0000E+00 -5.6753E-01  4.3224E-01
lneutron weight balance in each cell -- variance reduction events print table 130
cell veight cell weight energy dxtran forced exponential total
window importance cutoff importance collision transform
1 1 0.0000E+00 0.0000E+00 -1.3279E-04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 -1.3279E-04
total 0.0000E+00 0.0000E+00 -1.3279E-04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 -1.3279E-04
ineutron weight balance in each cell -- physical events print table 130
cell (n,xn) fission capture loss to loss to total
(n,xn) fission
1 1 3.828B8E-03 0.0000E+00 -4.3242E-02 -1.9144E-03 -3.9078E-01 -4.3211E-01
total 3.8288E-03 0.0000E+00 -4.3242E-02 -1.9144E-03 -3.9078E-01 -4.3211E-01
Ineutron activity of each nuclide in each cell, per source particle print table 140
cell nuclides atom total collisions weight lost weight loss weight gain
fraction collisions * weight to capture to fission by (n,xn)
1 1 92235.50c  9.3916E-01 389868 2.4408E+00 4.1064E-02 3.8375E-01 1.7571E-03
92238.50c  5.0586E-02 21744 1.3579E-01 1.4638E-03 3.6179E-03 1.5430E-04

9 71
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CHAPTER 5

KCODE
92234.50c 1.0250E-02 4692 2.9368E-02 7.1442E-04 3.4110E-03 3.0589E-06
total 416304 2.6059E+00 4.3242E-02 3.9078E-01 1.9144E-03
total over all cells for each nuclide total collisions weight lost weight loss weight gain
collisions s weight to capture to fission by (n,xm)
92234.50c 4692 2.9368E-02 7.1442E-04 3.4110E-03 3.0589E-06
92235.50c 389868 2.4408E+00 4.1064E-02 3.8375E-01 1.7571E-03
92238.50c 21744 1.3579E-01 1.4638E-03 3.6179E-03 1.5430E-04
N17 1keff results for: bare u(94) sphere ref. 1a-4208, g. e. hansen and h. c. paxton, 1969, page 4 probid = 10/01/93 11:04:27
the initial fission neutron source distribution used the 1 source points that were input on the ksrc card.
the criticality pcroblem was scheduled to skip 5 cycles and run a total of 35 cycles with nominally 3000 neutrons per cycle.
this problem has run 5 inactive cycles with . 15244 neutron histories and 30 active cycles with 89780 neutron histories.
this calculation has completed the requested number of keff cycles using a total of 105024 fission neutron source histories.

all cells with fissionable material were sampled and had fission neutron source points.

the results of the v test for normality applied to the individual collision, absorption, and track-length keff cycle values are:
the k( collision) cycle values appear normally distributed at the 95 percent confidence level
the k(absorption) cycle values appear normally distributed at the 95 percent confidence level
the k(trk length) cycle values appear normally distributed at the 95 percent confidence level

| |
| the final estimated combined collision/absorption/track-length keff = 1.00061 with an estimated standard deviation of 0.00242 |
| |
| the estimated 68, 95, & 99 percent keff confidence intervals are 0.99816 to 1.00307, 0.99565 to 1.005568, and 0.99391 to 1.00732 |
| |
| the estimated collision/absorption neutron removal lifetime = 5.67E-09 seconds with an estimated standard deviation of 2.65E-11 |
| |

the estimated average keffs, one standard deviations, and 68, 95, and 99 percent confidence intervals are:

keff estimator keff standard deviation 68
collision 1.00123 0.00230 0.99890 to 1.00355 0.99653 to 1.00592 0.99489 to 1.00756
absorption 1.00093 0.00232 0.99869 to 1.00328 0.99619 to 1.00568 0.99454 to 1.00733
track length 0.99903 0.00264 0.99636 to 1.00171 0.99363 to 1.00444 0.99175 to 1.00632
col/absorp 1.00122 0.00237 0.99882 to 1.00362 0.99637 to 1.00607 0.99467 to 1.00777 0.9900
abs/trk len 1.00039 0.00233 0.99803 to 1.00276 0.99562 to 1.00517 0.99395 to 1.00684 0.7055%
col/trk len 1.00066 0.00234 0.99829 to 1.00303 0.99587 to 1.00546 0.99420 to 1.00713 0.7215
col/abs/trk len 1.00061 0.00242 0.99816 to 1.00307 0.99565 to 1.00658 0.99391 to 1.00732

N18 if the largest of each keff occurred on the next cycle, the keff results and 68, 95, and 99 percent confidence intervals would be:
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KCODE
keff estimator keff standard deviation 68
collision 1.00185 0.00231 0.99951 to 1.00418 0.99714 to 1.00656 0.99551 to 1.00819
absorption 1.00158 0.00233 0.99922 to 1.00394 0.99681 to 1.00634 0.99516 to 1.00799
track length 1.00005 0.00275 0.99727 to 1.00283 0.99443 to 1.00566 0.99249 to 1.00760
col/abs/trk len 1.00154 0.00244 0.99907 to 1.00400 0.99655 to 1.00651 0.99481 to 1.00824
N19 the estimated collision/absorption neutron lifetimes, one standard deviations, and 68, 95, and 99 percent confidence intervals are:
type lifetime(sec) standard deviation 68
removal 5.6719E-09 2.6470E-11 5.6451E-09 to 5.6987E-09 5.61T6E-09 to 5.7261E-09 5.5987E-09 to 5.7450E-09
capture 65.6113E-09 3.6592E-11 5.5743E-09 to 5.6484E-09 5.5363E-09 to 5.6863E-09 5.5102E-09 to 5.7125E-09
fission 5.2657E-09 3.2574E-11 5.2327E-09 to 5.2987E-09 5.1989E-09 to 5.3324E-09 6.1756E-09 to 5.3557E-09
escape 6.6896E-09 2.1967E-11 6.6673E-09 to 5.7118E-09 5.6445E-09 to 5.7346E-09 5.6288E-09 to 5.7503E-09
N20 1average keff results summed over 2 cycles each to form 16 batch values of keff ' print table 178
batch start end keff estimators by batch average keff estimators and deviations col/abs/tl keff
number cycle cycle k(coll) k(abs) k(track) k(coll) st dev k(abs) st dev k(track) st dev k(c/a/t) st dev
1 6 7 1.00061 1.00072 0.99519
2 8 9 0.97948 0.97946 0.98165 0.99005 0.01057 0.99009 0.01063 0.98842 0.00677
3 10 11 1.00951 1.01006 0.99964 0.99654 0.00891 0.99675 0.00905 0.99216 0.00541
4 12 13 1.00480 1.00380 0.99834 0.99860 0.00663 0.99851 0.00664 0.99371 0.00412 0.98551 0.00100
5 14 15 0.99192 0.99146 0.99297 0.99727 0.00531 0.99710 0.00533 0.99356 0.00320 0.98819 0.00272
6 16 17 0.99957 0.99857 1.01380 0.99765 0.00435 0.99735 0.00436 0.99693 0.00427 0.99537 0.00593
7 18 19 0.99460 0.99387 0.99978 0.99721 0.00370 0.99685 0.00372 0.99734 0.00363 0.99528 0.00500
8 20 21 0.99490 0.99460 0.99091 0.99692 0.00322 0.99657 0.00323 0.99654 0.00324 0.99478 0.00448
9 22 23 1.00139 1.00089 0.99663 0.99742 0.00288 0.99705 0.00289 0.99655 0.00286 0.99480 0.00408
10 24 25 0.98633 0.98548 0.98452 0.99631 0.00281 0.99589 0.00283 0.99634 0.00283 0.99518 0.00439
11 26 27 1.01106 1.01117 1.00458 0.99765 0.00287 0.99728 0.00291 0.99618 0.00269 0.99693 0.00428
12 28 29 1.00710 1.00636 1.00877 0.99844 0.00274 0.99804 0.00277 0.99723 0.00267 0.99735 0.00432
13 30 31 1.01596 1.012569 1.01737 0.99979 0.00286 0.99916 0.00278 0.99878 0.00290 0.99554 0.00341
14 32 33 1.01079 1.01300 1.00278 1.000567 0.00276 1.00015 0.00276 0.99907 0.00270 0.99838 0.00318
16 34 35 1.01037 1.01197 0.99858 1.00123 0.00265 1.00093 0.00269 0.99903 0.00252 0.99881 0.00301
average keff results summed over 3 cycles each to form 10 batch values of keff
batch start end keff estimators by batch average keff estimators and deviations col/abs/tl keff
number cycle cycle k(coll) k(abs) k(track) k(coll) st dev k(abs) st dev k(track) st dev k(c/a/t) st dev
1 6 8 0.995695 0.99553 0.99450
2 9 11 0.99712 0.99797 0.98982 0.99654 0.00059 0.99675 0.00122 0.99216 0.00234
3 12 14 0.99996 0.99861 0.99858 0.99768 0.00119 0.99737 0.00094 0.99430 0.00253

5-73 November 16, 1993



CHAPTER 5

0.99767
0.993567
1.00035
0.99769
1.00641
1.01626
1.00949

0.99728 1.00483 0.99765 0.00084 0.99735 0.00067
0.99237 0.99540 0.99683 0.00104 0.99635 0.00112
1.00054 0.996156 0.99742 0.00104 0.99705 0.00115
0.99622 0.99574 0.99744 0.00088 0.99693 0.00098
1.005679 1.00284 0.99844 0.00125 0.99804 0.00139
1.01393 1.01730 1.00031 0.00217 0.99980 0.00215
1.01111 0.99519 1.00123 0.002156 1.00093 0.00223

6 cycles each to form

keff estimators by batch

k(coll)
0.99497
0.99956
0.99597
0.99474
1.00985

KCODE

4 15 17
b 18 20
6 21 23
7 24 26
8 27 29
9 30 32
10 33 35

average keff results summed over

batch start end

number cycle cycle
1 6 10
2 11 16
3 16 20
4 21 25
5 26 30
6 31 35

1.01226

6 batch values of keff
average keff estimators and

k(abs) k(track) k(coll) st dev k(abs) st dev
0.99540 0.99185

0.99880 0.99527 0.99727 0.00229 0.99710 0.00170
0.99485 1.00276 0.99683 0.00139 0.99635 0.00124
0.99451 0.99149 0.99631 0.00111 0.99589 0.00099
1.00875 1.00620 0.99902 0.00284 0.99846 0.00268
1.01328 1.00663 1.00123 0.00320 1.00093 0.00330

average keff results summed over

6 cycles each to form 5 batch values of keff

0.99693 0.00318
0.99663 0.00248
0.99655 0.00203
0.99643 0.00172
0.99723 0.00169
0.99946 0.00268
0.99903 0.00244

deviations

k(track) st dev

©0.99356 0.00171

0.99663 0.00322
0.99534 0.00261
0.99752 0.00297
0.99903 0.00286

.99721 0.00125
.99676 0.00180
.99740 0.00157
.99740 0.00136
.99889 0.00171
.99995 0.00329
.00057 0.00323

-0 O 0 0 oo

col/abs/tl keff
k(c/a/t) st dev

0.99451 0.00157
0.99309 0.00356
0.99931 0.00503

batch start end keff estimators by batch average keff estimators and deviations col/abs/t]l keff
number cycle cycle k(coll) k(abs) k(track) k(coll) st dev k(abs) st dev k(track) st dev k(c/a/t) st dev
1 6 11 0.99654 0.99676 0.99216
2 12 17 0.99876 0.99796 1.00170 0.99765 0.00111  0.99735 0.00060 0.99693 0.00477
3 18 23 0.99696 0.99645 0.99577 0.99742 0.00068 0.99705 0.00046 0.99655 0.00278
4 24 29 1.00150 1.00100 0.99929 0.99844 0.00113 0.99804 0.00104 0.99723 0.00208 0.99436 0.00478
5 30 k13 1.01237 1.01252 1.00624 1.00123 0.00292 1.00093 0.00301 0.99903 0.00242 0.99234 0.01212

average keff results summed over 10 cycles each to form 3 batch values of keff

batch start end keff estimators by batch average keff estimators and deviations

number cycle cycle k(coll) k(abs) k(track) k(coll) st dev k(abs) st dev k(track) st dev
1 6 15 0.99727 0.99710 0.99356
2 16 26 0.99535 0.99468 0.99713 0.99631 0.00096 0.99589 0.00121 0.99534 0.00178
3 26 35 1.01106 1.01102 1.00642 1.00123 0.00495 1.00093 0.00509 0.99903 0.00383

average keff results summed over 15 cycles each to form 2 batch values of keff

batch start end keff estimators by batch average keff estimators and deviations

number cycle cycle k(coll) k(abs) k(track) k(coll) st dev k(abs) st dev k(track) st dev
1 6 20 0.99683 0.99635 0.99663
2 21 35 1.00562 1.00552 1.00144 1.00123 0.00439 1.00093 0.00458 0.99903 0.00241

N21 1average individual and combined collision/absorption/track-length keff results for 5 different batch sizes
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cycles per number of average keii estiimators and deviations normality average k(c/a/t) k{c/a/t) confidence intervais
keff batch k batches k(col) st dev k(abs) st dev k(trk) st dev co/ab/trk k(c/a/t) st dev 95
30 | 1.0012 0.0023 1.0009 0.0023 0.9990 0.0026 [95/95/95|1 1.00061 0.00242 0.99565-1.00558 0.99391-1.00732
2 15 | 1.0012 0.0026 1.0009 0.0027 0.9990 0.0025 195/95/951 0.99881 0.00301 0.99227-1.00536 0.98963-1.00799
3 10 | 1.0012 0.0021 1.0009 0.0022 0.9990 0.0024 |95/95/99| 1.00067 0.00323 0.99294-1.00821 0.98927-1.01188
5 6 | 1.0012 0.0032 1.0009 0.0033 0.9990 0.0029 |956/956/95| 0.99931 0.00503 0.98331-1.01531 0.96994-1.02868
§ | 1.0012 0.0029 1.0009 0.0030 0.9990 0.0024 195/99/95] 0.99234 0.01212 0.94021-1.04447 0.87210-1.11258
N22 1individual and average keff estimator results by cycle
xeff neutron keff estimators by cycle average keff estimators and deviations average k{c/a/t)
cycle histories k(coll) k(abs) k(track) k(coll) st dev k(abs) st dev k(track) st dev k(c/a/t) st dev fom
1 3000 | 1.36885 1.36936 1.34679 |
2 4120 | 1.14900 1.14870 1.14479 |
3 2514 | 1.06439 1.06444 1.06103 |
4 2715 | 1.02798 1.02879 1.02058 |
5 2895 | 0.99842 0.99852 0.99176 |
------------------- begin active keff cycles ---- -—=- -—= mmmme———eo-
6 2928 | 1.00487 1.00885 1.00412 |
7 3043 | 0.99636 0.99589 0.98626 | 1.00061 0.00426 1.00072 0.00483 0.99519 0.00893 |
8 2995 | 0.98661 0.98514 0.99311 | 0.99595 0.00528 0.99553 0.00589 0.99450 0.00520 |
9 2970 | 0.97235 0.97379 0.97019 | 0.99005 0.00698 0.99009 0.00685 0.98842 0.00710 | 0.98916 0.01156 11041
10 2982 | 1.01469 1.01665 1.00558 | 0.99497 0.00732 0.99540 0.00751 0.99185 0.00648 | 0.99142 0.01032 11093
11 3221 | 1.00434 1.00347 0.99369 | 0.99654 0.00617 0.99675 0.00628 0.99216 0.00530 | 0.99151 0.00835 13913
12 2972 | 0.99305 0.99316 0.99671 | 0.99604 0.00524 0.99623 0.00533 0.99281 0.00453 | 0.99276 0.00622 21639
13 2944 | 1.01656 1.01446 0.99998 | 0.99860 0.00521 0.99861 0.005156 0.99371 0.00402 | 0.99279 0.00563 23084
14 3019 | 0.99026 0.98823 0.99905 | 0.99768 0.00469 0.99737 0.00468 0.99430 0.00360 | 0.99373 0.00455 31595
15 2956 | 0.99358 0.99469 0.98689 | 0.99727 0.00422 0.99710 0.00419 0.99356 0.00330 | 0.99316 0.00408 35288
16 2932 | 1.00180 0.99913 0.99736 | 0.99768 0.00384 0.99729 0.00380 0.99390 0.00301 | 0.99315 0.00378 37525
17 2968 | 0.99733 0.99801 1.03023 | 0.99765 0.00350 0.99735 0.00347 0.99693 0.00409 | 0.99718 0.00366 36962
18 2899 | 0.99821 0.99850 1.00623 | 0.99769 0.00322 0.99744 0.00319 0.99765 0.00383 | 0.99750 0.00334 41148
19 2943 | 0.99098 0.98925 0.99333 | 0.99721 0.00302 0.99685 0.00301 0.99734 0.00356 | 0.99713 0.00316 42659
20 3028 | 0.99161 0.98937 0.98665 | 0.99683 0.00284 0.99635 0.00286 0.99663 0.00339 | 0.99680 0.00304 42903
21 2923 | 0.99828 0.99984 0.99518 | 0.99692 0.00266 0.99657 0.00267 0.99654 0.00317 | 0.99683 0.00276 48999
22 3073 | 0.98951 0.98862 0.98109 | 0.99649 0.00253 0.99610 0.00256 0.99563 0.00311 | 0.99633 0.00268 48852
23 2933 | 1.01326 1.01325 1.01217 | 0.99742 0.00256 0.99705 0.00269 0.99655 0.00307 | 0.99731 0.00271 45206

5-175

November 16, 1993



CHAPTER 5

KCODE
24 3151 | 0.97913 0.97848 0.97616 | 0.99646 0.00261 0.99607 0.00264 0.99542 0.00312 | 0.99638 0.00279 40094
25 2844 | 0.99353 0.99248 0.99387 | 0.99631 0.00248 0.99589 0.00261 0.99534 0.00296 | 0.99628 0.00266 41951
26 3069 | 1.02011 1.01769 1.01818 | 0.99744 0.00262 0.99693 0.00260 0.99643 0.00302 | 0.99686 0.00286 34499
27 3047 | 1.00201 1.00464 0.99098 | 0.99765 0.00250 0.99728 0.00251 0.99618 0.00289 | 0.99711 0.00266 38252
28 2981 | 0.993656 0.99189 0.99478 | 0.99748 0.00240 0.99705 0.00241 0.99612 0.00276 | 0.99698 0.00256 39336
29 3071 | 1.02056 1.02082 1.02276 | 0.99844 0.00249 0.99804 0.00261 0.99723 0.00287 | 0.99816 0.00267 34745
30 3035 | 1.01294 1.00872 1.00432 | 0.99902 0.00246 0.99846 0.00244 0.99752 0.00276 | 0.99824 0.00266 33705
31 2965 | 1.01898 1.01646 1.03042 | 0.99979 0.00248 0.99916 0.00245 0.99878 0.00294 | 0.99882 0.00272 30817
32 2930 | 1.01383 1.01663 1.01715 | 1.00031 0.00244 0.99980 0.00244 0.99946 0.00291 | 0.99994 0.00264 31742
33 2912 | 1.00775 1.00938 0.98841 | 1.00057 0.00237 1.00015 0.00238 0.99907 0.00283 | 1.00016 0.00254 32993
34 2964 | 1.01930 1.02036 0.99924 | 1.00122 0.00238 1.00084 0.00240 0.99907 0.00273 | 1.00060 0.00253 32226
35 3102 | 1.00143 1.00369 0.99793 | 1.00123 0.00230 1.00093 0.00232 0.99903 0.00264 | 1.00061 0.00242 33974
N23 the largest active cycle keffs by estimator are: the smallest active cycle keffs by estimator are:
collision 1.02056 on cycle 29 collision 0.97235 on cycle 9
absorption 1.02082 on cycle 29 absorption 0.97379 on cycle 9
track length 1.03042 on cycle 31 track length 0.97019 on cycle 9
N24 1plot of the estimated col/abs/track-length keff one standard deviation interval versus cycle number (| = final keff = 1.00061)
cycle active 0.98 0.99 1.00 1.01
number cycles |--------------eooeoo——- | | |
11 6 | k -=- ) | |
12 7 1 k ) | |
13 8 | (== k ) | |
14 9 | (--- k ) | |
15 10 | ( k ) | |
16 11 | ( k - ) |
17 12 | (-——-——-=--- | S it )] |
18 13 | ( k--- D) |
19 14 | ( k || {
20 15 + (- k-——------- ) | +
21 16 | (-- k ) | |
22 17 | ( k ) | |
23 18 | ( k ) | |
24 19 | (-==mmme- ) | |
25 20 | (---——--- k---=-=--- ) | |
26 21 | ( k ) | |
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lindividual and collision/absorption/track-length keffs

27
28
29
30
31
32
33
34
35

22
23
24
25
26
27
28
29
30

|
|
|
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|
|
|
|
|
|

0.

( k ) |
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( k- D)
(--m-m-m-k- )
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(-=mmmmme k-|------ )
( kl------)
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(===~ k------- )
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98 0.99 1.00 1

for different

numbers of

inactive .cycles skipped for fission source settling
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KCODE

|
|
|
+
|
|
|
|
|
|

.01

skip active active average keff estimators and deviations normality average k(c/a/t) k(c/a/t) confidence intervals
cycles cycles neutrons k(col) st dev k(abs) st dev k(trk) st dev co/ab/tl k(c/a/t) st dev 95
0 35 105024| 1.0184 0.0114 1.0182 0.0115 1.0153 0.0110 Ino/no/nol 1.01159 0.01175 0.98766-1.03552 0.97941-1.04377
1 34 102024 1.0081 0.0051 1.0079 0.0051 1.0056 0.0052 |no/no/nol 1.00718 0.00551 0.99594-1.01842 0.99206-1.02231
2 33 97904 1.0039 0.0029 1.0036 0.0030 1.0013 0.0031 |99/99/99| 1.00317 0.00311 0.99680-1.00953 0.99460-1.01173
3 32 95390 1.0020 0.0023 1.0017 0.0023 0.9995 0.0026 |95/95/95| 1.00128 0.00243 0.99630-1.00626 0.99457-1.00799
4 31 92675| 1.0011 0.0022 1.0009 0.0022 0.9988 0.0026 |95/95/95| 1.00050 0.00235 0.99568-1.00531 0.99401-1.00699
5 30s 89780| 1.0012 0.0023 1.0009 0.0023 0.9990 0.0026 |95/95/95| 1.00061 0.00242 0.99565-1.00558 0.99391-1.00732
6 29 868521 1.0011 0.0024 1.0008 0.0024 0.9989 0.0027 |95/95/95| 1.00045 0.002561 0.99529-1.00661 0.99347-1.00743
7 28 838091 1.0013 0.0026 1.0009 0.0025 0.9993 0.0028 [95/95/95| 1.00065 0.00267 0.99535-1.00595 0.99347-1.00783
8 27 80814] 1.0018 0.00256 1.0015 0.0025 0.9995 0.0029 |95/95/95| 1.00115 0.00262 0.99574-1.00657 0.93381-1.00850
9 26 77844| 1.0029 0.0023 1.0026 0.0023 1.0007 0.0028 |95/95/95| 1.00248 0.00243 0.99745-1.00752 0.99565-1.00932
10 25 74862| 1.0026 0.0023 1.0020 0.0024 1.0005 0.0029 |95/95/95| 1.00202 0.00251 0.99682-1.00723 0.99496-1.00909
11 24 71641] 1.0024 0.0024 1.0020 0.0025 1.0008 0.0030 |95/95/95| 1.00202 0.00260 0.99662-1.00743 0.99467-1.00938
12 23 68669| 1.0028 0.00256 1.0024 0.0025 1.0009 0.0031 |95/95/95| 1.00244 0.00270 0.99681-1.00807 0.99475-1.01013
13 22 65725| 1.0022 0.0025 1.0018 0.0026 1.0010 0.0032 |96/95/95| 1.00214 0.00273 0.99643-1.00784 0.99434-1.00993
14 21 62706] 1.0027 0.0026 1.0026 0.0026 1.0011 0.0034 (95/95/95| 1.00263 0.00280 0.99674-1.00852 0.99456-1.01070
15 20 69750| 1.0032 0.0027 1.0029 0.0027 1.0018 0.0035 |95/95/95| 1.00315 0.00291 0.99702-1.00929 0.99473-1.01158
16 19 66818| 1.0033 0.0028 1.0030 0.0029 1.0020 0.0037 196/95/95| 1.00320 0.00304 0.99676-1.00964 0.99433-1.01207
17 18 538601 1.0036 0.0030 1.0033 0.0030 1.0004 0.0036 [95/95/95| 1.00367 0.00350 0.99620-1.01113 0.99335-1.01399
18 17 50961 1.0039 0.0031 1.0036 0.0032 1.0001 0.0037 [95/95/95] 1.00432 0.00389 0.99597-1.01266 0.99274-1.01590
19 16 48018] 1.0047 0.0032 1.0045 0.0033 1.0005 0.0039 |95/96/95| 1.00535 0.00404 0.99661-1.01408 0.99317-1.01753
20 15 44990| 1.0056 0.0033 1.0055 0.0033 1.0014 0.0041 195/96/95| 1.00696 0.00410 0.99703-1.01489 0.99344-1.01849
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21 14 42067] 1.0061 0.0035 1.0059 0.0036 1.0019 0.0044 |95/95/96| 1.00664 0.00442 0.99692-1.01636 0.99292-1.
22 13 38994| 1.0074 0.0035 1.0073 0.0036 1.0035 0.0044 |95/95/95| 1.00741 0.00437 0.99767-1.01714 0.99357-1.
23 12 36061| 1.0069 0.0038 1.0068 0.0038 1.0028 0.0047 |95/95/96] 1.00681 0.00477 0.99602-1.01761 0.99131-1.
24 11 329101 1.0096 0.0031 1.0093 0.0031 1.0053 0.0043 |95/95/96| 1.00926 0.00388 1.00030-1.01821 0.99623-1.
25 10 30066| 1.0111 0.0030 1.0110 0.0029 1.0064 0.0046 [95/95/95| 1.01123 0.00370 1.00249-1.01997 0.99829-1.
26 9 269971 1.0101 0.0031 1.0103 0.0031 1.0051 0.0050 |95/95/95| 1.01039 0.00400 1.00069-1.02018 0.99554-1.
27 8 23950] 1.0111 0.0034 1.0110 0.0035 1.0069 0.0053 |95/95/96| 1.01111 0.00434 0.99996-1.02226 0.99362-1.
28 7 20969| 1.0136 0.0026 1.0137 0.0025 1.0086 0.0057 |95/95/95| 1.01422 0.00326 1.00516-1.02327 0.99920-1.
29 6 17898| 1.0124 0.0028 1.0126 0.0026 1.0062 0.0062 |95/956/956| 1.01274 0.00376 1.00077-1.02470 0.99078-1.
30 5 14863| 1.0123 0.0034 1.0133 0.0030 1.0066 0.0075 |95/95/95| 1.01421 0.00463 0.99428-1.03414 0.96823-1.
31 4 11898| 1.0106 0.0039 1.0125 0.0037 1.0007 0.0060 |95/95/96| 1.03037 0.07646 0.07133-1.98942 0.00000-5
32 3 8968| 1.0096 0.0052 1.0111 0.0049 0.9952 0.0034 |

a3 2 6056| 1.0104 0.0089 1.0120 0.0084 0.9986 0.0007 |

N26 the minimum estimated standard deviation

N27 the first active half of the problem skips 5 cycles and uses

the col/abs/trk-len keff, one standard deviation, and 68, 95, and 99 percent intervals for each active half of the problea are:
standard deviation
0.00304
0.00410
0.00242

N2s
inactive
cycles

©CO NN Db WN=O

November 16, 1993

problem
first half
second half
final result

active 0.99

cycles
35
34
33
32
31
30
29
28
27
26

keff
0.99680
1.00596
1.00061

1.00

68
0.99364 to 0.99995
1.00171 to 1.01022
0.99816 to 1.00307
the first and second half values of k(collision/absorption/track length) appear to be the same at the 95 percent confidence level.

1.01

for the col/abs/tl keff estimator occurs with
15 active cycles; the second half skips 20 and uses

0.99017 to 1.00342
0.99703 to 1.01489
0.99565 to 1.00558

1.02

4 inactive cycles and

02036
02125
02232
02229
02416
02523
02860
02924
03470
06019

.83389

31 active cycles.

15 cycles.

0.98751 to 1.00608
0.99344 to 1.01849
0.99391 to 1.00732

1.03

|
|
|
|
|
|
*
|
|
|
+
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iplot of the estimated col/abs/track-length keff one standard deviation interval by active cycle number (| = final keff = 1.00061)



N29

10 25 | (--|---k----- )
1 24 | (--1---k---=-)
12 23 | (-l----k----- )
13 22 | (--|---k--—---- )
14 21 | (- 1--=-k------ )
16 20 | (1----- O — )
16 19 | [ P— K-———mmm )
17 18 | (======- k------- )
18 17 | | 1% )
19 16 + | (m—==—=—=-—- K————————— )
20 15 | 1 ¢ X )
21 14 | | k
22 13 | | ( ———k
23 12 | | Kk
24 1 | | O S — )
25 10 | | (== K-——————— )
I- | [ | _—
0.99 1.00 1.01 1.02
1tally 1 nps = 105024
tally type 1 number of particles crossing a surface.

tally for neutrons

energy
1.0000E-07
4.0000E-07
1.0000E-06
3.0000E-06
1.0000E-05
3.0000E-05
1.0000E-04
5.5000E-04
3.0000E-03
1.7000E-02
1.0000E-01
4.0000E-01

0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
0.00000E+00
9.84211E-06
2.85292E-04
9.64254E-03
8.16418E-02

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.7130
0.1550
0.0255
0.0086

number of histories used for normalizing tallies =
surface 1

90000.00

—e e e - - - - - — ——
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9.0000E-01  1.34615E-01 0.0068
1.4000E+00 9.57863E-02 0.0088
3.0000E+00 1.62481E-01 0.0067
2.0000E+01  9.10982E-02 0.0095
total 5.76560E-01 0.0018
lanalysis of the results in the tally fluctuation chart bin (tfc) for tally 1 with nps = 105024 print table 160
normed average tally per history = 5.75660E-01 unnormed average tally per history = §.75560E-01
estimated tally relative error = 0.0018 estimated variance of the variance = 0.0000
relative error from zero tallies = 0.0013 relative error from nonzero scores = 0.0013
number of nonzero history tallies = 77627 efficiency for the nonzero tallies = 0.8625
history number of largest tally = 61063 largest unnormalized history tally = 1.61792E+00
(largest tally)/(average tally) = 2.81103E+00 (largest tally)/(avg nonzero tally)= 2.42458E+00
(confidence interval shift)/mean = 0.0000 shifted confidence interval center = §.75560E-01
if the largest history score sampled so far were to occur on the very next history, the tfc bin quantities would change as follows:
nps = 89780 for this table because 6 keff cycles and 16244 histories vere skipped before tally accumulation.
estimated quantities value at nps value at nps+l value(nps+1)/value(nps)-1.
mean 6.75660E-01 5.75572E-01 0.000020
relative error 1.84913E-03 1.84181E-03 -0.003961
variance of the variance 1.31221E-05 1.32743E-05 0.011595
shifted center 65.75560E-01 5.75560E-01 0.000000
figure of merit 5.80985E+04 5.85615E+04 0.007970

the estimated slope of the 43 largest tallies starting at 1.06911E+00 appears to be decreasing at least exponentially.
the empirical history score probability density function appears to be increasing at the largest history scores: please examine.
the large score tail of the empirical history score probability density function appears to have no unsampled regions.

results of 10 statistical checks for the estimated answer for the tally fluctuation chart (tfc) bin of tally 1

tfc bin --mean-- = --------< relative error variance of the variance---- --figure of merit-- -pdf-
behavior behavior value decrease decrease rate value decrease decrease rate value behavior slope
desired random <0.10 yes 1/sqrt (nps) <0.10 yes 1/nps constant random >3.00
observed random 0.00 yes yes 0.00 yes yes constant random 10.00
passed? yes yes yes yes yes yes yes yes yes yes

this tally meets the statistical criteria used to form confidence intervals: check the tally fluctuation chart to verity.

the results in other bins associated with this tally may not meet these statistical criteria.

estimated asymmetric confidence intervals(1,2,3 sigma): 5.7450E-01 to 5.7662E-01; 5.7343E-01 to 5.7769E-01; 5.7237E-01 to 5.7875E-01
estimated symmetric confidence intervals(1,2,3 sigma): 5.7450E-01 to 5.7662E-01; 5.7343E-01 to 5.7769E-01; 5.7237E-01 to 5.7875E-01
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SKIP TABLES 161 AND 162 IN OUTPUT
SKIP 400 LINES IN OUTPUT
105024

N30

1tally 6

tally type 6

nps =

tally for neutrons

number of histories used for normalizing tallies =

cell 1
energy
.0000E-07
.0000E-07
.0000E-06
. 0000E-06
. 0000E-05
.0000E-05
.0000E-04
.5000E-04
.0000E-03
.T000E-02
.0000E-01
.0000E-01
.0000E-01
.4000E+00
. 0000E+00
.0000E+01
total

N W e O o e WO e W W e e

-Ww = DN NDOOOOOOOO

1

cell:

1

5.19311E+04

.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.49585E-08
.90383E-07
.36430E-06
.28619E-05
. 18850E-04
.78896E-04
.94200E-04
.42771E-04
.76356E-04
.25651E-03

0
0
0
0
0
o
0
1
0
o
0
0
0
0
0
0

0

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.3362
.0958
.0209
.0080
.0063
.0075
.0067
.0081
.0019

track length estimate of heating. units mev/gram

90000.00

lanalysis of the results in the tally fluctuation chart bin (tfc) for tally 6 with nps =
normed average tally per history =
estimated tally relative error =

relative error from zero tallies
number of nonzero history tallies
history number of largest tally
(largest tally)/(average tally)
(confidence interval shift)/mean

1.25651E-03
0.0019
0.0002
89780
19010
6.85660E+00
0.0000

unnormed average tally per history
estimated variance of the variance
relative error from nonzero scores
efficiency for the nonzero tallies

CHAPTER 5

largest unnormalized history tally = 3.82156E+02
(largest tally)/(avg nonzero tally)= §.84228E+00

shifted confidence interval center

5 Nl

KCODE

105024 print table 160
= 6.52622E+01
= 0.0000
= 0.0019
= 0.9976
= 1.25652E-03
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if the largest history score sampled so far were to occur on the very next history, the tfc bin quantities would change as follows:
nps = 89780 for this table because & keff cycles and 16244 histories were skipped before tally accumulation.

estimated quantities value at nps value at nps+i value(nps+1)/value(nps)-1.
mean 1.25651E-03 1.25658E-03 0.000054
relative error 1.945564E-03 1.93916E-03 -0.003282
variance of the variance 3.45061E-05 3.52800E-056 0.022428
shifted center 1.256562E-03 1.25652E-03 0.000000
figure of merit 5.24831E+04 5.28294E+04 0.006597

the estimated slope of the 200 largest tallies starting at 2.12477E+02 appears to be decreasing at least exponentially.
the large score tail of the empirical history score probability demsity function appears to have no unsampled regions.

resulte of 10 statistical checks for the estimated answer for the tally fluctuation chart (tfc) bin of tally 6

tfc bin --mean~- = --=-=---= relative error--------- ----variance of the variance---- --figure of merit-- -pdf-
behavior behavior value decrease decrease rate value decrease decrease rate value behavior slope
desired random <0.10 yes 1/8qrt(nps) <0.10 yes 1/nps constant random >3.00
observed random 0.00 yes yes 0.00 yes yes constant randoma 10.00
passed? yes yes yes yes yes yes yes yes yes yes

this tally meets the statistical criteria used to form confidence intervals: check the tally fluctuation chart to verify.
the results in other bins associated with this tally may not meet these statistical criteria.
estimated asymmetric confidence intervals(1,2,3 sigma): 1.2541E-03 to 1.2590E-03; 1.2516E-03 to 1.2614E-03; 1.2492E-03 to 1.2639E-03
estimated symmetric confidence intervals(1,2,3 sigma): 1.2541E-03 to 1.2590E-03; 1.26516E-03 to 1.2614E-03; 1.2492E-03 to 1.2638E-03
SKIP TABLES 161 AND 162 IN OUTPUT
N31 1tally 7 nps = 105024
tally type 7 track length estimate of fission heating. units mev/gram
tally for neutrons
number of histories used for normalizing tallies = 90000.00
masses
cel 1
5.19311E+04
cell 1
energy
1.0000E-07  0.00000E+00 0.0000
4.0000E-07 0.00000E+00 0.0000
1.0000E-06 0.00000E+00 0.0000
3.0000E-06 0.00000E+00 0.0000
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.0000E-05
.0000E-05
. 0000E-04
.5000E-04
.0000E-03
. T000E-02
.0000E-01
.0000E-01
.0000E-01
.4000E+00
. 0000E+00
.0000E+01
total

N W= O o= o WO o W

=W NNMNNB_BMDNOMNNMNOOO

1

.00000E+00
.00000E+00
.00000E+00
.65316E-08
.02845E-07
.51941E-06
.56578E-06
.32917E-04
.96302E-04
.06675E-04
.64862E-04
.86021E-04
.33518E-03

Co0O0O0O0COCOORMKOOCCOC

.0000
.0000
.0000
.0000

3362

.0958
.0209
.0080
.0063
.0075
.0057
.0081
0.

0019

lanalysis of the results in the tally fluctuation chart bin (tfc) for tally 7 with nps =
normed average tally per history
estimated tally relative error
relative error from zero tallies
number of nonzero history tallies
history number of largest tally
(largest tally)/(average tally)
(confidence interval shift)/mean

if the largest history score sampled so far were to occur on the very next history, the tfc bin
5 keff cycles and 15244 histories were skipped
value(nps+1)/value(nps)-1.

nps = 89780 for this table because

estimated quantities

mean

relative error
variance of the variance
shifted center
figure of merit

the estimated slope of the 200 largest

1.33518E-03
0.0019
0.0002
89780
19010
5.87012E+00
0.0000

value at nps
1.33618E-03
1.94640E-03
3.45788E-05
1.33519E-03
5.24369E+04

unnormed average tally per history
estimated variance of the variance
relative error from nonzero scores
efficiency for the nonzero tallies
largest unnormalized history tally
(largest tally)/(avg nonzero tally
shifted confidence interval center

value at nps+i
1.33526E-03
1.94002E-03
3.53585E-05
1.33519E-03
6.27823E+04

105024 print table 160
= 6.93376E+01

= 0.0000

0.0019

0.9976

4.07020E+02

)= 5.85577TE+00

= 1.33519E-03

before tally accumulation.

0.000054
-0.003278
0.022549
0.000000
0.006587

the large score tail of the empirical history score probability density function appears to have no unsampled regions.

CHAPTER 5
KCODE

quantities would change as follows:

tallies starting at 2.26966E+02 appears to be decreasing at least exponentially.

results of 10 statistical checks for the estimated ansver for the tally fluctuation chart (tfc) bin of tally 7
tfc bin --mean-- = -==--=--- relative error variance of the variance---- ~--figure of merit-- -pdf-
behavior behavior value decrease decrease rate value decrease decrease rate value behavior slope
desired random <0.10 yes 1/8qrt(nps) <0.10 yes 1/nps constant random >3.00
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observed random 0.00 yes yes 0.00 yes yes constant random 10.00
passed? yes yes yes yes yes yes yes yes yes yes

this tally meets the statistical criteria used to form confidence intervals: check the tally fluctuation chart to verify.
the results in other bins associated with this tally may not meet these statistical criteria.
estimated asymmetric confidence intervals(1,2,3 sigma): 1.3326E-03 to 1.3378E-03; 1.3300E-03 to 1.3404E-03; 1.3274E-03 to 1.3430E-03
estimated symmetric confidence intervals(1,2,3 sigma): 1.3326E-03 to 1.3378E-03; 1.3300E-03 to 1.3404E-03; 1.3274E-03 to 1.3430E-03
SKIP TABLES 161 AND 162 IN OUTPUT
N32 1tally 14 nps = 1065024
+ total neutron fluence, total fissions, total fission neutrons,
total neutron absorptions, and neutron heating (mev/gram)
tally type 4 track length estimate of particle flux.
tally for neutrons
number of histories used for normalizing tallies = 90000.00
multiplier bin 1: 2.76185E+03

multiplier bin 2: -2.76185E+03 10 -6

multiplier bin 3: -2.76185E+03 10 -6 -7

multiplier bin 4: -2.76185E+03 10 -2

multiplier bin 6: -5.31830E-02 10 1 -4

volumes

cell: 1
2.76185E+03
cell 1
mult bin: 1 2 3 4 5
energy

1.0000E-07  0.00000E+00 0.0000 0.00000E+00 0.0000 0.00000E+00 0.0000 0.00000E+00 0.0000 0.00000E+00 0.0000
4.0000E-07 0.00000E+00 0.0000 0.00000E+00 0.0000 0.00000E+00 0.0000 0.00000E+00 0.0000 0.00000E+00 0.0000
1.0000E-06 0.00000E+00 0.0000 0.00000E+00 0.0000 0.00000E+00 0.0000 0.00000E+00 0.0000 0.00000E+00 0.0000
3.0000E-06 0.00000E+00 0.0000 0.00000E+00 0.0000 0.00000E+00 0.0000 0.00000E+00 0.0000 0.00000E+00 0.0000
1.0000E-05 0.000V0E+00 0.0000 0.00000E+00 0.0000 0.00000E+00 0.0000 0.00000E+00 0.0000 0.00000E+00 0.0000
3.0000E-05 0.00000E+00 0.0000 0.00000E+00 0.0000 0.00000E+00 0.0000 0.00000E+00 0.0000 0.00000E+00 0.0000
1.0000E-04 0.00000E+00 0.0000 0.00000E+00 0.0000 0.00000E+00 0.0000 0.00000E+00 0.0000 0.00000E+00 0.0000
5.5000E-04 8.28426E-06 1.0000 7.61728E-06 1.0000 1.85610E-05 1.0000 &5.73198E-06 1.0000 2.49585E-08 1.0000
3.0000E-03  1.89333E-04 0.3453 5.82373E-05 0.3362 1.41906E-04 0.3362 2.74430E-05 0.3304 1.90383E-07 0.3362
1.7000E-02 5.61884E-03 0.0968 7.23330E-04 0.0958 1.76263E-03 0.0958 3.07280E-04 0.0962 2.36430E-06 0.0958
1.0000E-01 1.66146E-01 0.0209 1.31086E-02 0.0209 3.19916E-02 0.0209 4.25862E-03 0.0212 4.28619E-05 0.0209
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4.0000E-01
9.0000E-01
1.4000E+00
3.0000E+00
2.0000E+01
total

1.11409E+00 0.0079
1.61458E+00 0.0063
1.06482E+00 0.0075
1.76402E+00 0.0057
9.563815E-01 0.0080
6.68329E+00 0.0019

.68716E-02
.50745E-02
.93417E-02
.04758E-01
.34094E-02
3.83353E-01

= ctn OO

lanalysis of the results in the tally fluctuation

normed average tally

per history =

estimated tally relative error =
relative error from zero tallies =
nuaber of nonzero history tallies =
history number of largest tally =
(largest tally)/(average tally) =

(contidence interval

nps =

shift)/mean

89780 for this table because

estimated quantities

relative error
variance of the variance
shifted center
figure of merit

6.68329E+00
0.0019
0.0002
89780
49932
4.90422E+00
0.0000

value at nps
6.68329E+00
1.92199E-03
3.05523E-05
6.68331E+00
5.37777E+04

0.0080
0.0063
0.0075
0.0057
0.0081
0.0019

chart bin (tfc) for tally
unnormed average tally per history
estimated variance of the variance = 0.
relative error from nonzero scores =
efficiency for the nonzero tallies =
largest unnormalized history tally =
(largest tally)/(avg nonzero tally)= 4.
shifted confidence interval center
if the largest history score sampled so far were to occur on the very next history, the tfc bin
15244 histories vere skipped before tally accumulation.
value(nps+1)/value(nps)-1.

5 keff cycles and

1.64411E-01
2.12250E-01
1.50976E-01
2.76979E-01
1.60503E-01
9.99034E-01

value at nps+1

0.0080 1.44496E-02 0.0082
0.0063 1.20335E-02 0.0063
0.0075 5.36691E-03 0.0076
0.0067 4.68168E-03 0.0058
0.0082 1.08038E-03 0.0084
0.0019 4.22111E-02 0.0036

14 with nps = 105024

CHAPTER 5
KCODE

2.18850E-04 0.0080

2.78896E-04
1.94200E-04

0.0063
0.0075

3.42771E-04 0.0057
1.76356E-04 0.0081

1.25651E-03

0.0019

print table 160

= 1.84583E+04
0000
0.0019
0.9976
9.05235E+04
89224E+00
= 6.68331E+00
quantities would change as follows:

6.68358E+00 0.000043
1.91528E-03 -0.003491
3.09778E-05 0.013930
6.68331E+00 0.000000
5.41551E+04 0.007019

the estimated slope of the 200 largest tallies starting at 5.83117E+04 appears to be decreasing at least exponentially.
of the empirical history score probability density function appears to have no unsampled regions.

the large score tail

results of

tfc bin --mean--
behavior behavior
desired random
observed random
passed? yes

10 statistical checks for the estimated answer for the tally fluctuation chart (tfc) bin of tally
--------- relative error---------

value decrease decrease rate value
<0.10 yes 1/8qrt (nps) <0.10
0.00 yes yes 0.00

yes yes yes yes

----variance of the variance----

decrease decrease rate
yes 1/nps
yes yes
yes yes

--figure of merit--

value
constant
constant

yes

14
-pdf-
behavior slope
random >3.00
random 10.00
yes yes

this tally meets the statistical criteria used to form confidence intervals: check the tally fluctuation chart to verify.
bins associated with this tally may not meet these statistical criteria.
confidence intervals(1,2,3 sigma): 6.6705E+00 to 6.6962E+00; 6.6576E+00 to 6.7090E+00; 6.6448E+00 to 6.7218E+00
confidence intervals(1,2,3 sigma): 6.6704E+00 to 6.6961E+00; 6.6576E+00 to 6.7090E+00; 6.6448BE+00 to 6.7218E+00

the results in other
estimated asymmetric
estimated symmetric
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. 0000
.0000
.4583
.3808
L1739
.0748
.0308
.0145
.0123
.0094

0081

.0072
.0100
.0101
.0108
.0124
.0117
.0287

KCODE
SKIP TABLES 161 AND 162 IN OUTPUT
N33 1tally 24 nps = 105024
+ total neutron fluence, total fissions, total fission neutrons,
total neutron absorptions, and neutron heating (mev/gram)
tally type 4 track length estimate of particle flux.
tally for neutrons
number of histories used for normalizing tallies = 90000 .00
sultiplier bin 1: 2.76185E+03
multiplier bin 2: -2.76185E+03 10 -6
multiplier bin 3: -2.76186E+03 10 -6 -7
multiplier bin 4: -2.76185E+03 10 -2
multiplier bin 6: -5.31830E-02 10 1 -4
volumes
cell: 1
2.76185E+03
cell 1
mult bin: 1 2 3 4
energy
1.6700E-04 8.28426E-06 1.0000 7.61728E-06 1.0000 1.85610E-05 1.0000 5.73198E-06 1
4.5400E-04 0.00000E+00 0.0000 0.00000E+00 0.0000 0.00000E+00 0.0000 0.00000E+00 O
1.2350E-03 7.06185E-05 0.4607 2.83773E-05 0.4821 6.91465E-05 0.4821 1.50679E-05 O
3.3500E-03 1.78212E-04 0.3771  4.32739E-05 0.3750 1.05446E-04 0.3750 1.73262E-05 O
9.1200E-03  1.48487E-03 0.1764 2.36775E-04 0.1719 5.76949E-04 0.1719 1.02096E-04 0
2.4800E-02 1.05798E-02 0.0747 1.12856E-03 0.0749 2.74997E-03 0.0749 4.T0686E-04 0
6.T600E-02 7.40875E-02 0.0306 6.16949E-03 0.0306 1.50476E-02 0.0306 2.11415E-03 0
1.8400E-01 3.56185E-01 0.0143  2.43482E-02 0.0144 5.95710E-02 0.0144 6.52291E-03 0
3.0300E-01 4.53511E-01 0.0123 2.70026E-02 0.0123 6.63693E-02 0.0123 §5.85650E-03 0
65.0000E-01  7.72843E-01 0.0094 4.24223E-02 0.0094 1.04900E-01 0.0094 7.33517E-03 O
8.2300E-01  1.03035E+00 0.0080 5.38314E-02 0.0080 1.34422E-01 0.0080 7.40464E-03 0.
1.3530E+00 1.18163E+00 0.0071 6.51549E-02 0.0071 1.65368E-01 0.0071 6.26574E-03 0
1.7380E+00 6.24329E-01 0.0100 3.64327E-02 0.0100 9.41229E-02 0.0100 2.19528E-03 0
2.2320E+00 6.039356E-01 0.0100 3.65399E-02 0.0100 9.60086E-02 0.0100 1.60798E-03 0O
2.8650E+00 5.33765E-01 0.0108 3.16250E-02 0.0108 8.54763E-02 0.0108 1.07163E-03 O
3.6800E+00  4.34445E-01 0.0123  2.44189E-02 0.0123 6.84404E-02 0.0123 6.59923E-04 O
6.0700E+00 4.87417E-01 0.0116 2.53571E-02 0.0116 7.58489E-02 0.0116 5.01712E-04 O
7.7900E+00 8.52832E-02 0.0285 5.83438E-03 0.0288 1.97069E-02 0.0288 65.36576E-05 0
November 16, 1993 5 - 86
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.49585E-08
.00000E+00
.27910E-08
.41432E-07
.T3816E-07
.68937E-06
.01716E-05
.96352E-05
.83682E-05
.38933E-04
.T6485E-04
.13358E-04
.19051E-04
.19597E-04
.03546E-04
.01073E-05
.38087E-05
.94623E-05

©CO0O0O0O0COCOCOOOCOCOCOCOCOOO =

.0000
.0000
.4822

3750

L1719
.0749

0306

.0144
.0123
.0094
.0080
.0071
.0100
.0100
.0108
.0123

0116

.0288



1.0000E+01
1.2000E+01
1.3500E+01
1.5000E+01
2.0000E+01
total

2.71914E-02 0.0499
5.41664E-03 0.1109
4.46070E-04 0.3665
7.24387E-05 0.6013
6.48325E-05 0.7140
6.68329E+00 0.0019

lanalysis of the results in the tal
normed average tally per history
estimated tally relative error
relative error f-om zero tallies
nuaber of nonzervu history tallies
history number ox largest tally
(largest tally)/(average tally)
(confidence interval shift)/mean

2.27624E-03
4.43948E-04
3.85331E-05
7.04338E-06
6.01033E-06
3.83353E-01
ly fluctuation
= 6.68329E+00
= 0.0019
= 0.0002
- 89780
49932
4.90422E+00
= 0.0000

0.0499
0.1109
0.3678
0.6026
0.7138
0.0019

8.26245E-03 0.0499
1.74862E-03 0.1109
1.61584E-04 0.3683
3.10521E-06 0.6033
2.94613E-05 0.7141
9.99034E-01 0.0019

9.94109E-06 0.
1.00878E-06 0.
5.95062E-08 0.
8.16829E-09 0.
4.29948E-09 0.
4.22111E-02 0.

0509
1121
3663
6996
7130
0036

7.60786E-06 0.0499
1.48693E-06 0.1109
1.30061E-07 0.3679
2.39943E-08 0.6027
2.04417E-08 0.7138
1.25651E-03 0.0019

chart bin (tfc) for tally 24 with nps =
unnormed average tally per history
estimated variance of the variance
relative error from nonzero scores
efficiency for the nonzero tallies
largest unnormalized history tally =
(largest tally)/(avg nonzero tally)=
shifted confidence interval center

106024

print table 160
1.84583E+04

0.0000

0.0019

0.9976

9.05236E+04
4.89224E+00

6.68331E+00

CHAPTER 5
KCODE

if the largest history score sampled 8o far were to occur on the very next history, the tfc bin quantities would change as follows:

89780 for this table bec
estimated quantities
mean
relative error
variance of the variance
shifted center
figure of merit
the estimated slope of the 200 lar

nps =

ause
value at nps
6.68329E+00
1.92199E-03
3.056523E-05
6.68331E+00
5.377T7TE+04
gest

5 keff cycles and

value at nps+1

15244 histories were skipped before tally accumulation.
value(nps+1)/value(nps)-1.

6.68358E+00 0.000043
1.915628E-03 -0.003491
3.09778E-05 0.013930
6.68331E+00 0.000000
5.41551E+04 0.007019

the large score tail of the empirical history score probability density function appears to have no unsampled regions.

tallies starting at 65.83117E+04 appears to be decreasing at least exponentially.

results of 10 statistical checks for the estimated answer for the tally fluctuation chart (tfc) bin of tally 24

tfc bin --mean-- = --===--=- relative error variance of the variance---- --figure of merit-- -pdf-
behavior behavior value decrease decrease rate value decrease decrease rate value behavior slope
desired random <0.10 yes 1/8qrt (nps) <0.10 yes 1/nps constant random >3.00
observed random 0.00 yes yes 0.00 yes yes constant randoa 10.00
passed? yes yes yes yes yes yes yes yes yes yes

this tally meets the statistical criteria used to form confidence intervals: check the tally fluctuation chart to verify.
the results in other bins associated with this tally may not meet these statistical criteria.
estimated asymmetric confidence intervals(1,2,3 sigma): 6.6705E+00 to 6.6962E+00; 6.6576E+00 to 6.7090E+00; 6.6448E+00 to 6.7218E+00
estimated symmetric confidence intervals(1,2,3 sigma): 6.6704E+00 to 6.6961E+00; 6.65676E+00 to 6.7090E+00; 6.6448E+00 to 6.7218E+00
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SKIP TABLES 161 AND 162 IN OUTPUT
i1status of the statistical checks used to form confidence intervals for the mean for each tally bin
of statistical checks for the tfc bin (the first check not passed is listed) and error magnitude check for all bins

tally
1

2

14

24

result
passed
missed
passed
missed
passed
missed
passed
missed
passed
missed
passed
missed
passed
missed

the
all
the
all
the
all
the
all
the
all
the
all
the
all

the 10 statistical

the tally bins with zeros may or may not be correct: compare the source, cutoffs, multipliers, et cetera with the tally bins.

10 statistical checks for the tally fluctuation chart
bin error check: 17 tally bins had 8 bins with
10 statistical checks for the tally fluctuation chart
bin error check: 17 tally bins had 8 bins with
10 statistical checks for the tally fluctuation chart
bin error check: 17 tally bins had 7 bins with
10 statistical checks for the tally fluctuation chart
bin error check: 17 tally bins had 7 bins with
10 statistical checks for the tally fluctuation chart
bin error check: 17 tally bins had 7 bins with
10 statistical checks for the tally fluctuation chart
bin error check: 85 tally bins had 35 bins with
10 statistical checks for the tally fluctuation chart
bin error check: 120 tally bins had 5 bins with

bin result
zeros and
bin result
zeros and
bin result
zeros and
bin result
zeros and
bin result
zeros and
bin result
zeros and
bin result
zeros and

2 bins with relative errors exceeding 0.10

2 bins
2 bins
2 bins
2 bin;
10 bins

40 bins

with

with

with

with

with

with

relative

relative

relative

relative

relative

relative

checks are only for the tally fluctuation chart bin and do not apply to other tally bins.

varning. 7 of the 7 tallies had bins with relative exrors greater than recommended.
N34 1tally fluctuation charts
tally 1 tally 2

nps mean error vov slope fom mean error vov slope fom

8000 0.0000E+00 0.0000 0.0000 0.0 0.0E+00 0.0000E+00 0.0000 0.0000 0.0 0.0E+00
16000 5.7372E-01 0.0199 0.0016 10.0 59018 9.3436E-04 0.0286 0.0136 10.0 28735
24000 5.7938E-01 0.0058 0.0001 10.0 60040 9.2937E-04 0.0101 0.0163 3.1 20138
32000 5.7815E-01 0.0042 0.0001 10.0 60643 9.2348E-04 0.0070 0.0065 3.6 21640
40000 5.7697E-01 0.0035 0.0000 10.0 659820 9.1828E-04 0.0059 0.0054 3.1 209256
48000 5.7769E-01 0.0030 0.0000 10.0 59274 9.2043E-04 0.0052 0.0042 3.0 20454
66000 5.7762E-01 0.0027 0.0000 10.0 58082 9.2148E-04 0.0046 0.0033 2.9 20353
64000 5.7782E-01 0.00256 0.0000 10.0 58287 9.2432E-04 0.0043 0.0027 3.2 20065
72000 5.7783E-01 0.0023 0.0000 10.0 58859 9.2387E-04 0.0040 0.0023 3.7 20211
80000 5.7745E-01 0.0022 0.0000 10.0 58546 9.2274E-04 0.0037 0.0020 4.0 20154
88000 65.7700E-01 0.0020 0.0000 10.0 58634 9.2238E-04 0.0035 0.0018 4.5 20075
96000 5.7637E-01 0.0019 0.0000 10.0 58320 9.2221E-04 0.0033 0.0016 6.7 19920
104000 5.7655E-01 0.0019 0.0000 10.0 68030 9.2137E-04 0.0032 0.0016 7.3 19867
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.0000E+00
.4442E-03
.4128E-03
.4070E-03
.4103E-03
.4080E-03
.4166E-03
.4121E-03
.4104E-03
.4135E-03
.4151E-03
.4202E-03
.4199E-03

tally

error
0.0000
0.0211
0.0062
0.0044
0.0036
0.0032
0.0029
0.0026
0.0024
0.0023
0.0021
0.0020
0.0019

errors

exrrors

exrrors

errors

errors

errors

vov
0.0000
0.0025
0.0003
0.0002
0.0001
0.0001
0.0001
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000

exceeding 0.10
exceeding 0.10
exceeding 0.10
exceeding 0.10
exceeding 0.10

exceeding 0.10

slope fom
0.0 0.0E+00
10.0 52575
10.0 53679
10.0 54935
10.0 54602
10.0 54270
10.0 53537
10.0 53425
10.0 53909
10.0 53832
10.0 53902
10.0 53726
10.0 53733



105024

nps
8000
16000
24000
32000
40000
48000
56000
64000
72000
80000
88000
96000
104000
105024

nps
8000
16000
24000
32000
40000
48000
§6000
64000
72000
80000
88000
96000
104000
105024

dump no.

5.

- e et b e e b e e e e e e O

6

7656E-01 0.0018

.0000E+00
.2689E-03
.2505E-03
.2488E-03
.2514E-03
.2504E-03
.2543E-03
.2627E-03
.2618E-03
.2532E-03
.2542E-03
.2568E-03
.2565E-03
.2565E-03

0.0000E+00
6.7504E+00
6.6639E+00
6.647TE+00
6.6570E+00
6.6506E+00
6.
6
6
6
6
6
6

6715E+00

.6620E+00
.6572E+00
.6659E+00
.6701E+00
.6843E+00
.6834E+00
.6833E+00
SES854058080008888080088

cCo0OO0COo0O0CO0O0OO0OOCOOCOOCOCOC

tally
error
.0000
.0214
.0063
.0045
.0037
.0032
.0029
0027
.0024
.0023
.0022
.0021
.0020
.0019
tally

error

0.

0
0
0
0
0
0
0.
0
0
0
0
0
0

.0000
.0211
.0062
.0044
.0036
.0032
0029
.0026
.0024
.0023
.0021
.0020
.0019
0019

0.0000
6
vov
0.0000
0.0038
0.0004
0.0002
0.0001
0.0001
0.0001
0.0001
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
24
vov
0.0000
0.0025
0.0003
0.0002
0.0001
0.0001
0.0001
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

10.0 58099
slope fom
0.0 0.0E+00
8.1 51281
10.0 52330
10.0 53359
10.0 53219
10.0 52932
10.0 52237
10.0 52137
10.0 52613
10.0 52539
10.0 52571
10.0 52425
10.0 52445
10.0 52483
slope fom
0.0 0.0E+00
10.0 525675
10.0 53679
10.0 54935
10.0 54602
10.0 54270
10.0 53537
10.0 53425
10.0 53909
10.0 53832
10.0 53902
10.0 53726
10.0 53733
10.0 563778

2 on file runtpe
4 varning messages so far.

SHEBISSEISS5EBBESS0RSERIRESBE0SE 0400800400 ELER0EREEES 400044
5016855

nps = 105024

9.

bt b b b bk b e b b e e e O

2151E-04

mean

.0000E+00
.3485E-03
.3288E-03
.3270E-03
.3298E-03
.3287E-03
.3328E-03
.3311E-03
.3301E-03
.3316E-03
.3327E-03
.3355E-03
.3352E-03
.3352E-03

coll =

0.0032
tally
error
.0000
.0214
.0063
.0045
.0037
.0032
.0029
.0027
.0024
.0023
.0022
.0021
.0020
.0019

Co0OO0O0O0O0OO0CCOCOOCOOOCOC

0.

©COo0OO0O0O0O0OO0CCO0OO0COCOOOC OO

0014

vov

.0000
.0038

.0002
.0001
.0001
.0001
.0001
.0001
.0000
.0000
.0000
.0000
.0000

416304

coocooocoocoocooN

19883

fom

.0E+00

51243
62273
53305
53167
52883
52192
52092
52667
52492
62524
52379
52399
52437

cta =

oo 00O

5.23

nrn =

.4199E-03 0.0019
tally

mean error
.0000E+00 0.0000
.7504E+00 0.0211
.6639E+00 0.0062
.64TTE+00 0.0044
.6870E+00 0.0036
.6506E+00 0.0032
.67T1SE+00 0.0029
.6620E+00 0.0026
.65T2E+00 0.0024
.6659E+00 0.0023
.6T01E+00 0.0021
.6843E+00 0.0020
.6834E+00 0.0019
.6833E+00 0.0019

©coeoocoo0oo0oco0coo0ccoceoo0oo0

.0000

14
vov

.0000
.0025
.0003
.0002
.0001
.0001
.0001
.0001
.0000
.0000
.0000
.0000

0000
0000
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53778

fom

.0E+00

52575
53679
54935
54602
54270
635637
653425
53909
53832
53902
53726
63733
53778
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run terminated when 35 kcode cycles were done.
computer time = 5.25 minutes
mcnp version 4a 10/01/93 10/01/93 11:10:32 probid =  10/01/93 11:04:27
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Notes:

This representation of a one-dimensional Godiva was suggested by
the Nuclear Criticality Safety Group HS-6 and is from LA-4208.

The KCODE card indicates this is a criticality calculation with a
nominal source size of 3000 particles, an estimate of k. s of 1.0, skip
5 cycles before averaging k.¢y or tallying, and run a total of 35 cycles
if computer time permits. A tally batch size of 30 is large enough
to ensure that the standard normal distribution confidence interval
statements at the 1o and 20 levels should apply. A total of 3000
particles were selected to run the problem in less than 10 minutes.
Tally normalization will be by the starting source weight by default.

To normalize a criticality calculation by the steady-state power
level of a reactor, use the following conversion:

ljoule/sec)( 1MeV Y fission )
watt 1.602E — 13j0ules’ 180MeV
= 3.467E10fission/watt — sec

(

If k.ss = 1 there is one source neutron per fission (the remain-
ing fission neutrons are absorbed or escape). For an F4 tally of 1
neutron/cm?, the flux in a 10 MW reactor would be

1n/cm? ) 1source ) 10%watts ) 3.467E10fission )
source " fission”~ 1MW watt — sec
= 3.467E1Tn/cm? — sec

(10MW)(

The normalization should be in the tally on the FM card and NOT

in the source on an SDEF card.

This warning is a reminder. The tallies must be scaled by the steady
state power level of the critical system in units of fission neutrons per
unit time. For example, if Godiva is operating at a power level of 100
watts, the tally scaling factor would be (3.45 x 10!? fission/s) (2.61
neutrons/fission) = 9.0 x 10'2 neutrons/s. The tallies will then have
the same time units. Tallies for subcritical systems do not include
any multiplication effects because fission is treated as an absorption.
Tallies can bz ~ctimated for subcritical systems by multiplying the
results by the sy:rem multiplication 1/(1 — kcss). See Chapter 2
Sec. VIII for further discussion of this topic.

One source location at the center of the 94% enriched uranium sphere
is used to begin the first cycle. When an SRCTP file is used, the
KSRC card should be removed.

The sources for each generation are the fission locations and neu-
tron energies from fission found in the previous generation. There-
fore, in a k. s calculation the fission distribution converges to a stable
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NS5:

NG6:

NT:

NS8:

NO:

N10:

N11:

distribution as a function of space. For complicated problem geome-
tries, the fission distribution must converge for the calculated ks
to converge. This effect is minimized by sampling a larger number
of particles per generation. Usually the first generation source is not
too important because subsequent later sources will have converged.
If the user source selects good source points on the KSRC card, the
problem will converge to a stable k.¢s in fewer generations. It is
critical that the source points have converged before k. sss and tallies
are calculated to ensure proper mean k.ss and confidence intervals.

This note shows the use of the FM card to calculate the quantities
described by the FC14 comment card. The volume of the sphere is
2761.85 cc and is used as a multiplier to obtain total tallies. The
negative sign in front of the multiplier causes the atom density to be
included in the calculation. The number 0.053183 is the reciprocal
of the uranium density of 18.8030 g/cc and converts the flux tally to
MeV/g.

The Hansen-Roach energy structure is used as the energy bins for
all tallies except tally 24 because an E24 card exists. The energy
structure on the E24 card is one commonly used at Los Alamos for
a wide variety of calculations.

This table gives detailed information about the criticality source from
the KSRC card, including points accepted and rejected. Entries from
the KCODE card are echoed. Table 90 shows that total (as opposed
to prompt) fission 7 data are being used by default to account for the
effect of delayed neutrons. Delayed neutron generation is combined
with prompt neutron generation and the prompt fission neutron en-
ergy spectrumi is used. Delayed neutrons typically have a softer spec-
trum than prompt neutrons; therefore, MCNP will predict a slightly
harder fission energy spectrum. This is usually a small effect and is
not significant.

No warning of unnormalized fractions was issued because the sum of
the material fractions from the M10 card is the same as the atom
density in cell 1.

The density and volume were used in determining the multipliers for
the FM card.

The cross-section tables show that 233U and 238U use the total 7 and
234U may use prompt or total. Checking XSLIST or Table G.2 shows
the 234U evaluation uses the total value for 7. The neutron energy
cutoff warning message is explained in N19 in the TEST1 problem
output.

If cross-section space required is too large, thinned or discrete re-
action cross-section sets can be used for isotopes with small atom
fractions (see Print Table 40).
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An SRCTP file has been generated for possible use in future versions
of the problem.

Print Table 110, showing the first 50 histories, indicates that all
source points are at the origin as specified on the KSRC card. The
directions are isotropic and the energy is sampled from a fission spec-
trum.

Five cycles are skipped before averaging of k.s; and tallying start.
Cycle 7 begins the average tally results printout. Cycle 8 contains
the first results of the simple and combined averages, which require
a minimum of three values for each estimator of k.sy.

There are three k,ss estimators, and they use the collision, absorp-
tion, and track length methods discussed in Chapter 2.VIIL.B. All
combinations of these estimators are included. The positive correla-
tions of the various ks estimators result in almost no reduction in
the relative errors for the combined estimators. The estimator with
the smallest relative error is generally selected. After 35 total cycles
and 30 averaging cycles, all of the k.ss values agree well at unity
and have an estimated relative error at the 1o level of 0.0022. File
SRCTP contains the 2814 source points that were generated during
cycle 35.

The problem summary gives the results of the problem and includes
the five cycles that were not used for averaging k.sy or tallying. The
gain side on the left of the table shows that the starting source weight
is slightly less than unity, which will increase the tallies slightly be-
cause of the normalization by weight. The neutrons created from
fission are zero because the actual fission neutrons produced are writ-
ten to the source for the next cycle. In a noncriticality problem with
a point source, this value would be nonzero. The loss side of the
table gives general guidelines about what happened in the problem.
The values will not agree exactly with separate tallies in the prob-
lem because the point source used in the first cycle required several
cycles to approach the correct spatial distribution of fission neutron
sources. The loss to fission category is for the weight lost to fission,
which is treated as a terminal event for the criticality calculation.
Parasitic capture is listed separately. No tracks are lost to either the
capture or loss to fission categories because implicit capture is being
used (the default for EMCNF with no PHYS:N card present is 0).

Hundreds, often thousands, of values of k.fs are printed in a single
KCODE problem. This page is the summary page which features
the single best estimate of k. clearly outlined: “the final estimated
combined collision/absorption/track-length keff = 1.00061”. This
summary page also includes a check to determine if each cell with
fissionable material had tracks entering, collisions, and fission source
points to assess problem sampling. Fissionable cells that have no
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N18:

N19:

IN20:

N21:

N22:

N23:

entering tracks may indicate geometry errors on the part of the user,
excessive detail in the user’s problem setup, or undersampling that
can lead to an underestimate of k. 7. Normality tests are made of the
active k.ss values for each estimator. If the k.fs estimates are not
normally distributed, then all the Monte Carlo assumptions based
upon the Central Limit Theorem may be suspect. In particular,
the estimated relative errors and confidence intervals may not be
believable. See the discussion in Chapter 2.

The summary page also gives a table of k.ss and confidence intervals
if the largest value of k.s; for each estimator were to occur on the
next cycle. This information provides an indication of the “upper
bound” of k.sy in a worst-case sampling sceario.

The summary page concludes with the removal, capture, fission and
escape lifetimes. These values are from the combined covariance
weighted collision/absorption estimator. There is no track length
estimator of lifetime.

This table show alternate batch size values. It shows k.fs and its
variance as it would have been calculated with a different number of
kegs cycles per batch to assess k.ss correlation effects. This table
saves making dozens of independent MCNP calculations to get the
same information. For this problem there are seven different batch
combinations: 30 batches of 1 cycle, 15 batches of 2 cycles, 10 batches
of 3 cycles, 6 batches of 5 cycles, 5 batches of 6 cycles, 3 batches of
10 cycles, and 2 batches of 15 cycles. The batch size table is not the
same as running 15 active cycles with 6000 histories each or 10 active
cycles with 9000 histories each. Rather it is intended to see if the
variance (and confidence interval) changes much by averaging over
cycles to reduce the cycle-to-cycle correlation. If there is a significant
change in the variance (over 30%) then there may be too much cor-
relation between cycles. In that case the more conservative variance
and confidence interval may be the larger values of the variance and
confidence interval from the batch size table summary (N21).

The above alternate batch size results are summarized with confi-
dence intervals and a normality check. The confidence intervals can
be compared to assess if there appears to be a substantial cycle-to-
cycle correlation effect. Because the estimated standard deviation
itself has a statistical uncertainty, it is recommended to use collapses
that produce at least 30 batches.

This is the k.ss-by—cycle table. The individual and average k.sys
estimator results by cycle repeats the information printed while the
run was in progress (see notes N14 and N15) in a more readable
format. A k.5 figure of merit is also included.

The largest and smallest values for each of the three k.s; estimators
and the cycle at which they occurred is provided.
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The k. ¢ s-by—cycle table results for the combined col/abs/track-length
estimator are plotted. The final k.s value (1.00061) is marked with
the vertical line. This plot should be examined for any trends in
the average k.ss. The plot shown appears to have such a trend,
indicating the problem should be run farther.

This is the k.ss-by-number—of-active-cycles table. It provides a
summary of what the results for each estimator and the combined
col/abs/track-length would be had there been a different number of
settle or skip cycles and active cycles. The combination actually used
in this problem, 5 settle cycles and 30 active cycles, is marked with
an asterisk (*).

The skip/active cycle resulting in the minimum k.; error is identi-
fied. In this problem it would have been better to have 4 settle cycles
and 31 active cycles rather than 5 and 30. If the best combination
is significantly greater than the number of cycles actually skipped
the normal spatial mode may not have been achieved in the skipped
cycles and the problem should be rerun.

The k.s; and its estimated relative error for the first and second
active halves of the problem are are checked to see if they appear to
be statistically the same value.

The active cycle table (N25) is plotted. The final k. sy value (1.00061)
is marked with the vertical line.

The total leakage in tally 1 is higher than the escapes in the ledger
table for two reasons. For tallying purposes the first five cycles were
skipped. These five cycles had a smaller leakage because the point
source in cycle one was in the center of the sphere, making leakage
less likely. These smaller leakage numbers in cycles one through five
are included in the ledger table escapes. Secondly, a small increase
in tally 1 (0.7%) is caused by the weight normalization to 0.99271.

The heating in the uranium sphere does not include any estimate
from photons. To account for photons, a coupled neutron/photon
criticality problem must be run using a MODE N P card. An F7
fission heating tally may give a good approximation, see note N19.

The fission heating estimate assumes that all photons are deposited
locally. The difference between the F6 and F7 tally is discussed on
page 2—70. Because Godiva is an optically thick system to photons,
the F7 tally should be a good approximation to the total heating. A
MODE N P calculation of this problem produced a neutron heating
(F6) of 1.252 x 10~2 (0.0021) MeV/g and a photon heating of 6.502 x
105 (0.0042), which adds to about the estimate of the F7 tally, 1.333
x 1073 (the estimated relative errors are listed in parentheses). If the

100 watt power level normalization in note 3 is used to scale tally
7, (1.333 x 10~ MeV/g) (51931 g) (9.0 x 10'2 neutrons/s) (1.602
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N33:
N34:

x 10713 W/MeV/s) = 99.81 watts. Thus, the source normalization
and tally are consistent with the 100 watt assumed power level.

Tally 14 includes several quantities based on the track length estima-
tor. The first five cycles were not included in these estimates. Mult
bin 1 is the total volume integrated fluence, which is small below 0.1
MeV because there is no moderator. Mult bin 2 is the total fissions.
This is lower than the loss to fission entry in the summary because
of the reduced leaking and more interactions of the point source in
cycle 1. Note that the mult bin 2 result is obtained by a track length
estimator and the problem summary loss to fission result is from a
collision estimator. Mult bin 3 is the total fission neutrons produced,
which agrees exactly with the track length k.sy estimator described
in note 15. The estimated relative error is different for mult bin 3
because the error estimation procedures are handled differently. Di-
viding the total of mult bin 3 by the total of mult bin 2 gives an
average value of 7 of 2.606 neutrons per fission. Mult bin 4 gives the
track length estimation of absorptions, which is slightly less than the
collision estimator for captures in the ledger table as expected. The
neutron heating in MeV /g, mult bin 5, is the same as the F6 tally.

Tally 24 is the same as tally 14 except for the energy group structure.

The tally fluctuation charts confirm stable, efficient tallies in the
bins monitored. The charts confirm that the first five cycles (15243
histories) were skipped because of the zeros after 8000 particles were
run and the large reduction in the estimated relative error between
16000 and 24000 histories.

A few final points should be made about KCODE calculations. To make
a KCODE calculation using the SRCTP source points file produced by a
previous run, remove the KSRC card from the input file. To do a continue-
run, the standard MCNP rules apply. Having an input file beginning with
CONTINUE is optional. If the previous run terminated because all the cycles
requested by the KCODE card were completed, another KCODE card in a
continue-run input file with a new tota] (not how many more) number of
cycles to run is needed. Otherwise, only one more cycle will be run and the
code will stop again. The SRCTP file is not required for a KCODE continue-
run because the source points information is contained on the RUNTPE file.
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Appendix G
NEUTRON CROSS-SECTION LIBRARIES

This appendix is divided into four sections. Section I lists some of the
more frequently used ENDF/B reaction types that can be used with the
FMn input card. Table G.1 in Section II lists the currently available S(a, 3)
identifiers for the MTm card. Section III provides a brief description of
the available libraries and gives a complete list of the evaluations in these
libraries. Table G.2 in Section IV is a list of the cross sections maintained

by X-6.
I. ENDF/B REACTION TYPES

The following list includes some of the more useful reactions for use with
the FMn input card, but it is not the complete ENDF/B list. The complete
list can be found in the ENDF/B manual.

R Microscopic Cross-Section Description
1 Total

2 Elastic

16 (n,2n)

17 (n,3n)

18  Total fission (n,fx) if and only if MT=18 is used
to specify fission in the original evaluation.

19 (nJ()

20 (n,n'f)
21  (n,2nf)
22  (nn)a
38 (n,3nf)

51  (n,n') to 1* excited state
52  (n,n') to 2™ excited state

90  (n,n') to 40** excited state
91 (n,n) to continuum

102 (nyy)
103 (n,p)
104 (nd)
105 (n,t)
106 (n,*He)
107 (n,a)

In addition, for files based on ENDF/B-V only, the following special reactions
are available:

203 total proton production
204 total deuterium production
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205 total tritium production

206 total 3He production

207 total alpha production

Notes:

(1)

The R number for tritium production varies from nuclide to nuclide
and evaluation to evaluation. For 5Li and "Li

Li(n,a)t R =107 AWRE, ENDF/B-IV, and Los Alamos
Sublibrary evaluations

Li(n,t)a R =105 All ENDL evaluations and ENDF/B-V

"Li(np')t,a R =33 ENDL evaluations

"Li(nn)a,t R =22 AWRE evaluation

"Li(n,n')a,t R =91 ENDF/B-IV, and ENDF/B-V evaluations

"Li(nn)a,t R =205 T-2 evaluation (3007.55)

The nomenclature between MCNP and ENDF/B is inconsistent in
that MCNP refers to the number of the reaction type as R whereas
ENDF/B uses MT. They are one and the same, however. The prob-
lem arises since MCNP has an MT input card used for the S(a, 3)
thermal treatment.

The user looking for total production of p, d, t, 3He, and *He should
be warned that in some evaluations, such processes are represented
using reactions with R (or MT) numbers other than the standard
ones given in the above list. This is of particular importance with
the so-called “pseudolevel” representation of certain reactions which
take place in light isotopes. For example, the ENDF/B-V evaluation
of carbon includes cross sections for the (n,n'3a) reaction in R = 52
to 58. The user interested in particle production from light isotopes
should contact X-6 to check for the existence of pseudolevels and
thus possible deviations from the above standard reaction list.

II. S(a,3) IDENTIFIERS FOR THE MTm CARD

Table G.1
Thermal S(a, 3) Cross-Section Tables
ZAID Description *Isotopes  Temperature (°K)

LWTR.01T Light water 1001 300
LWTR.02T Light water 1001 400
LWTR.03T Light water 1001 500
LWTR.04T Light water 1001 600
LWTR.05T Light water 1001 800
LWTR.07T Light water 1001 Dot kwew Aemp
POLY.01T  Polyethylene 1001 300
POLY.03T  Polyethylene 1001 Dork Yowws temp-
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H/ZR.01T
H/ZR.02T
H/ZR.04T
H/ZR.05T
H/ZR.06T

BENZ.01T
BENZ.02T
BENZ.03T
BENZ.04T
BENZ.05T

HWTR.01T
HWTR.02T
HWTR.03T
HWTR.04T
HWTR.05T

BE.0O1T
BE.04T
BE.05T
BE.06T

BEO.01T
BEO.04T
BEO.05T
BEO.J6T

GRPH.01T
GRPH.04T
GRPH.05T
GRPH.06T
GRPH.07T
GRPH.08T

ZR/H.01T
ZR/H.02T
ZR/H.04T
ZR/H.05T
ZR/H.06T

1H in ZrHx
'H in ZrHx
'H in ZrHx
'H in ZrHx
'H in ZrHx

Benzene
Benzene
Benzene
Benzene
Benzene

Heavy water
Heavy water
Heavy water
Heavy water
Heavy water

Beryllium metal
Beryllium metal
Beryllium metal
Beryllium metal

Beryllium oxide
Beryllium oxide
Beryllium oxide
Beryllium oxide

Graphite
Graphite
Graphite
Graphite
Graphite
Graphite

Zr in ZrHx
Zr in ZrHx
Zr in ZrHx
Zr in ZrHx
Zr in ZrHx

1001
1001
1001
1001
1001

1001,6000,6012
1001,6000,6012
1001,6000,6012
1001,6000,6012
1001,6000,6012

1002
1002
1002
1002
1002

4009
4009
4009
4009

4009,8016
4009.8016
4009,8016
4009,8016

6000,6012
6000,6012
6000,6012
6000,6012
6000,6012
6000,6012

40000
40000
40000
40000
40000

*Isotopes for which the S(a, 8) data are valid.

300
400
600
800
1200

300
400
500
600
800

300
400
500
600
800

300
600
800
1200

300
600
800
1200

300
600
800
1200
1600
2000

300
400
600
800
1200
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IIT. MCNP NEUTRON CROSS-SECTION LIBRARIES

Continuous-energy (or pointwise) neutron cross-section data for use in
Monte Carlo calculations are available to MCNP from several libraries. The
physics of the interactions is contained in these neutron cross-section sets.
For each element or nuclide there is a set of numbers detailing (a) through
which processes the inter-actions take place, (b) at which angles scattered
neutrons are likely to emerge, and (c) with how much energy the scattered
neutrons are likely to emerge. There is also information about photon pro-
duction data, the spectra of photons produced, and the amount of energy
deposited in heating. These numbers are arranged in ACE format described
in Appendix F.

The cross-section data depend on incident neutron energy and are tabu-
lated at a number of energy points sufficiently dense that linear-linear inter-
polation at intermediate energies represents the desired quantity to within
certain specified tolerances.

Each cross-section set is generated >m an evaluated data set and is
then stored with a unique identifier (the ZAID number) on one of the several
libraries. The evaluated data come from many sources: ENDF/B-IV, -V,!
ENDL-79, -80, -85,2 AWRE,? as well as special Los Alamos evaluations.

Because of the linear-linear interpolation requirement as well as the de-
tail with which the data are given in some evaluations, many of the ACE-
formatted cross-section sets can be quite lengthy. For this reason , many
(but not all) of the cross-section sets are also available in pseudomultigroup
form. The individual cross sections have been averaged over 262 groups
(263 energy boundaries) using a flat weight function. For E; < E < Ej4,
MCNP uses ¢(E) = o;. In the vernacular we refer to these cross sections
as “discrete-reaction cross sections.” One great advantage of using the dis-
crete cross sections is that the computer storage required for cross sections is
markedly reduced. Reducing storage is particularly important when running
in a timesharing environment and obviously when the fully continuous sets
are too large for the computer. It should be emphasized that the 262-group
treatment applies only to the neutron cross sections; the secondary energy
and angular distributions are identical to those on the original pointwise data
file from which the discrete-reaction set was generated.

The discrete cross sections are accessed whenever a DRXS input card is
used (see page 3—93). If a ZAID number is listed on the DRXS card, the
cross sections are read off the corresponding discrete cross-section library
rather than off the continuous-energy library. From the list in Table G.2
of this Appendix, you can determine which continuous-energy cross-section
sets have discrete-reaction counterparts.

In general, cross sections (whether continuous or discrete) based on
ENDF/B-V evaluations are believed to be the best available to MCNP users
at this time. Therefore, the default cross sections for MCNP are based upon
the ENDF/B-V evaluations, although in some cases the ENDF/B-V sets are
supplemented by more recent evaluations from T-2 (the Applied Nuclear Sci-
ence Group). The ENDF cross sections are denoted by the alphanumeric suf-
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fixes .50C, .51C, and .50D. which represent the pointwise, thinned-pointwise,
and discrete-reaction cross sections, respectively. T-2 cross-section evalua-
tions are denoted by the .55 suffix. The cross-section file denoted by the .50D
suffix is a discrete version of the ENDF continuous-energy cross-section file
(.50C). The file identified by the .51C suffix is a thinned version of .50C. It is
a continuous-energy cross-section file containing the same set of nuclides as
the .50C file but with cross sections and angular distributions specified at far
fewer energies. If there are several cross-section sets available for the same
nuclide and you are uncertain which one to choose, we advise you initially
to select one of the three mentioned above.

Files ENDL79 and DRL79 are continuous-energy and discrete sets based
on Howerton’s 1979 evaluations from Livermore. Howerton has updated
some of these files (ENDL85, suffixes .35C and .35D).

Several libraries are available that contain older cross-section evaluations.
BMCCS is the library that previously was RMCCS when Version 2C was
current. Correspondingly, D9 is the previous version of DRMCCS. The
files AMCCS, XMCCS, and UMCCS contain miscellaneous evaluations from
various sources. Nuclides in these libraries should be used cautiously.

Table G.2 at the end of this Appendix lists all the cross-section sets
maintained by X-6 on the standard Monte Carlo neutron libraries. The
entries in each of the columns of Table G.2 are described as follows:

ZAID -the ZAID is the nuclide identification number with the form ZZZAAA.nnX

where ZZZ is the atomic number,
AAA is the mass number (000 for naturally occurring elements),
nn is the neutron cross-section identifier
X=C for continuous-energy neutron tables
X=D for discrete-reaction tables

FILE - name of one of the nuclear-data libraries. The number in parentheses

following a rile name refers to one of the special notes at the end of Table
G.2.

SOURCE - indicates where the particular evaluation originated:

ENDF/B (Versions IV and V) is the Evaluated Nuclear Data File,!
an American effort coordinated by the National Nuclear Data Center at
Brookhaven National Laboratory. The evaluations are updated periodi-
cally by evaluators irom all over the country.

ENDL (79, 80, and 85) is the Evaluated Nuclear Data Library? com-
piled by R. J. Howerton and his nuclear data group at the Lawrence Liv-
ermore National Laboratory. The number indicates from which year’s
library a particular evaluation was taken.

LASL-SUB - The Los Alamos Sublibrary is a collection of special eval-
uations prepared by the Nuclear Data Group (T-2) at Los Alamos.

FOSTER - special evaluations representative of the average fission
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MAT

TYPE

TEMP

GPD

products for 23°U and 2*Pu. This work was carried out in Group T-2
and is described in Reference 4.

GROUP T-2 - recently completed evaluations of selected isotopes pre-
pared in Group T-2 at Los Alamos. Sometimes abbreviated GP. T-2.

- for ENDF/B, MAT is the material identifier for a particular evaluation.
For the ENDL-85 library, a MAT was assigned for each nuclide to be
compatible with ENDF /B procedures. ENDL-79 and 80 contain no MAT
identifiers.

- CONT indicates a continuous-energy cross-section set;
- DISC indicates a discrete-reaction cross-section set;
- MULT indicates a multigroup cross-section set.

- the temperature (in degrees Kelvin) at which the data were processed.
The temperature enters into the processing only through the Doppler
broadening of cross sections. Doppler broadening, in the current context,
refers to a change in cross section resulting from thermal motion (trans-
lation, rotation, and vibration) of nuclei in a target material. Doppler
broadening is done on all cross sections for incident neutron (nonrela-
tivistic energies) on a target at some temperature (TEMP) in which the
free-atom approximation is valid.

In general an increase in the temperature of the material containing
neutron-absorbing nuclei in a homogeneous system results in Doppler
broadening of resonances and an increase in resonance absorption. Fur-
thermore, a constant cross section at zero K goes to 1/v behavior as the
temperature increases. You should not only use the best evaluations but
also use evaluations that are at temperatures approximating tempera-
tures in your application. Contact X-6 for guidance or generation of
specific temperature libraries. All ENDF/B-V evaluations on the stan-
dard libraries (that is, pointwise, thinned-pointwise, and discrete) were
processed at room temperature (300 K).

“Yes” means that gamma-production data exist; “No” means that such
data do not exist. Between sets with gamma-production data, there is a
further distinction represented as follows: “P” indicates sets with a point-
wise representation of the energy dependence of the gamma-production
cross section; “H” indicates that the energy dependence of the gamma-
production cross section is represented as a histogram over 30 energy
groups. The “H” type of representation is found on cross-section sets
processed before 1977, approximately. Before then, gamma-production
information was incorporated into MCNP calculations using gamma-
production matrices calculated in a 30-neutron group and 12-gamma
group structure. When the ACE format was changed, the total cross
section was calculated from the matrices and used in histogram form so
old problems could track. In the case of discrete cross-section sets in
Table G.2, the “P” or “H” refers to the type of data in the original file
before processing into discrete form. Those materials that have photon-
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production information given in expanded ACE format are indicated by
the notation (E).

- the total length of a particular cross-section file in decimal. It is un-
derstood that the actual storage requirement in an MCNP problem will
often be less because certain data unneeded for a problem will be deleted.

- for fissionable material, NUBAR indicates the type of fission nu data
available. PROMPT means that only prompt nu data are given; TOTAL
means that only total nu data are given; BOTH means that prompt and
total nu are given.

- the arrow that precedes certain nuclides listed in the table indicates
what we believe to be the best available evaluation. You should note
that because of various size limitations, the evaluation designated by the
arrow may not be the default evaluation.

Finally, you may introduce a cross-section library of your own by using

the XS input card.
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D. G. Foster, Jr. and E. D. Arthur, “Average Neutronic Properties of

“Prompt” Fission Products,” Los Alamos National Laboratory report
LA-9168-MS (February 1982).
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IV. CROSS SECTIONS MAINTAINED BY X-6

Table G.2
Cross Sections Maintained by X-6

ZAID FILE SOURCE MAT TYPE TEMP(°K) GPD LENGTH NUBAR

z =0 EEERERRERERERER neutron EREBEBEERREERRERE R XL SRR S X ERS R LS EAR SR LR SR E SRS EEERE RS

** neutron **

1.32¢ neutxs(l)  endl-80 cont 0 no 738
1.32d neutxsd(1) endl-80 disc 0 no 1603
7z = l EEEREEEREEEER S hydrosen EEREEEEE R AR EREREEREE LR R LR EER LRSS LA LS EBAER SRR EER RN RS
x% h_l %
1001.04c bmces endf/b-iv 1269  cont 0 yesp 2459
1001.04d d9 endf/b-iv 1269 disc 0 yesp 2914
1001.31c endl79 endl-79 cont 0 no 2496
1001.31d drl79 endl-79 disc 0 no 2082
1001.35¢ endl85 endl-85 2 cont 0 yes p(e) 3567
— 1001.50c rmccs  endf/b-v 1301  cont 300 yes p(e) 2827
1001.50d drmces  endf/b-v 1301 disc 300 yes p(e) 3236
1001.50m mgxsnp endf/b-v 1301 mult 300 yes 3249
1001.51c endfSt endf/b-v 1301 cont 300 yes p(e) 2827
1001.53¢ eprixs endf/b-v 1301  cont 600 yes p(e) 4001
*% h_2 %
1002.04c amccs endf/b-iv 1120 cont 0 yesp 2144
1002.31c endl79 endl-79 cont 0 no 1926
1002.31d drl79  endl-79 disc 0 no 2630
1002.35¢ endl85 endl-85 3 cont 0 yes p(e) 2568
1002.50c endf5p endf/b-v 1302 cont 300 yes p(e) 4048
1002.50d dre5 endf/b-v 1302 disc 300 yes p(e) 4747
1002.51c endf5t endf/b-v 1302  cont 300 yes p(e) 3978
— 1002.55¢ rmccs group t-2 120 cont 300 yes p(e) 6042
1002.55d drmces group t-2 120 disc 300 yes p(e) 5404
1002.55m mgxsnp group t-2 120  muit 300 yes 3542
% h_3 8
1003.03¢ bmces endf/b-iv 1169  cont 300 no 2114
1003.03d d9 endf/b-iv 1169 disc 300 no 2702
1003.31c endl79 endl-79 cont 0 no 1361
1003.31d dri79 endl-79 disc 0 no 2259
1003.35¢ endl8S  endl-85 4 cont 0 no 1310
— 1003.50c rmces  endf/b-v 1169  cont 300 no 2469
1003.50d drmccs  endf/b-v 1169 disc 300 no 2848
1003.50m mgxsnp endf/b-v 1169  mult 300 no 1927
1003.51c endf5t endf/b-v 1169  cont 300 no 2434
z = 2 EERBRRERREEERSE helium EXEREEXERERRREREREERREREEREEREERE RS ESEEEEEERSEE RSB R RERE
*% he_3 LE ]
2003.31c endl79 endl-79 cont 0 no 1743
2003.31d drl79 endl-79 disc 0 no 2313
2003.35¢ endl85 endl-85 5 cont 0 yes p(e) 2542
— 2003.50c rmccs  endf/b-v 1146 cont 300 no 2361
2003.50d drmccs endf/b-v 1146 disc 300 no 2653
2003.50m mgxsnp endf/b-v 1146  mult 300 no 1843
2003.51c endf5t endf/b-v 1146  cont 300 no 2361
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z = 5 EEERREEREEEEES
8 b_lo e
5010.03¢ bmccs
5010.03d d9

5010.31¢c endl79

APPENDIX G

ZAID FILE SOURCE MAT TYPE TEMP(°K) GPD LENGTH NUBAR
x% he_4 L
2004.03c bmces endf/b-iv 1270  cont 300 no 2407
2004.03d d9 endf/b-iv 1270 disc 300 no 2202
2004.31c  endl?9 endl-79 cont 0 no 1548
2004.31d drl79 endl-79 disc 0 no 2408
2004.35c  endl85 endl-85 6 cont 0 no 1483
— 2004.50c rmccs  endf/b-v 1270  cont 300 no 3102
2004.50d drmccs endf/b-v 1270 disc 300 no 2692
2004.50m mgxsnp endf/b-v 1270 mult 300 no 1629
2004.51c  endf5t endf/b-v 1270 cont 300 no 2682
7 = 3 REEEERXEEERER SR llthlum BB EEEXXEREERRARE SRR ER RN EBEE SRS E RS EREE SRR RN KRR
% li_6 L1
3006.04¢ xmces  endf/b-iv 1271 cont 0 yesp 4615
3006.10c bmces  lasl-sub 101 cont 0 yesp 8294
3006.10d d9 lasl-sub 101 disc 0 yesp 6742
3006.31c  endI79 endl-79 cont 0 no 5928
3006.31d dri79 endl-79 disc 0 no 5012
— 3006.50c rmccs  endf/b-v 1303  cont 300 yes p(e) 9993
3006.50d drmccs endf/b-v 1303 disc 300 yes p(e) 8777
3006.50m mgxsnp endf/b-v 1303  mulit 300 yes 3566
3006.51c  endf5t endf/b-v 1303  cont 300 yes p(e) 9196
®% li_“' b 2]
3007.05¢ bmces endf/b-iv 1272 cont 0 yesp 3751
3007.05d d9 endf/b-iv 1272 disc 0 yesp 3801
3007.31c  endl79 endl-79 cont 0 no 2721
3007.31d drl79 endl-T79 disc 0 no 3215
3007.50c  endfSp endf/b-v 1272  comt 300 yes p(e) 4925
3007.50d dre5 endf/b-v 1272 disc 300 yes p(e) 4996
3007.51c  endf5t endf/b-v 1272  cont 300 yes p(e) 4925
— 3007.55¢ rmccs  group t-2 3007 cont 300 yes p(e) 13232
3007.55d drmccs group t-2 3007 disc 300 yes p(e) 12708
3007.55m mgxsnp group t-2 3007 mult 300 yes 3555
z = 4 EEEEREREEEEEE S beryuium ERERXREEREEREXREREEEREERE ARSI E R BEREERE LS EREEE RS SRR R R
x% be.‘{ L 2]
4007.35c  endl85 endl-85 9 cont 0 no 1875
4007.35m mgxsnp endl-85 9  mult 0 no 1598
% be_g 8
4009.03c bmces  lasl-sub 104 cont 300 yesp 7885
4009.03d d9  lasl-sub 104 disc 300 yesp 6622
4009.31c  endl79 endl-79 cont 0 no 7737
4009.31d drl7y  eadl-79 disc 0 no 7329
— 4009.50c rmccs  endf/b-v 1304  cont 300 yes p(e) 8947
4009.50d drmccs endf/b-v 1304 disc 300 yes p(e) 8817
4009.50m mgxsnp endf/b-v 1304 mult 300 yes 3014
4009.51c  endf5t endf/b-v 1304  cont 300 yes p(e) 8073

boron EEEEREEEEEEEEEXR XS RRE AR ERE AR EXESERE SRR S SR SRS ERAB SRR RR S

endf/b-iv
endf/b-iv
endl-79

1273
1273

cont
disc
cont

G-9

yes p
yes p
no

9241
5720
5180
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ZAID FILE SOURCE MAT TYPE TEMP(°K) GPD LENGTH NUBAR
5010.31d drl79 endl-79 disc 0 no 3902
5010.35¢  endl85 endl-85 11 cont 0 yes p(e) 7204

— 5010.50c rmces  endf/b-v 1305  cont 300 yes p(e) 20261
5010.50d drmccs endf/b-v 1305 disc 300 yes p(e) 12383
5010.50m mgxsnp endf/b-v 1305 mult 300 yes 3557
5010.51c  endf5t endf/b-v 1305 cont 300 yes p(e) 18886
5010.53¢ eprixs endf/b-v 1305  cont 600 yes p(e) 23676

% b‘ll s
5011.31c  endl79 endl-79 cont 0 no 3024
5011.31d drl79 endl-79 disc 0 no 3946
5011.35¢  endl85 endl-85 12 cont 0 yes p(e) 4350
5011.50c  endfSp endf/b-v 1160  cont 300 no 4385
5011.50d dre5 endf/b-v 1160 disc 300 no 2853
5011.51c  endf5t endf/b-v 1160  cont 300 no 4193
5011.55c  rmccsa group t-2 5011 cont 300 yes p(e) 12315
5011.55d drmccs group t-2 5011 disc 300 yes p(e) 7167

— 5011.56¢ newxs group t-2 5011 cont 300 yes p(e) 56990
5011.56d newxsd group t-2 5011 disc 300 yes p(e) 17409
5011.56m mgxsnp group t-2 5011 mult 300 yes 2795

z = 6 ERREXEEE SRS RS cubon EEEXEEERLEREERE R LR EREEERE SRS L LS L XS EEREREREELREREELE RN
x8 c-nat "
— 6000.50c rmccs  endf/b-v 1306  cont 300 yes p(e) 23387
6000.50d drmccs endf/b-v 1306 disc 300 yes p(e) 16905
6000.50m mgxsnp endf/b-v 1306 mult 300 yes 2933
6000.51c  endfSt endf/b-v 1306  cont 300 yes p(e) 23067
E 2 ] C-12 £ 2]
6012.03c xmces  endf/b-iv 1274  cont 0 yesp 7567
6012.10c bmccs  lasl-sub 102 cont 0 yes p(e) 12102
6012.10d d9 lasl-sub 102 disc 0 yes p(e) 9832
6012.31c  endi79 - endl-79 cont 0 no 3610
6012.31d drl79 endl-79 disc 0 no 3583
6012.35c  endl8S  endl-85 13 cont 0 yes p(e) 5215
— 6012.50¢ rmces  endf/b-v 1306  cont 300 yes p(e) 23387
6012.50d drmccs endf/b-v 1306 disc 300 yes p(e) 16905
6012.50m mgxsnp endf/b-v 1306 mult 300 yes 2933
L2 ] C-13 s

6013.35c endl85  endl-85 14  cont 0 yes p(e) 4947
z = 7 SERREREEEER R nitl’osen I EA AR R SRR RS RSS2 RS2 2222 2 R R 2 a2 R R R R R 2 2 2 2 R R 8
=% n-14 %

7014.04¢ bmccs endf/b-iv 1275 cont 0 yesp 21553

7014.04d d9 endf/b-iv 1275 disc 0 yesp 9874

— 7014.50c rmccs  endf/b-v 1275  cont 300 yes p(e) 45518
7014.50d drmccs endf/b-v 1275 disc 300 yes p(e) 26854
7014.50m mgxsnp endf/b-v 1275 mult 300 yes 3501
7014.51c  endf5t endf/b-v 1275  cont 300 yes p(e) 45397

K n_ls %

— T7015.55c rmccsa group t-2 9993 cont 300 yes p(e) 20981
7015.55d drmccs group t-2 9993 disc 300 yes p(e) 15334
7015.55m mgxsnp group t-2 9993  mult 300 yes 2743
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ZAID FILE SOURCE MAT TYPE TEMP(°K) GPD LENGTH NUBAR

z = 8 EXREKRKRRERERERE Oxygen XS R RS EEERE AR R LA E R R A S S SRS TR RE AR RS RA R AR KRR ERERERE KRS

& 0-16 ®k

8016.04c bmces endf/b-iv 1276 cont 0 yesp 21823
8016.04d d9 endf/b-iv 1276 disc 0 yesp 10486
8016.35¢ endl85 endl-85 16 cont 0 yes p(e) 10418
— 8016.50c rmccs  endf/b-v 1276  cont 300 yes p(e) 38003
8016.50d drmces  endf/b-v 1276 disc 300 yes p(e) 20516
8016.50m mgxsnp endf/b-v 1276 mult 300 yes 3346
8016.51c endf5t endf/b-v 1276 cont 300 yes p(e) 37996
8016.53¢ eprixs endf/b-v 1276  cont 600 yes p(e) 37989
8016.54c eprixs endf/b-v 1276  cont 900 yes p(e) 38017
z = 9 EERKEERERERERE ﬂuorine EEEERAEEERRER XA ERRERRREREE RS REEREREBE LS X EEBE KR RERERE
*% f_lg %
9019.02¢ xmccs endf/b-iv 1277  cont 0 yesh 26334
9019.03¢ bmces  endf/b-iv 1277 cont 0 yesp 24464
9019.03d d9 endf/b-iv 1277 disc 0 yesp 8926
9019.31c endl79 endl-79 cont 0 no 23368
9019.31d drl79 endl-79 disc 0 no 9764
9019.35¢ endl83 endl-85 17 cont 0 yes p(e) 31608
— 9019.50¢ endf5p endf/b-v 1309  cont 300 yes p(e) 44191
9019.50d dre5 endf/b-v 1309 disc 300 yes p(e) 23217
9019.50m mgxsnp endf/b-v 1309  muit 300  yes 3261
9019.51c¢ rmccs  endf/b-v 1309  cont 300 yes p(e) 41503
9019.51d drmccs  endf/b-v 1309 disc 300 yes p(e) 23217
z = 11 FREERERREREREE sodium EXERXRXEXREEEEEER XXX R REREBEEBARRSERERERERERREEERRRREE K
x% na_zs s
11023.31c¢  endl79 endl-79 cont 0 no 14656
11023.31d drl79 endl-79 disc 0 no 4299
11023.35¢  endI85  endl-85 18  cont 0 yes p(e) 22838
11023.40c  e4xs(2) endf/b-iv 1156  cont 300 yes p(e) 35211
— 11023.50c  endfSp endf/b-v 1311 cont 300 yes p(e) 52313
11023.50d dre5 endf/b-v 1311 disc 300 yes p(e) 41726
11023.50m mgxsnp endf/b-v 1311  mult 300 yes 2982
11023.51c rmces  endf/b-v 1311  cont 300 yes p(e) 48924
11023.51d drmccs endf/b-v 1311 disc 300 yes p(e) 41726

z =12 EXEXEEERERERERR ma.gnesium REEREXEEIEREXREEEEAEERRERBRREESSEE SR NE R RS REEERERER S

** mg-nat **
12000.31c  endl79 endl-79 cont 0 no 6199
12000.31d drl79 endl-79 disc 0 no 3626
12000.35c  endl85  endl-85 19  cont 0 yes p(e) 9747
12000.40c  e4xs(2) endf/b-iv 1280  cont 300 yes p(e) 29763
— 12000.50c  endf5u endf/b-v 1312 cont 300 yes p(e) 56395
12000.50d dre5 endf/b-v 1312 disc 300 yes p(e) 14131
12000.50m mgxsnp endf/b-v 1312  mult 300 yes 3802
12000.51c rmccs  endf/b-v 1312 cont 300 yes p(e) 48978
12000.51d drmccs endf/b-v 1312 disc 300 yes p(e) 14131
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ZAID FILE SOURCE MAT TYPE TEMP(°K) GPD LENGTH NUBAR
7= 13 EEEXRKEEXLEERR &lumlnum EEREEEEEEXE R RN R AR SRR EEE AR SRR AR EEREERE R LR R RREAE KGR R R
% 3.1-27 =%

13027.04c bmces endf/b-iv. 1193 cont 0 yesp 32517

13027.04d d9 endf/b-iv 1193 disc 0 yesp 9700

13027.31c  endi79 endl-79 cont 0 no 27295

13027.31d drl79 endl-79 disc 0 no 9871

13027.35c  endl85  endl-85 20  cont 0 yes p(e) 36956
— 13027.50c rmccs  endf/b-v 1313  cont 300 yes p(e) 54223

13027.50d drmccs endf/b-v 1313 disc 300 yes p(e) 42008

13027.50m mgxsnp endf/b-v 1313  mult 300 yes 3853

13027.51c endf5t endf/b-v 1313 cont 300 yes p(e) 53438
z = 14 EEERRERRERRRKS silicon EXEEEERERAREERREEREREERL LR LR RR R R R KRR R R RRBRRKEERERERR R

** si-nat **

14000.31c  endl79 endl-79 cont 0 no 11924
14000.31d drl79 endl-79 disc 0 no 3955
14000.35c  endl85  endl-85 21  cont 0 yes p(e) 19077
14000.40c  e4xs(2) endf/b-iv 1194  cont 300 yes p(e) 76132
— 14000.50c  endf5p endf/b-v 1314  cont 300 yes p(e) 98670
14000.50d dre5 endf/b-v 1314 disc 300 yes p(e) 69559
14000.50m mgxsnp endf/b-v 1314 mult 300 yes 3266
14000.51c rmccs  endf/b-v 1314 cont 300 yes p(e) 88190
14000.51d drmccs endf/b-v 1314 disc 300 yes p(e) 69559
7 = 15 R BREREEREREE phosphOl'us REEER AR LR AR EERERREEEEERERB SRR EEEE SRR R RS REERERE R e R kR
e p_31 "
15031.31c  endl79 endl-79 cont 0 no 3637
15031.31d drl79 endl-79 disc 0 no 3423
15031.35c  endl85 " endl-85 22  cont 0 yes p(e) 5936
— 15031.50c  endf5u endf/b-v 1315  cont 300 yes p(e) 5794
15031.50d dre5 endf/b-v 1315 disc 300 yes p(e) 5822
15031.50m mgxsnp endf/b-v 1315 muit 300 yes 2123
15031.51c rmces  endf/b-v 1315 cont 300 yes p(e) 5793
15031.51d drmccs  endf/b-v 1315 disc 300 yes p(e) 5822
z = 16 EEREEEEREEEE RS sulf“r ISR ST RS R RE R RS2 R 2R 222 22 2 222 R 222 R R 2222 0 22 R R 2 22
% 8-32 "
16032.31c  endl79 endl-79 cont 0 no 4071
16032.31d drl79 endl-79 disc 0 no 3341
16032.35¢ endl85 endl-85 23 cont 0 yes p(e) 7115
— 16032.50c  endfSu endf/b-v 1316  cont 300 yes p(e) 6850
16032.50d dre5 endf/b-v 1316 disc 300 yes p(e) 6363
16032.50m mgxsnp endf/b-v 1316 mult 300 yes 2185
16032.51c rmces  endf/b-v 1316  cont 300 yes p(e) 6841
16032.51d drmccs endf/b-v 1316 disc 300 yes p(e) 6363
7z = 17 EEEREEERE LRSS Chlol’ine EEEXEEEREEE RS R X RREE X R R RS EE SRR R LR R B SR EREREREERERRERER S

** cl-nat **
17000.31¢c endl79 endl-79 cont 0 no 8664
17000.31d drl79 endl-79 disc 0 no 3430
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ZAID FILE
17000.35c¢ endl85
— 17000.50c endfSp
17000.50d dre5
17000.50m mg=xsap
17000.51c rmccs
17000.51d  drmccs
7z = 18 B EEREEEERS
b ] ar-nat e
18000.31c endl79
18000.31d dri79
— 18000.35c¢ rmccsa
18000.35d  drmccs
18000.35m mgxsnp
18000.59¢c  arkrc(3)
7z = 19 EEERREEERERERE
L1 J k‘nlt *%
19000.31c endl79
19000.31d drl79
19000.35¢ endl85
— 19000.50c endf5u
19000.50d dres
19000.50m mgxsnp
19000.51c rmccs
19000.51d  drmccs

z = 20 EXERXXERRRE SRS

** ca-nat **

** ti-nat **
22000.11¢c
22000.11d
22000.31¢
22000.31d

20000.10c bmccs
20000.10d d9
20000.31c endI79
20000.31d drl79
20000.35¢ endl85
— 20000.50c endfSu
20000.50d dre5
20000.50m mgxsnp
20000.51c rmccs
20000.51d  drmccs
z = 21 SRS RERRR RS
% SC'21 %
21045.55c  scd5(4)
z = 22 EEEEEXERELEEES

bmccs
d9
endl79
drl79

SOURCE

endl-85
endf/b-v
endf/b-v

endf/k_..
Cnai/ U~V

endf/b-v
endf/b-v

MAT TYPE TEMP(°K)

24
1149
1149

1140
1129

1149
1149

cont
cont

disc
——aeld
niuiv
cont

disc

0
300
300

M0nn
Jyuvu

300
300

GPD

yes p(e)
yes p(e)
yes p(e)
yes
yes p(e)
yes p(e)

APPENDIX G

LENGTH NUBAR

12964
23374
18270

D lrde L4
&Lioi

21145
18270

YT e Bhadddddddd b e ALl b R T et b b LA LI

endl-79
. endl-79
endl-85
endl-85
endl-85

gp. t-2

potassium

endl-79
endl-79
endl-85
endf/b-v
endf/b-v
endf/b-v
endf/b-v
endf/b-v

25
25
25
1800

cont
disc
cont
disc
mult
cont

oo oocoo

30

no

no
yes p(e)
yes p(e)

yes
yes p(e)

2857
2939
5646
14764
2022
3514

EEEREEXEEIREXREXEEEER RS ERERREERREEEER AR RS LRSS ERRR KRN

26
1150
1150
1150
1150
1150

cont
disc
cont
cont
disc
mult
cont
disc

0
0
0
300
300
300
300
300

no

no
yes p(e)
yes p(e)
yes p(e)

yes
yes p(e)
yes p(e)

6645
3293
11191
22112
23198
2833
18859
23198

calci“m EEREERRRRREEREARRSREXRR XX EERRERERRRERR R EREE XL R R AR KRR R

endf/b-iv
endf/b-iv

endl-79

endl-79

endl-85
endf/b-v
endf/b-v
endf/b-v
endf/b-v
endf/b-v

1195
1195

27
1320
1320
1320
1320
1320

cont
disc
cont
disc
cont
cont
disc
mult
cont
disc

0
0
0
0

0
300
300
300
300
300

yes p
yes p
no
no
yes p(e)
yes p(e)
yes p(e)
yes
yes p(e)
yes p(e)

24085
9198
8959
3637

12994

62685

29094
3450

53433

29094

scandinm PRI A RIS RS RS2 2R R R R Rt R R R R s ]

group t-2

2145

cont

300

no

6111

'-itanium EEEEBRERE SR RXSEEEEXRREEER RS LR RER B R XX BE R LR R XEEEE XL ER RS

endf/b-iv
endf/b-iv
endl-79
endl-79

1286
1286

cont
disc
cont
disc

G-13

300
300
0
0

yes p
yes p
no
no

10644
3897
9626
3205
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APPENDIX G

ZAID FILE SOURCE MAT TYPE TEMP(°K) GPD LENGTH NUBAR
22000.35c  endl85 endl-85 28 cont 0 yes p(e) 13482

— 22000.50c  endfSu endf/b-v 1322 cont 300 yes p(e) 54862
22000.50d dre5 endf/b-v 1322 disc 300 yes p(e) 10514
22000.50m mgxsnp endf/b-v 1322  mult 300 yes 3015
22000.51c rmces  endf/b-v 1322  cont 300 yes p(e) 31893
22000.51d drmccs  endf/b-v 1322 disc 300 yes p(e) 10514

z =23 SEBEEEERERRREE vanadium EREXBREEEER AR RER L EERERREERES RS RAREREEEE LR KRR R &

** v-nat **

23000.30c bmces endf/b-iv 1196  cont 0 yesp 6456
23000.30d d9 endf/b-iv 1196 disc 0 yesp 4603
— 23000.50c  endf5u endf/b-v 1323  cont 300 yes p(e) 38373
23000.50d dre5 endf/b-v 1323 disc 300 yes p(e) 8929
23000.50m mgxsnp endf/b-v 1323  mult 300 yes 2775
23000.51c rmccs  endf/b-v 1323  comt 300 yes p(e) 34171
23000.51d drmccs  endf/b-v 1323 disc 300 yes p(e) 8929
% v-51 s
23051.31c  endl79 endl-79 cont ' 0 no 21394
23051.31d drl79 endl-79 disc 0 no 5505
zZ = 24 EEEEEEEERRERES Chromi“m EEREELEREEERREEEEERE R LS L BEAL SRS EEE SRS R LSS EEREREBEE R

** cr-nat **

24000.11c bmces endf/b-iv 1191 cont 300 yesp 38240
24000.11d d9 endf/b-iv 1191 disc 300 yesp 11767
24000.12¢ xmccs  endf/b-iv 1191 cont 900 yesp 51663
24000.31c  endl79 endl-79 cont 0 no 5827
24000.31d drl79 endl-79 disc 0 no 5260
24000.35¢  endl85 endl-85 30 cont 0 yes p(e) 9279
— 24000.50c rmces  endf/b-v 1324 cont 300 yes p(e) 134515
24000.50d drmccs endf/b-v 1324 disc 300 yes p(e) 30775
24000.50m mgxsnp endf/b-v 1324 mult 300 yes 3924
24000.51c  endf5t endf/b-v 1324  cont 300 yes p(e) 55677

z =25 BEEREEREREREESE manganese EEERREEIRSRERXREREREEERRXBEES RS SR L LSRR EEE XX EL R R R

% mn-55 L 2

25055.31c  endl79 endl-79 cont 0 no 4149
25055.31d drl79 endl-79 disc 0 no 3186
25055.35¢ endl85 endl-85 31 cont 0 yes p(e) 7554
— 25055.50c  endfSu endf/b-v 1325  cont 300 yes p(e) 105154
25055.50d dre5 endf/b-v 1325 disc 300 yes p(e) 9742
25055.50m mgxsnn.  ~rdf/b-v 1325 mult 300  yes 2890
25055.51c rmces  endf/b-v 1325 cont 300 yes p(e) 25788
25055.51d drmccs  endf/b-v 1325 disc 300 yes p(e) 9742
z = 26 EEERRRRRBRERER iro“ EEEEERRXEXXEEREEERER SRR ERREBEEEER R LR BEEREERRREERRR SRR RS

** fe-nat **

26000.11c bmces endf/b-iv 1192 cont 300 yesp 54104
26000.11d d9 endf/b-iv 1192 disc 300 yesp 8852
26000.12¢ xmccs endf/b-iv. 1192 cont 900 yesp 57638
26000.31¢ endl79 endl-79 cont 0 no 23960
26000.31d drl79 endl-79 disc 0 no 3339
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ZAID

26000.35¢
26000.50c
26000.50d
26000.51c
26000.54c
— 26000.55c
26000.55d

FILE

endl85
endfSp
dre5
endf5t
fe54(5)
rmccs
drmccs

26000.55m mgxsnp

SOURCE

endl-85
endf/b-v
endf/b-v
endf/b-v
endf/b-v
group t-2
group t-2
group t-2

MAT TYPE TEMP(°K) GPD
32 cont 0 yes p(e)
1326 cont 300 yes p(e)
1326 disc 300 yes p(e)
1326 cont 300 yes p(e)
1326m4 cont 300 yes p(e)
260 cont 300 yes p(e)
260 disc 300 yes p(e)

260 mult 300 yes

APPENDIX G

LENGTH NUBAR

31044
115508
33957
78377
155635
178453
72693
4304

Coba.lt EEREERRBREREERERE R R EE SRR S SRR R ERRR SRR RERRE KRR SR &

z = 27 EEREREXREREE RS
** co-59 . .
27059.31c endl79 endl-79
27059.31d drl79 endl-79
27059.35c  endl85 endl-85
— 27059.50c  endfSu endf/b-v
27059.50d dre5 endf/b-v
27059.50m mgxsnp endf/b-v
27059.51c rmccs  endf/b-v
27059.51d drmccs  endf/b-v
z = 28 EEELERREEEREES
** ni-nat **
28000.11¢ bmces endf/b-iv
28000.11d d9 endf/b-iv
28000.12¢ xmccs endf/b-iv
28000.31c endl79 endl-79
28000.31d dri79 endl-79
— 28000.50c rmces  endf/b-v
28000.50d drmccs endf/b-v
28000.50m mgxsnp endf/b-v
28000.51c  endfSt endf/b-v
% ni_ss L L]
28058.35c  endl8S endl-85
z = 29 SREEEERELEE RS Copper
** cu-nat **
29000.10c bmces endf/b-iv
29000.10d d9 endf/b-iv
29000.31c endl79 endl-79
29000.31d drl79 endl-79
29000.35¢c  endl85 endl-85
— 29000.50c rmccs  endf/b-v
29000.50d drmccs endf/b-v
29000.50m mgxsnp endf/b-v
29000.51c  endfSt endf/b-v
z = 3] EEERRRREREREES gduum
** ga-nat **
31000.31c endl79 endl-79
31000.31d drl79 endl-79
31000.35¢ endl85 endl-85

cont

disc

33 cont
1327 cont
1327 disc
1327 mult
1327 cont
1327 disc

1190 cont
1190 disc
1190 cont
cont

disc

1328 cont
1328 disc
1328 mult
1328 cont
35 cont

0 no

0 no

0 yes p(e)
300 yes p(e)
300 yes p(e)
300 yes
300 yes p(e)
300 yes p(e)

300 yesp
300 yesp
900 yesp

0 no

0 no
300 yes p(e)
300 yes p(e)
300 yes
300 yes p(e)

0 yes p(e)

31707
6391
39019
117136
11830
2889
28416
11830

nickel EERXRE RS EAEXREEREREEREERESEEE AL EER SR EE R AL FEREREEREE R RS

35192
5658
40842
32964
8096
139974
22059
3373
93636

42805

EERERRXREEERERERREEREEARR XX SRR EE RS L L EAEREBEEREEXRE LR

14703
8610
4157
4066
7100

51911

12838
2803

51375

ERRBRERE R RN EEREFE SR A SR ER S SRR SRS EE SRS LS B AR L EER R EER

1295 cont
1295 disc
cont

disc

36 cont
1329 cont
1329 disc
1329 mult
1329 cont
cont

disc

37 cont

G-15

0 yesp

0 yesp

0 no

0 no

0 yes p(e)
300 yes p(e)
300 yes p(e)
300 yes
300 yes p(e)

0 no

0 no

0 yes p(e)

4225
3027
7570
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APPENDIX G

ZAID FILE SOURCE MAT TYPE TEMP(°K) GPD LENGTH NUBAR

— 31000.50c rmccs  endf/b-v 1358 cont 300 yes p(e) 7989
31000.50d  drmccs endf/b-v 1358 disc 300 yes p(e) 6272
31000.50m mgxsnp endf/b-v 1358 muit 300 yes 2084
31000.51c endf5t endf/b-v 1358 cont 300 yes p(e) 7989

z = 33 EEXEREREEEEEES ”unic SEREERBEEEEREE X SRR R LR EEEE X R RS SRS SRR LR R LR R RS R RREE
b3 u_74 %
33074.35¢ endl85  endl-85 38  cont 0 yes p(e) 50942

% u_'zs % -

— 33075.35¢ rmccsa  endl-85 39  cont 0 yes p(e) 50992
33075.35d  drmccs  endl-85 39 disc 0 yes p(e) 8541
33075.35m mgxsnp  endl-85 39 mult 0 yes 2022

z = 35 RERERKERREERRES bl’omine EEREEERREXXRRR X ERA R L EERRERREREEREEEREREXEREREE KRR RR R R KR

b L] br_79 L2
35079.55c t2ddc(6) group t-2 9113 cont 300 no 10472

% b[‘-81 L 2
35081.55c t2ddc(6) group t-2 9117  cont 300 no 5383

z = 36 EERERREERER RS kryp‘on EEERBERBEXEEREEREREREEREEREEEEEEBEEEB SR EERERRER SRR ERE R

% kl"78 %

— 36078.50c rmccsa  endf/b-v 1330 cont 300 no 9098
36078.50d drmccs  endf/b-v 1330 disc 300 no 4399
36078.50m mgxsnp endf/b-v 1330 mult 300 no 2108

EL ] kr_so %
— 36080.50c rmccsa endf/b-v 1331 cont 300 no 10206
36080.50d drmccs endf/b-v 1331 disc 300 no 4317
36080.50m mgxsnp endf/b-v 1331  mult 300 no 2257
% kr_82 8

36082.50c rmccsa  endf/b-v 1332  cont 300 no 7261

36082.50d drmccs endf/b-v 1332 disc 300 no 4307

36082.50m mgxsnp endf/b-v 1332 mult 300 no 2312
— 36082.59c  arkrc(3) groupt-2 1332  cont 300 yesp 7051
e kr_ss E 2

36083.50¢c rmccsa  endf/b-v 1333  cont 300 no 8119

36083.50d drmccs endf/b-v 1333 disc 300 no 4400

36083.50m mgxsnp endf/b-v 1333  mult 300 no 2141
— 36083.59c  arkrc(3) group t-2 1333 cont 300 yesp 8110
% kr_84 L2

36084.50c rmccsa  endf/b-v 1334  cont 300 no 9405

36084.50d drmccs endf/b-v 1334 disc 300 no 4504

36084.50m mgxsnp endf/b-v 1334 muit 300 no 2460
— 36084.59c  arkrc(3) groupt-2 1334  cont 300 yesp 10411
& kl‘-86 L 3]

36086.50c rmccsa  endf/b-v 1336  cont 300 no 10457

36086.50d  drmccs endf/b-v 1336 disc 300 no 4342

36086.50m mgxsnp endf/b-v 1336 mult 300 no 2413
— 36086.59c  arkrc(3) groupt-2 1336 cont 300 yesp 8781
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APPENDIX G

ZAID FILE SOURCE MAT TYPE TEMP(°K) GPD LENGTH NUBAR
z = 37 EXXREKEEELERE R rubidium EXEXRRBEBEEERERERERRRRARR R EERA R R R B R EREREEEBRERREER AR K

% rb_ss %
37085.55c  t2ddc(6) group t-2 9160  cont 300 no 27345

x% rb_s" %
37087.55c  t2ddc(6) group t-2 9163  cont 300 no 8450

z = 39 ERERRREEERERRE yttnum EEREEEREBEREEXXRERRRRERBEE R A RE R RS RS BEES R EERRE SR SRR KR KK

** y 88 **
39088.35¢ endl85 endl-85 40  cont 0 yes p(e) 11360

% y-89 % .

— 39089.35¢ miscxs endl-85 41 cont 0 yes p(e) 49946
39089.50c endf5Su(7) endf/b-v 9202 cont 300 no 18672
39089.50d dre5 endf/b-v 9202 disc 300 no 2352

z = 40 ERRERRREEEERE S zirCOnium EEEERERREXE LR AL ERBEEERERERL R LR R RS LR RREERRREERRRERER S

** zr-nat **
40000.31c endl79  endl-79 cont 0 no 10585
40000.31d drl79 endl-79 disc 0 no 4749
40000.35¢ endl85 endl-85 42  cont 0 yes p(e) 14799

— 40000.50c endf5p endf/b-v 1340  cont 300 no 52105
40000.50d dre5 endf/b-v 1340 disc 300 no 5441
40000.50m  mgxsnp endf/b-v 1340  mult 300 no 2466
40000.51c rmces  endf/b-v 1340 cont 300 no 16857
40000.51d drmces  endf/b-v 1340 disc 300 no 5441
40000.53c eprixs endf/b-v 1340 cont 600 no 57528

s Zr'93 L 2
40093.50¢ kidman endf/b-v 9232  cont 300 no 2620

z = 41 EXERREEEEERERS niobium EXERXREEERAEEEERRRRREEEEAEE SRR X R ERRREBESRERRER RS RER R R KR

x% nb_93 £ 2]
41093.31c endl79 endl-79 cont 0 no 41316
41093.31d drl79 endl-79 disc 0 no 6609
41093.35¢ endl85 endl-85 43 cont 0 yes p(e) 50502

— 41093.50c endf5p endf/b-v 1189  cont 300 yes p(e) 129021
41093.50d dre5 endf/b-v 1189 disc 300 yes p(e) 10393
41093.50m  mgxsnp endf/b-v 1189  mult 300 yes 2746
41093.51c rmccs  endf/b-v 1189  cont 300 yes p(e) 14736
41093.51d drmces  endf/b-v 1189 disc 300 yes p(e) 10393

z = 42 EEEERREEEEEEE S molybdenum LRI R R IR R R R R R R R R R RS R RS RS E R 22822 2 2 8 ¢ )

** mo-nat **
42000.31c endl79  endl-79 cont 0 no 4949
42000.31d drl79 endl-79 disc 0 no 3112
42000.35¢ endl85  endl-85 44  cont 0 yes p(e) 8689

— 42000.50c endfSu endf/b-v 1321 cont 300 yes p(e) 35695
42000.50d dre5 endf/b-v 1321 disc 300 yes p(e) 7815
42000.50m  mgxsnp endf/b-v 1121  mult 300  yes 1991
42000.51c rmccs  endf/b-v 1521 cont 300 yes p(e) 10200
42000.51d drmces  endf/b-v 1321 disc 300 yes p(e) 7815

G-17

November 16, 1993



APPENDIX G

ZAID FILE SOURCE MAT TYPE TEMP(°K) GPD LENGTH NUBAR
** mo-95 **

42095.50c kidman endf/b-v 9282  cont 300 no 15452
z = 43 EREREREREREEES techneti“m EEEREEEERREERE XA A AL SRR RS L EE R ERE RS R AR EERRAERRREE AR KK
** .99 **

43099.50c kidman endf/b-v 1308  cont 300 no 12193
Z = 44 PESERREERKRERE Loh o SRR AR R R AR RN R SRR ARSI R RN RO AR AR AR

** ru-101 **

44101.50c  kidman endf/b-v 9330  cont 300 no 5340
** ru-103 ** .
44103.50c kidman endf/b-v 9332  cont 300 no 3093

z = 45 EEEEREBEERERRE rhodium LA A R R 22 2 2R R AR R R R R RS R R RS RSS2 R 221

** rh-103 **

— 45103.50c rmccsa endf/b-v 1310  cont 300 no 18911
45103.50d drmccs endf/b-v 1310 disc 300 no 4704
45103.50m mgxsnp endf/b-v 1310 mult 300 no 2147

** rh-105 **
45105.50c kidman endf/b-v 9355  cont 300 no 1632

z = 45 RERREERREEREREE averlge ﬁssion product from uranium-235 EEREEEEEEREEREREREE R RS

** u-235 fp **

— 45117.90c rmccs foster 998  cont 300 yes p(e) 10375
45117.90d  drmccs foster 998 disc 300 yes p(e) 9568
45117.90m mgxsnp foster 998  mult 300 yes 2709

z = 46 RERERREERERE RS p&uadil.lm EEEEREREREEEEEREREEE R RS EREEREEREEEE R EEREEEE S SRR R RN
Ed pd_los e
46105.50c kidman endf/b-v 9382 cont 300 no 4688
e pd-108 e
46108.50c kidman endf/b-v 9386  cont 300 no 4590
z = 46 SEFEEEEEREABEE average ﬁ“ion p‘.od“c" f‘om plutoni“m_zsg EREEREEREEEREEERERESE

** pu-239 fp **

— 46119.90c rmecs foster 999  cont 300 yes p(e) 10505
46119.90d drmccs foster 999 disc 300 yes p(e) 9603
46119.90m mgxsnp foster 999  mulit 300 yes 2629

z = 47 EXXEREEERERERE suver EXEEREXEREEEE L ERR R RS R LR RE SR AR KR AR SR SRR E LR EAREER R SRR RS

e ag-na.t ke

—~—— 47000.55c rmccsa group t-2 47 cont 300 yes p(e) 29153
47000.55d drmccs group t-2 47 disc 300 yes p(e) 12470
47000.55m mgxsnp group t-2 47  mult 300 yes 2693

% 35-107 L2
47107.35c  endl85 endl-85 45  cont 0 yes p(e) 13195

— 47107.50c rmccsa endf/b-v 1371 cont 300 no 12152
47107.50d drmccs endf/b-v 1371 disc 300 no 4124
47107.50m mgxsnp endf/b-v 1371 mult 300 no 2107
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ZAID FILE SOURCE MAT TYPE TEMP(°K) GPD LENGTH NUBAR

** ag-109 **
47109.35¢ endl85 endl-85 46 cont 0 yes p(e) 13513

— 47109.50c rmccsa  endf/b-v 1373 cont 300 no 14626
47109.50d drmccs  endf/b-v 1373 disc 300 no 3864
47109.50m mgxsnp endf/b-v 1373  mult 300 no 1924

z = 48 EEERRXEREKEE SN Ca»dmium EREREEXEE XL EREEE RS X AR LR LR S LR REE SRR R LR R KR AL RS LSRR RN SR

** cd-nat **
48000.31c endl79 endl-79 cont 0 no 8131
48000.31d drl79 endl-79 disc 0 no 3031
48000.35¢ endl85  endl-85 47  cont 0 yes p(e) 12344

— 48000.50c endfSu  endf/b-v 1281 cont 300 no 19755
48000.50d dre5 endf/b-v 1281 disc 300 no 3067
48000.50m mgxsnp endf/b-v 1281  mult 300 no 1841
48000.51c rmccs  endf/b-v 1281 cont 300 no 6775
48000.51d  drmccs endf/b-v 1281 disc 300 no 3067

z = 50 LIRS 22 222 ) tln EXEERBERLREXEEER LR LR RE ERRE R L EBER LR SRR BREAREEREREEERERRER R

** sn-nat **
50000.31c endl79 endl-79 cont 0 no 2876
50000.31d drl79  endl-79 disc 0 no 3256

— 50000.35¢ endl85 endl-85 48 cont 0 yes p(e) 6031

z = 50 EERREXREEERERE ﬁssion products XXX EREEEEERXEREEREELE R LR RR R X EEEREEEREEER KRR X

** ave fp **

— 50120.35¢ rmccs  endl-85 102 cont 0 yes p(e) 8427
50120.35d  drmccs  endl-85 102 disc 0 yes p(e) 9024
50120.35m mgxsnp  endl-85 102 mult 0 yes 1929
50998.99m mgxsnp permfile mult 0 no 1382
50999.99m mgxsnp permfile mult 0 no 1413

z = 53 EEREEELEREE SR iodine EEERREREEEEEEREEEREREEEEEREEEEEE S EXRE B ESEEEEEEEEEEER RS

L1 i-127 8
53127.55¢ t2ddc(6) group t-2 9606  cont 300 no 59766

% i_135 .8
53135.50c  kidman endf/b-v 9618 cont 300 no 1273

z = 54 EEEEERBEERREESE xenon EEREERERXEREREEEXREEERERRERERSERER XL LR RS BEEEREERERER SRS

** xe-nat **

— 54000.35¢ end:8. endl-85 49  cont 0 yes p(e) 41493
54000.35m mgxsnp endl-83 49  mult 0 yes 1929

** xe-131 **
54131.50c  kidman endf/b-v 1351 cont 300 no 22613

** xe-134 **
54134.35¢ endl85 endl-85 50 cont 0 yes p(e) 7524

** xe-135 **
54135.50c eprixs endf/b-v 1294 cont 300 no 5529
54135.53¢ eprixs endf/b-v 1294  cont 600 no 5541
54135.54¢ eprixs endf/b-v 1294  cont 900 no 5577
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APPENDIX G

ZAID FILE SOURCE MAT TYPE TEMP(°K) GPD LENGTH NUBAR

z = 55 EXEEXERREEE RS Cesium FEBEEBEXXERREX X EREXERERAE RS RS ERRE R R AR EE R SRR EERR AR KA R &

** cs-133 **

— 55133.50c  kidman endf/b-v 1355 cont 300 no 26754
55133.55c  t2ddc(6) group t-2 1355  cont 300 no 67934
** cs-135 **
55135.50c  kidman endf/b-v 9665  cont 300 no 1944
z = 56 ERERREERRERREY bmum EEREEREEREEEEXXREERERARREREBESEBRE R AR RRE RS RERERRERE R KKK
** ba-138 **
56138.31c endl?9 .endl-79 cont 0 no 3059
56138.31d drl79 endl-79 disc 0 no 3218
56138.35¢ endl85 endl-85 51 cont 0 yes p(e) 6046
— 56138.50c rmccs  endf/b-v 1353  cont 300 yes p(e) 6079
56138.50d drmccs endf/b-v 1353 disc 300 yes p(e) 6381
56138.50m mgxsnp endf/b-v 1353  mult 300 yes 2115
56138.51c endf5t endf/b-v 1353  cont 300 yes p(e) 6064

- EEEEERERERERER 1 EREXXRXEERRREEEEEXRERERENEREERAE R LB XL LR LXK EER SR
z =59 praseodymium

L2 pl’-l4l b2
59141.50c  kidman endf/b-v 9742  cont 300 no 15661

z = 60 FESREREEERREES neodymi“m REBEESRRRBREEREREBREESHEEE A SN S REAERSRRERRERERREES R RS

** nd-143 **
60143.50c  kidman endf/b-v 9764  cont 300 no 17257
** nd-145 **
60145.50c kidman endf/b-v 9766 cont 300 no 38514
** nd-147 **
60147.50c  kidman endf/b-v 9768  cont 300 no 1857
** nd-148 **
60148.50c kidman endf/b-v 9769  cont 300 no 10908
z = 61 EESEREELEEERES pmmethium XX EEEXESASEEREELEEEEAEESEREL AL RER LS XX REEEXEEERER R
=% pm_l47 b2
61147.50c  kidman endf/b-v 9783  cont 300 no 9193
% pm-148 %
61148.50c kidman endf/b-v 9784  cont 300 no 1684
** pm-149 **
61149.50c  kidman endf/b-v 9786 cont 300 no 2110
z = 62 EEERLERREEEERES Sama‘i“m EEEEEEER XX ERERAERERREREEREEBEES XL R LR ERESEEER RN AR RS

** sm-147 **

62147.50c  kidman endf/b-v 9806  cont 300 no 33814
** sm-149 **
— 62149.50c endfSu endf/b-v 1319  cont 300 no 15703

62149.50d dre5 endf/b-v 1319 disc 300 no 4470
** sm-150 **

62150.50c  kidman endf/b-v 9809 cont 300 no 9386
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ZAID FILE SOURCE MAT TYPE TEMP(°K) GPD LENGTH NUBAR
** sm-151 **

62151.50c kidman endf/b-v 9810 cont 300 no 7344
** sm-152 **

62152.50c kidman endf/b-v 9811 cont 300 no 41293
z = 63 ERERXEEEEEREEE europium EEBXERERXERRBERRRREEEBERESREEE AR EREBREEEERBERRRE K LR XS

** eu-nat **

63000.31c endl79 endl-79 cont 0 no 3532
63000.31d drl79  endl-79 disc 0 no 3039

— 63000.35¢ rmccsa  endl-85 52  cont 0 yes p(e) 6987
63000.35d drmccs . endl-85 52 disc 0 yes p(e) 6715
63000.35m mgxsnp endl-85 52  mult 0 yes 1933

** eu-151 **
63151.50c rmces  endf/b-v 1357  cont 300 yes p(e) 68118
63151.50d drmccs  endf/b-v 1357 disc 300 yes p(e) 10074
63151.51c endf5t endf/b-v 1357 cont 300 yes p(e) 16796

— 63151.55¢ newxs group t-2 151 cont 300 yes p(e) 86636
63151.55d newxsd group t-2 151 disc 300 yes p(e) 35260
63151.55m mg=snp group t-2 151 mult 300 yes 2976

** eu-152 **

— 63152.50c endfSu endf/b-v 1292  cont 300 no 49354
63152.50d dre5 endf/b-v 1292 disc 300 no 5696
63152.51c endfSt endf/b-v 1292  cont 300 no 10893

** eu-153 **
63153.50c rmces  endf/b-v 1359 cont 300 yes p(e) 55292
63153.50d drmccs  endf/b-v 1359 disc 300 yes p(e) 11305
63153.51c endf5t endf/b-v 1359  cont 300 yes p(e) 15463

— 63153.55¢ newxs group t-2 153 cont 300 yes p(e) 73032
63153.55d newxsd group t-2 153 disc 300 yes p(e) 36433
63153.55m mgxsnp group t-2 153  mult 300 yes 2976

** eu-154 **

— 63154.50c endf5u  endf/b-v 1293  conmt 300 no 37049
63154.50d dre5 endf/b-v 1293 disc 300 no 5499
63154.51c endf5t endf/b-v 1293 cont 300 no 10407

** eu-155 **
63155.50c kidman endf/b-v 9832 cont 300 no 4573
z = 64 EEREEEEEEEELER sadolinium ERXEEEERREREERREREEEBEREEEEREREREBREESEEEREREEE R RN KRS
** gd-nat **
64000.31c endl79 endl-79 cont 0 no 4192
64000.31d drl79 endl-79 disc 0 no 3092

— 64000.35¢ rmccsa  endl-85 53  cont 0 yes p(e) 7939
64000.35d drmccs endl-85 53 disc 0 yes p(e) 6894
64000.35m mgxsnp endl-85 53  mult 0 yes 1929

** gd-152 **
64152.50c endfSu endf/b-v 1362 cont 300 no 26292
64152.50d dre5 endf/b-v 1362 disc 300 no 5940
64152.51c endf5t endf/b-v 1362  cont 300 no 10970

— 64152.52c gd2hedi(8) hedl 1362 cont 300 no 15879
64152.53c  gd2hedl(8) hedl 1362  cont 800 no 15237
64152.55¢c  gdt2gp(9) gp- t-2 1362 cont 300 yes p(e) 32651

G-21 November 16, 1993



APPENDIX G

ZAID FILE SOURCE MAT TYPE TEMP(°K) GPD LENGTH NUBAR

% gd_154 %

— 64154.50c endfSu endf/b-v 1364  cont 300 no 49613
64154.50d dre5 endf/b-v 1364 disc 300 no 5971
64154.51c endfSt endf/b-v 1364 cont 300 nc 11520
64154.55c  gdt2gp(9) gp. t-2 1364  cont 300 yes p(e) 59875

% sd_lss L 2d

— 64155.50c endf5Su endf/b-v 1365  cont 300 no 45006
64155.50d dre5 endf/b-v 1365 disc 300 no 6569
64155.51c endf5t endf/b-v 1365  cont 300 no 11919
64155.55c  gdt2gp(9) gp. t-2 1365 cont 300 yes p(e) 54407

L 8d~156 L2

— 64156.50c endfSu. endf/b-v 1366 cont 300 no 37412
64156.50d dre5 endf/b-v 1366 disc 300 no 6216
64156.51c endf5t endf/b-v 1366 cont 300 no 11443
64156.55c  gdt2gp(9) gp. t-2 1366  cont 300 yes p(e) 44452

** gd-157 **

— 64157.50c endf5u endf/b-v 1367  cont 300 no 39016
64157.50d dre5 endf/b-v 1367 disc 300 no 6387
64157.51c endf5t endf/b-v 1367  cont 300 no 11365
64157.55c  gdt2gp(9) gp. t-2 1367  cont 300 yes p(e) 47332

** 2d-158 **

— 64158.50c endf5u endf/b-v 1368  cont 300 no 95917
64158.50d dre5 endf/b-v 1368 disc 300 no 5852
64158.51c endf5t endf/b-v 1368  cont 300 no 11975
64158.55c  gdt2gp(9) gp. t-2 1368  cont 300 yes p(e) 113977

** 2d-160 **

— 64160.50c endf5u endf/b-v 1370  cont 300 no 54029
64160.50d dre5 endf/b-v 1370 disc 300 no 5071
64160.51c endf5t endf/b-v 1370  cont 300 no 10021
64160.55c  gdt2gp(9) gp. t-2 1370  cont 300 yes p(e) 65322

2 = 67 EEREREEEEREEER holmi“m EXRREELE LR R RERERRREEEEREEREEREEEE LR R LB EEERE R R R KR K

** ho-165 **
67165.31c endI79 endl-79 cont 0 no 44092
67165.31d drl79 endl-79 disc 0 no 3311
67165.35¢ rmccsa  endl-85 54  cont 0 yes p(e) 54340
67165.35d drmccs  endl-85 54 disc 0 yes p(e) 7080

— 67165.55¢ newxs group t-2 165 cont 300 yes p(e) 56666
67165.55d newxsd group t-2 165 disc 300 yes p(e) 42327
67165.55m mgxsnp group t-2 165  mult 300 yes 2526

z = 69 SEEEEEREERERES thulium EXREEEEEEXREERE RS L LSRR L ERRLEREEBEEEEEEEER LRSS REER R RS X

** th-169 **

69169.55c tm169(10) gp. t-2 169 cont 300 no 47982
z = 72 SEERRERRRRREEE hlfnium BXEXEREERBBEEREERERERBRRREEEE RS REEEREREERRREERREE R KR

** hf-nat **
72000.35¢ endl85  endl-85 55  cont 0 yes p(e) 75923

— 72000.50c newxs endf/b-v 1372  cont 300 no 52272
72000.50d newxsd endf/b-v 1372 disc 300 no 4792
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Z = T3 FEEEEERCERERNE ool R AR AR AR AR R AR R ARSI RA AR kR

** ta-181 **

73181.31c  endl79 endl-79 cont 0 no 20876
73181.31d drl79 endl-79 disc 0 no 5871
73181.35¢ endl85 endl-85 56 cont 0 yes p(e) 33608
— 7'i81.50c  endfSu endf/b-v 1285  cont 300 yes p(e) 60801
7,181.50d dre5 endf/b-v 1285 disc 300 yes p(e) 16422
73181.50m mgxsnp endf/b-v 1285 muit 300 yes 2787
73181.51c¢ rmccs  endf/b-v 1285  cont 300 yes p(e) 21588
73181.51d drmccs endf/b-v 1285 disc 300 yes p(e) 16422
7z = 74 EEERERRRERERES t“nssten SRR EBEERERREREE RS RXERRBEEREPE RS X EE AR EER AR R EEEERRERR K

** w-nat **

74000.31c  endl79 endl-79 cont 0 no 20541
74000.31d dri79 endl-79 disc 0 no 3212
74000.35c  endl85  endl-85 57  cont 0 yes p(e) 27091
— 74000.55c rmccs  group t-2 7400 cont 300 yes p(e) 50700
74000.55d drmccs group t-2 7400 disc 300 yes p(e) 34333
74000.55m mgxsnp group t-2 7400 mult 300 yes 4360
% W-182 s
74182.10c bmccs endf/b-iv. 1128  cont 0 yesp 33247
74182.10d d9 endf/b-iv 1128 disc 0 yesp 5920
74182.50c  endf5p endf/b-v 1128  cont 300 yes p(e) 94428
74182.50d dre5 endf/b-v 1128 disc 300 yes p(e) 17790
74182.51c  endfSt endf/b-v 1128  cont 300 yes p(e) 23259
— T74182.355¢ rmccsa group t-2 182 cont 300 yes p(e) 122351
74182.55d drmccs group t-2 182 disc 300 yes p(e) 26448
74182.55m mgxsnp group t-2 182 muit 300 yes 3687
x% w_183 % .
74183.10¢ bmces endf/b-iv 1129 cont 0 yesp 27816
74183.10d d9 endf/b-iv 1129 disc 0 yesp 7125
74183.50c  endfSp endf/b-v 1129  cont 300 yes p(e) 58860
74183.50d dre5 endf/b-v 1129 disc 300 yes p(e) 19504
74183.51c  endf5t endf/b-v 1129  cont 300 yes p(e) 22707
— 74183.55¢c rmccsa group t-2 183 cont 300 yes p(e) 79595
74183.55d drmccs group t-2 183 disc 300 yes p(e) 26381
74183.55m mgxsnp group t-2 183  mult 300 yes 3628
*% w-184 b 2 J
74184.10c bmces endf/b-iv. 1130  cont 0 yesp 27996
74184.10d d9 endf/b-iv 1130 disc 0 yesp 6139
74184.50c  endf5p endf/b-v 1130  cont 300 yes p(e) 58931
74184.50d dre5 endf/b-v 1130 disc 300 yes p(e) 17093
74184.51c  endf5t endf/b-v 1130  cont 300 yes p(e) 20631
—— T74184.55¢ rmccsa group t-2 184 cont 300 yes p(e) 80067
74184.55d drmccs group t-2 184 disc 300 yes p(e) 26171
74184.55m mgxsnp group t-2 184  mult 300 yes 3664
% W‘186 L 2]
74186.10c bmeccs endf/b-iv 1131 cont 0 yesp 30916
74186.10d d9 endf/b-iv 1131 disc 0 yesp 6208
74186.50c  endfSp endf/b-v 1131 cont 300 yes p(e) 63762
74186.50d dre5 endf/b-v 1131 disc 300 yes p(e) 17079

G-23 November 16, 1993



APPENDIX G

ZAID FILE SOURCE MAT TYPE TEMP(°K) GPD LENGTH NUBAR
74186.51c endf5t endf/b-v 1131  cont 300 yes p(e) 21487
— T74186.55¢ rmccsa group t-2 186 cont 300 yes p(e) 83679
74186.55d drmccs  group t-2 186 disc 300 yes p(e) 26342
74186.55m mgxsnp group t-2 186 mult 300 yes 3672
z = 75 (222233223 8 211} fhenium EEXEFAERBE X EXRREFE SRR EBE SRS EEE SRS R R AR R EEREEREEREERBRR &
** re-185 **
75185.32c miscxs endl-80 cont 0 yesp 13691
— 75185.35¢ endl85 endl-85 58  cont 0 yes p(e) 16099
75185.50¢ rmccsa  endf/b-v 1083  cont 300 no 9231
75185.50d drmccs  -endf/b-v 1083 disc 300 no 4293
75185.50m mgxsnp endf/b-v 1083  muit 300 no 1968
** re-187 **
75187.32¢ miscxs endl-80 cont 0 yesp 12359
— 75187.35¢ end185 endl-85 59  cont 0 yes p(e) 14830
75187.50¢ rmccsa  endf/b-v 1084  cont 300 no 8303
75187.50d drmccs  endf/b-v 1084 disc 300 no 4716
75187.50m mgxsnp endf/b-v 1084 mult 300 no 2061

z = 77 EEEEREERERREE R lndillm EEXEEXEREEXE LSRR EREREEE L EESEELE SRR EEREE SR ERE SRR ERER R R

** ir-nat **

77000.55¢ irnat(11) gp. t-2 2002  cont 300 no 43112
7 = 78 EEEESEEEREEERE platinum EEREXEEREREEEEER XX LR LSRR B LR BE LRSS LRSS B REB R AR REEEERE &
** pt-nat **
78000.31c endl79 endl-79 cont 0 no 10657
78000.31d drl79 endl-79 disc 0 no 3209
— 78000.35c rmccsa endl-85 60 cont 0 yes p(e) 15432
78000.35d drmccs endl-85 60 disc 0 yes p(e) 6994
78000.35m  mgxsnp endl-85 60  mult 0 yes 1929
z = 79 EEEEREREEREERR sold EEREERREREEEREEERERELEEERERERSERERREERE L LR EBEERREEREESRE S
** au-197 **
79197.31c endl7?9 endl-79 cont 0 no 25040
79197.31d drl79 endl-79 disc 0 no 3965
79197.35¢ endl85 endl-85 61  cont 0 yes p(e) 31932
79197.50¢c endfSp endf/b-v 1379  cont 300 no 139466
79197.50d dre5 endf/b-v 1379 disc 300 no 4923
79197.51c endf5t endf/b-v 1379  cont 300 no 12283
79197.55¢ rmcuse  gioup t-2 1379 cont 300 yes p(e) 134386
79197.55d drmccs  group t-2 1379 disc 300 yes p(e) 7944
— 79197.56¢c newxs group t-2 197 cont 300 yes p(e) 122543
79197.56d newxsd group t-2 197 disc 300 yes p(e) 38862
79197.56m mgxsnp group t-2 197  mult 300 yes 3490
7 = 82 EREEEEREEREEE R lead EXREEXEREXEREE SR AR ERXEEREERERXREREEEREREER XXX R KRBT RERREX R
** pb-nat **
82000.10c bmces endf/b-iv 1288 cont 0 yesp 21052
82000.10d d9 endf/b-iv 1288 disc 0 yesp 11526
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82000.31c endl79 endl-79 cont 0 no 3964
82000.31d drl79 endl-79 disc 0 no 3383
82000.35¢ endl85 endl-85 62 cont 0 yes p(e) 6700
— 82000.50c rmccs  endf/b-v 1382 cont 300 yes p(e) 37694
82000.50d drmccs  endf/b-v 1382 disc 300 yes p(e) 20710
82000.50m mgxsnp endf/b-v 1382  muit 300 yes 3384
82000.51c endf5t endf/b-v 1382  cont 300 yes p(e) 37694
z = 83 EEELEEEREREERE bismuth KRR EEEX LR EERRREEEEEEREEE AR R EREBEEEEEXERRRRRE KK
** bi-209 **
83209.35¢ endl85 endl-85 63  cont 0 yes p(e) 18377
— 83209.50c endfSu " endf/b-v 1375  cont 300 yes p(e) 15000
83209.50d dre5 endf/b-v 1375 disc 300 yes p(e) 7577
83209.50m mgxsnp endf/b-v 1375  mult 300 yes 2524
83209.51c rmccs  endf/b-v 1375 cont 300 yes p(e) 13782
83209.51d drmccs  endf/b-v 1375 disc 300 yes p(e) 7577
z = 90 EESREEXREEEEEE tho[ium EEEEERXEERLERE XX SR L BEBELEREEL BB EEXREEPREEEEEEEEEERREEE S
** th-231 **
90231.35¢ endl85 endl-85 64 cont 0 yes p(e) 9218 prompt
** th-232 **
90232.31c endl79 endl-79 cont 0 no 40220 prompt
90232.31d drl79 endl-79 disc 0 no 4045 prompt
90232.35¢ endl85 endl-85 65  cont 0 yes p(e) 56152 prompt
— 90232.50c endfSu endf/b-v 1390 cont 300 yes p(e) 152843 both
90232.50d dre5 endf/b-v 1390 disc 300 yes p(e) 11998 both
90232.50m mgxsnp endf/b-v 1390  mult 300 yes 2896 both
90232.51c rmccs  endf/b-v 1390  cont 300 yes p(e) 17986 both
90232.51d drmccs  endf/b-v 1390 disc 300 yes p(e) 11998 both
** th-233 ** -
90233.35¢ endl85 endl-85 66 cont 0 yes p(e) 9413 prompt
z = 91 EEELREREEEEEES prot&ctinium EEEEBEEEREEERRREERE LR EFEEE S LS A E RS LSS SR RERR R ERE X
b2 p‘_zsl %
91231.50c pa231(12) endf/b-v 8131  cont 300 no 7066 total
% pa-233 %
91233.35¢ endi8s endl-85 67 cont 0 yes p(e) 19231 prompt
— 91233.50c endfSu  endf/b-v 1391  cont 300 no 19560 total
91233.50d dre5 endf/b-v 1391 disc 300 no 3741 total
91233.50m  mgxsnp endf/b-v 1391 mult 300 no 1970 total
91233.51c rmccs  endf/b-v 1391  cont 300 no 5682 total
91233.51d drmces  endf/b-v 1391 disc 300 no 3741 total
z = 92 EEEERERREEEEES “flnium EEEREEREREL AR RS RE XX R R LB ELEEEEE SR E R R R EEBEESEESEEBREER R
% u_233 s
92233.31c endl79 endl-79 cont 0 no 22575 prompt
92233.31d drl79 endl-79 disc 0 no 4029 prompt
92233.35¢ endl85 endl-85 68 cont 0 yes p(e) 29735 prompt
— 92233.50c rmces  endf/b-v 1393 cont 300 no 18856 both
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ZAID

92233.50d
92233.50m
92233.51¢
x% u-234 e
92234.31c
92234.31d
92234.35¢
— 92234.50c
92234.50d
92234.50m
92234.51c
92234.51d
x5 u-235 "
92235.04c
92235.05¢
92235.06¢
92235.07c
92235.08c
92235.09¢
92235.10c
92235.10d
92235.11c
92235.11d
92235.15¢
92235.15d
92235.18¢c
92235.18d
92235.19¢
92235.19d
92235.20c
92235.20d
92235.31c
92235.31d
— 92235.50c
92235.50d
92235.50m
92235.51c
92235.52¢
92235.53¢
92235.54c
92235.56¢
92235.57c
92235.58¢
92235.59¢
% U°236 x5
92236.31c
92236.31d
92236.35¢
— 92236.50c
92236.50d
92236.50m
92236.51c
92236.51d

FILE

drmccs
mgxsnp
endf5t

endl79
dri79
endl85
endf5p
dre5
mgxsnp
rmccs
drmccs

xmccs
xmcecs
xmccs
xmccs
xmccs
xmccs
amccs
d9
amccs
d9
rmccsb
d9
amccs
d9
rmccsb
d9
amccs
d9
endl79
dri79
rmccs
drmccs
mgxsnp
endf5t
u600k
eprixs
eprixs
endf5ht
endfSht
endf5ht
endfSht

endl79
drl79
endl85
endfSp
dre5
mgxsnp
rmccs
drmces
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SOURCE

endf/b-v
endf/b-v
endf/b-v

endl-79
endl-79
endl-85
endf/b-v
endf/b-v
endf/b-v
endf/b-v
endf/b-v

endf/b-iv
endf/b-iv
endf/b-iv
endf/b-iv
endf/b-iv
endf/b-iv
endf/b-iv
endf/b-iv
endf/b-iv
endf/b-iv
endf/b-iv
endf/b-iv
endf/b-iv
endf/b-iv
endf/b-iv
endf/b-iv
endf/b-iv
endf/b-iv

endl-79

endl-79
endf/b-v
endf/b-v
endf/b-v
endf/b-v
endf/b-v
endf/b-v
endf/b-v
endf/b-v
endf/b-v
endf/b-v
endf/b-v

endl-79
endl-79
endl-85
endf/b-v
endf/b-v
endf/b-v
endf/b-v
endf/b-v

MAT

1393
1393
1393

69
1394
1394
1394
1394
1394

1261
1261
1261
1261
1261
1261
1261
1261
1261
1261
1261
1261
1261
1261
1261
1261
1261
1261

1395
1395
1395
1395
1395
1395
1395
1395
1395
1395
1395

71
1396
1396
1396
1396
1396

TYPE TEMP(°K)

disc
mult
cont

cont
disc
cont
cont
disc
mult
cont
disc

cont
cont
cont
cont
cont
cont
cont

disc
cont

disc
cont
disc
cont

disc
cont
disc
cont

disc
cont

disc
cont

disc
mult
cont
cont
cont
cont
cont
cont
cont
cont

cont
disc
cont
cont
disc
mult
cont
disc
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300
300
300

0
0
0
300
300
300
300
300

3000
30000
6.e4+05
1.2e+07
0

300

0

0

300

300
1.2e407
1.2¢+07
3000
3000
30000
30000
6.e405
6.e4+05
0

0

300

300

300

300

600

600

900
1.2e404
1.2e+05
1.2e4-06
1.2e407

0
0
0
300
300
300
300
300

GPD

no
no
no

no
no
yes p(e)
no
no
no
no
no

yes h
yes h
yes h
yes h
yes h
yes h
yes p
yes p
yes p
yes p
yes p(e)
yes p(e)
yes p
yes p
yes p(e)
yes p(e)
yes p
yes p
no
no
yes p(e)
yes p(e)
yes
yes p(e)
yes p(e)
yes p(e)
yes p(e)
yes p(e)
yes p(e)
yes p(e)
yes p(e)

no
no
yes p(e)
no
no
no
no
no

LENGTH NUBAR

4213
1988
7754

4033
4311
9618
89474
4874
2150
6467
4874

29516
18573
12560
11268
42923
41638
42716

7412
41332

7412
15173
11406
29254

7412
22298
11406
12497

7412
19132

4638
60550
11849

3164
25862
65347
36120
36008
28555
25275
23027
22467

4023
4350
9760
138756
4879
2166
7343
4879

both
both
both

prompt
prompt
prompt
total
total
total
total
total

both
both
both
both
both
both
both
both
both
both
both
both
both
both
both
both
both
both
prompt
prompt
both
both
both
both
both
both
both
both
both
both
both

prompt
prompt
prompt
total
total
total
total
total
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x% u_237 L 1]
92237.31c  endl79 endl-79 cont 0 no 4549 prompt
92237.31d drl79  endl-79 disc 0 no 3986 prompt
92237.35c  endI85 endl-85 72 cont 0 yes p(e) 9425 prompt
— 92237.50c  endfSp endf/b-v 8237  cont 300 yes p(e) 32506 total
92237.50d dre5 endf/b-v 8237 disc 300 yes p(e) 8912 total
92237.50m mgxsnp endf/b-v 8237  mult 300 yes 2174 total
92237.51c rmccs  endf/b-v 8237  cont 300 yes p(e) 10378 total
92237.51d drmccs endf/b-v 8237 disc 300 yes p(e) 8912 total
8 u-238 %
92238.04c¢ xmccs endf/b-iv 1262 cont 30000 yesh 32918 both
92238.05¢ xmccs endf/b-iv 1262  cont 6.e4+05 yesh 18803 both
92238.06¢ xmces  endf/b-iv. 1262  cont 1.2e4+07 yesh 10399 both
92238.12¢ umccs endf/b-iv 1262 cont 300 yesp 50412 both
92238.13¢c  rmccsb endf/b-iv 1262  cont 30000 yes p(e) 38686 both
92238.13d d9 endf/b-iv 1262 disc 30000 yes p(e) 12905 both
92238.15¢ rmccsb endf/b-iv 1262  comt 1.2¢407 yes p(e) 16230 both
92238.15d d9 endf/b-iv 1262 disc 1.22407 yes p(e) 13045 both
92238.20c amccs endf/b-iv 1262 cont 6.e+05 yes p 18721 both
92238.20d d9 endf/b-iv 1262 disc 6.e4+05 yesp 7034 both
92238.31c endl79 endl-79 cont 0 no 18324 prompt
92238.31d drl79 endl-79 disc 0 no 8985 prompt
92238.35c  endl85 endl-85 73 cont 0 yes p(e) 27229 prompt
— 92238.50c rmces  endf/b-v 1398  cont 300 yes p(e) 89059 both
92238.50d drmccs endf/b-v 1398 disc 300 yes p(e) 16876 both
92238.50m mgxsnp endf/b-v 1398 mult 300 yes 3553 both
92238.51c¢ endf5t endf/b-v 1398  cont 300 yes p(e) 23921 both
92238.52¢ u600k endf/b-v 1398  cont 600 yes p(e) 123260 both
92238.53¢ eprixs endf/b-v 1398  cont 600 yes p(e) 160107 both
92238.54c eprixs endf/b-v 1398  cont 900 yes p(e) 160971 both

92238.56c endfSht endf/b-v 1398  cont 1.2¢4+04 yes p(e) 82531 both

92238.57c  endfSht endf/b-v 1398  cont 1.2e4+05 yes p(e) 47267 both

92238.58c endfSht endf/b-v 1398  cont 1.2e+06 yes p(e) 27875 both

92238.59c endfSht endf/b-v 1398  cont 1.2e407 yes p(e) 22139 both
** 4.239 **

— 92239.35c rmccsa endl-85 74 cont 0 yes p(e) 9870 prompt
92239.35d drmccs  endl-85 74 disc 0 yes p(e) 9347 prompt
92239.35m mgxsnp endl-85 74  mult 0 yes 2147 prompt

% u_24o s
92240.31c  endl79  endl-79 cont 0 no 3804 prompt
92240.31d drl79 endl-79 disc 0 no 4238 prompt

— 92240.35c  endl85 endl-85 75  cont 0 yes p(e) 9556 prompt

z = 93 EEREREREREEE R neptuni\lm (TSRS TSRS SRR E 2RSSR 2SR SRR 22 R 222 2 222 22 2 2 2 2 )

** np-235 **
93235.35c  endl85  endl-85 76  cont 0 yes p(e) 9551 prompt
L2 np-236 s
93236.35c  endl85 endl-85 77 cont 0 yes p(e) 9882 prompt
** np-237 **
93237.31c  endl79 endl-79 cont 0 no 14149 total
93237.31d drl79 endl-79 disc 0 no 4032 total
93237.35¢ endl85 endl-85 78 cont 0 yes p(e) 20286 prompt
93237.50c  endfSp endf/b-v 1337 cont 300 no 63264 total
93237.50d dre5 endf/b-v 1337 disc 300 no 5308 total
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93237.51c endf5t endf/b-v 1337  cont 300 no 9787 total
— 93237.55¢  rmccsa group t-2 1337  cont 300 no 32599 both
93237.55d  drmeccs group t-2 1337 disc 300 no 20525 both
93237.55m mgxsnp group t-2 1337 mult 300 no 2812 both

** np-238 **
93238.35c  endlI85 endl-85 79 cont 0 yes p(e) 9939 prompt
z = 94 ERERREERRERRR R pl“tonium EXREPERERRREEEEEEREE R R SR EEEE R LB AR RSB B EER RS SRR KRR R

% pu_237 %
94237.35c  endl85  endl-85 80  cont 0 yes p(e) 11361 prompt

** pu-238 **
94238.31c  endl79 " endl-79 cont 0 no 8624 prompt
94238.31d drl79 endl-79 disc 0 no 3901 prompt
94238.35¢c  endl85 endl-85 81 cont 0 yes p(e) 15680 prompt
— 94238.50c  endf5p endf/b-v 1338 cont 300 no 18804 total
94238.50d dre5 endf/b-v 1338 disc . 300 no 5445 total
94238.50m mgxsnp endf/b-v 1338  mult 300 no 2442 total
94238.51c rmccs  endf/b-v 1338  cont 300 no 6108 total
94238.51d drmccs endf/b-v 1338 disc 300 no 5445 total

L2 pu_239 %
94239.02c xmccs endf/b-iv. 1264  cont 3000 yesh 40464 both
94239.03¢ xmccs  endf/b-iv. 1264  cont 30000 yesh 25460 both
94239.04c xmccs  endf/b-iv 1264 cont 6.e+05 yesh 13633 both
94239.05¢ xmccs endf/b-iv. 1264  cont 1.2¢4+07 yesh 11349 both
94239.06¢ xmccs  endf/b-iv. 1264  cont 0 yesh 41167 both
94239.07c xmccs  endf/b-iv 1264  cont 300 yesh 34659 both
94239.15¢  rmccsb endf/b-iv 1264 cont 1.2e+07 yes p(e) 14205 both
94239.15d d9 endf/b-iv 1264 disc 1.2e407 yes p(e) 11541 both
94239.16c amccs endf/b-iv 1264  cont 0 yesp 41153 both
94239.16d d9 endf/b-iv 1264 disc 0 yesp 8056 both
94239.17c amccs endf/b-iv 1264  cont 300 yesp 34631 both
94239.17d d9 endf/b-iv 1264 disc 300 yesp 8056 both
94239.18c amccs endf/b-iv 1264  cont 3000 yesp 40421 both
94239.18d d9 endf/b-iv 1264 disc 3000 yesp 8056 both
94239.19c rmccsb endf/b-iv 1264  cont 30000 yes p(e) 28311 both
94239.19d d9 endf/b-iv 1264 disc 30000 yes p(e) 11541 both
94239.20c amccs endf/b-iv 1264  cont 6.e+05 yesp 13590 both
94239.20d d9 endf/b-iv 1264 disc 6.e4+05 yesp 8056 both
94239.31c  endl79 endl-79 cont 0 no 20976 prompt
94239.31d drl79 endl-79 disc 0 no 5926 prompt
94239.50c  endfSp endf/b-v 1399  cont 300 yes p(e) 74110 both
94239.50d dre5 endf/b-v 1399 disc 300 yes p(e) 12692 both
94239.51c  endfSt endf/b-v 1399  cont 300 yes p(e) 18898 both
— 94239.55¢ rmccs  group t-2 1399 cont 300 yes p(e) 102160 both
94239.55d drmccs group t-2 1399 disc 300 yes p(e) 20788 both
94239.55m mgxsnp group t-2 1399  muit 300 yes 3038 both

94239.56c  endfSht group t-2 1399  cont 1.2e+04 yes p(e) 45590 both
94239.57c  endfSht group t-2 1399  cont 1.2e4+05 yes p(e) 36262 both
94239.58c endfSht group t-2 1399  cont 1.2e+06 yes p(e) 31110 both
94239.59c  endfSht group t-2 1399 cont 1.2e407 yes p(e) 29822 both

** Du-240 **
94240.12c bmces endf/b-iv 1265  cont 900 yesp 41821 both
94240.12d d9 endf/b-iv 1265 disc 900 yesp 6087 both
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94240.31c¢ endl79 endl-79 cont 0 no 33109 prompt
94240.31d drl79 endl-79 disc 0 no 5339 prompt
—— 94240.50c rmccs  endf/b-v 1380  cont 300 yes p(e) 58978 both
94240.50d drmccs endf/b-v 1380 disc 300 yes p(e) 9630 both
94240.50m mgxsnp endf/b-v 1380 mult 300 yes 3044 both
94240.51c  endf5t endf/b-v 1380  cont 300 yes p(e) 15195 both
% pn-24l L L]
94241.31c endl79 endl-79 cont 0 no 4139 prompt
94241.31d drl79 endl-79 disc 0 no 4303 prompt
94241.35¢c  endl85 endl-85 84 cont 0 yes p(e) 9905 prompt
— 94241.50c  endf5p endf/b-v 1381 cont 300 yes p(e) 38662 both
94241.50d dre5 endf/b-v 1381 disc 300 yes p(e) 11636 both
94241.50m mgxsnp endf/b-v 1381 mult 300 yes 2856 both
94241.51c rmccs  endf/b-v 1381 cont yes p(e) 13464 both
94241.51d drmccs endf/b-v 1381 disc 300 yes p(e) 11636 both
% pu_242 %
94242.35c  endl85 endl-85 85  cont 0 yes p(e) 21220 prompt
— 94242.50c  endf5p endf/b-v 1342  cont 300 yes p(e) 71490 both
94242.50d dre5 endf/b-v 1342 disc 300 yes p(e) 12524 both
94242.50m mgxsnp endf/b-v 1342 mult 300 yes 2956 both
94242.51c rmces  endf/b-v 1342  cont 300 yes p(e) 15763 both
94242.51d drmccs endf/b-v 1342 disc 300 yes p(e) 12524 both
L] pu_243 E 2
94243.31c bmccs endl-79 cont 0 no 7087 prompt
94243.31d d9 endl-79 disc 0 no 5547 prompt
~—— 94243.35c  endI85 endl-85 86 cont 0 yes p(e) 10824 prompt

z = 95 EEEREERREXRARE ameﬁdum EREBEBERRAEEERE XX RRER XX ERER XXX SRR EEERARXRRRRKK K

** am-241 **

95241.31c  endl79 endl-79 cont 0 no 19896 prompt
95241.31d drl79 endl-79 disc 0 no 4378 prompt
95241.35¢  endl85 endl-85 87 cont 0 yes p(e) 25351 prompt
— 95241.50c  endfSu endf/b-v 1361  cont 300 yes p(e) 42145 total
95241.50d dre5 endf/b-v 1361 disc 300 yes p(e) 10032 total
95241.50m mgxsnp endf/b-v 1361 mult 300 no 2535 total
95241.51c¢ rmces  endf/b-v 1361 cont 300 yes p(e) 12435 total
95241.51d drmccs endf/b-v 1361 disc 300 yes p(e) 10032 total
** am-242m **
95242.31c  endl79 endl-79 cont 0 no 6575 prompt
95242.31d drl79 endl-79 disc 0 no 4005 prompt
95242.35¢  endl85 endl-85 88 cont 0 yes p(e) 20969 prompt
— 95242.50c  endfSu endf/b-v 1369 cont 300 yes p(e) 8654 total
95242.50d dre5  ~ndf/b-v 1369 disc 300 yes p(e) 9109 total
95242.50m mgxsnp endf/b-v 1369  mult 300 no 2284 total
95242.51¢ rmces  endf/b-v 1369 cont 300 yes p(e) 8563 total
95242.51d drmccs  endf/b-v 1369 disc 300 yes p(e) 9109 total
** am-243 **
95243.31c endl79 endl-79 cont 0 no 31050 total
95243.31d drl79 endl-79 disc 0 no 4255 total
95243.35¢  endl85 endl-85 89 cont 0 yes p(e) 39461 prompt
— 95243.50c  endfSu endf/b-v 1363  cont 300 yes p(e) 92076 total
95243.50d dre5 endf/b-v 1363 disc 300 yes p(e) 11803 total
95243.50m mgxsnp endf/b-v 1363  mult 300 no 2480 total
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95243.51c rmccs  endf/b-v 1363 cont 300 yes p(e) 13745 total
95243.51d drmccs  endf/b-v 1363 disc 300 yes p(e) 11803 total
z = 96 AEEEEEEEEEREES Clll’ium REBREELESERLARREELSE RS EEREESE S LB AR LR EB SR IR RERE KRR R

** cm-242 **

96242.31c endl79 endl-79 cont ] no 15537 total
96242.31d dri79 endl-79 disc 0 no 4197 total
96242.35¢ endl85 endl-85 90 cont 0 yes p(e) 21714 prompt
— 96242.50c endf5u endf/b-v 8642 cont 300 yes p(e) 30958 total
96242.50d dre5 endf/b-v 8642 disc 300 yes p(e) 8964 total
96242.50m mgxsnp endf/b-v 8642 mult 300 no T 1970 total
96242.51c rmccs  endf/b-v 8642  comt 300 yes p(e) 9828 total
96242.51d drmccs  endf/b-v 8642 disc 300 yes p(e) 8964 total

** cm-243 **
96243.35¢ endl85  endl-85 91  cont 0 yes p(e) 21638 prompt

** cm-244 **
96244.31c endl79 endl-79 cont 0 no 15126 total
96244.31d dri79 endl-79 disc 0 no 4290 total
96244.35¢ endl85  endl-85 92  cont 0 yes p(e) 21257 prompt
— 96244.50c endf5u endf/b-v 1344  cont 300 yes p(e) 46052 total
96244.50d dre5 endf/b-v 1344 disc 300 yes p(e) 9570 total
96244.50m mgxsnp endf/b-v 1344 mult 300 no 1950 total
96244.51c rmccs  endf/b-v 1344 cont 300 yes p(e) 10908 total
96244.51d drmces  endf/b-v 1344 disc 300 yes p(e) 9570 total

** cm-245 **
96245.35¢ endi85 endl-85 93  cont 0 yes p(e) 24189 prompt
96245.50c cm245(13) endf/b-v 1345  cont 300 yes p(e) 11664 total
— 96245.52c cm245(13) ndfb-v.2 1345  cont 300 yes p(e) 21314 both

** cm-246 **
96246.35¢ endl85 endl-85 94 cont 0 yes p(e) 12550 prompt

** cm-247 **
96247.35¢ endl85  endl-85 95  cont 0 yes p(e) 20326 prompt

** cm-248 **
96248.35¢ endl8S  endl-85 96  cont 0 yes p(e) 18239 prompt
z = 97 SRR EEER SRS befkelium (2SR ES RS2 R TR RS 2222222 R 22 22 R 22 22 22 2 22 2 2 2 2 R 2 2 2 2t )

** bk-249 **
97249.35¢ endl85 endl-85 97 cont 0 yes p(e) 11844 prompt

EREXREEREEEL RS H s SEREEEEREEREERRAERERSERESREER B EESAEEREEEEEERER LK
98 californium

z =

** cf-249 **

98249.35¢ endl85  endl-85 98  cont 0 yes p(e) 28116 prompt
** cf-250 **

98250.35¢ endl85 endl-85 99  cont 0 yes p(e) 10548 prompt
** cf-251 **

98251.35¢ endl85 endl-85 100 cont 0 yes p(e) 11030 prompt
** cf-252 **

98252.35¢ endl85 endl-85 101 cont 0 yes p(e) 17969 prompt
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SPECIAL NOTES

note 1. When performing calculations utilizing neutron-neutron cross sections,
it is essential to incorporate the effects of motion of the target neutron.
This capability does not exist today in MCNP. This limitation makes
the use of the neutron-neutron cross sections unadvisable for most ap-
plications. Reference: R.C.Little and R.E.Seamon, " Additional Neutron
Cross-Section Tables for MCNP,” Los Alamos National Laboratory inter-
nal memorandum X-6:RCL/RES-85-288 to distribution (June 3, 1985).

note 2. These ENDF/B-IV sets are recommended without reservation. They
include photon-production data in expanded ACE format. Reference:
R.C.Little, "ENDF/B-IV Cross Sections for MCNP,” Los Alamos Na-
tional Laboratory internal memorandum X-6:RCL-84-251 to T.E.Booth
(November 21, 1984).

note 3. Photon production added to ENDF/B-V neutron files by R.E.Macfarlane,
T-2, with intent to estimate photon heating roughly. Reference: R.C.Little,
"Argon and Krypton Cross-Section Files,” Los Alamos National Labo-
ratory internal memorandum to P.D.Soran (June 30, 1982).

note 4. These data are valid to 5 MeV; they were extended to 20 MeV for com-
pleteness only. Reference: R.C.Little, "Sc-45 Cross Sections for MCNP,”
Los Alamos National Laboratory internal memorandum X-6:RCL-85-430
to C.D.Bowman (August 27, 1985).

note 5. The evaluation was performed by C.Y.Fu and D.M.Hetrick at Oak Ridge,
who refer to it as mat 1326, mod 4. Reference: R.C.Little, "Monte Carlo
Cross Sections for Fe Based on ORNL Evaluation,” Los Alamos National
Laboratory internal memorandum X-6:RCL-86-436 to P.P.Whalen (Oc-
tober 3, 1986).

note 6. These data were taken from incomplete fission-product evaluations. Ref-
erence: R.C.Little, "Cross Sections in ACE Format for Various IP Target
Materials,” Los Alamos National Laboratory internal memorandum to
D.Davidson (August 19, 1982).

note 7. This is ENDF/B-V after modification by evaluator to get better agree-
ment with ENDL85. References: R.C.Little, "Y-89 Cross Sections for
MCNP,” Los Alamos National Laboratory internal memorandum X-6:RCL-
85-419 to distribution (August 16, 1985); R.C.Little, "Modified ENDF /B-
V Y-89 Cross Sections for MCNP,” Los Alamos National Laboratory
internal memorandum X-6:RCL-85-443 to distribution {September 6,
1985).

note 8. This is ENDF/B-V after modification by evaluator to get better agree-
ment with Japanese measurements. Reference: R.C.Little, "Revised Gd-
152 Evaluation from HEDL,” Los Alamos National Laboratory internal
memorandum X-6:RCL-87-132 to distribution (March 24, 1987).

note 9. Photon-production data were added to ENDF/B-V neutron cross sec-
tions by P.G.Young, T-2. These data are valid to 1 MeV only. Refer-
ence: R.C.Little and R.E.Seamon, "ENDF/B-V Gd Cross Sections with
Photon Production,” Los Alamos National Laboratory internal memo-
randum X-6:RCL/RES-86-30 to A.R.Larson (January 22, 1986).
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note 10. This has to do with file tm169. We have no reference for this file. The
file itself was first written on 86/09/29.

note 11. This has to do with file irnat. We have no reference for this file. The file
itself was first written on 86/09/19.

note 12. This has to do with file pa231. We have no reference for this file. The
file itself was first written on 88/01/25.

note 13. Very little detail was given in the original ENDF/B-V evaluation for cm-
245. The updated evaluation available under ENDF/B-V Revision 2 is
very complete. The two sets are compared in Little’s memo X-6:RCL-86-
220. Reference: R.C.Little, "Monte Carlo Cross Sections for Cm-245,”
Los Alamos National Laboratory internal memorandum X-6:RCL-86-220
to J.T.West (June 3, 1986).
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