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PREFACE 

Operations with fissionable material outside of nuclear reactors involve the 
danger that a sufficient amount of material will be accumulated In one place 
to constitute a critical mass, that Is, to sustain a nuclear chain reaction. 
Safety can easily be ensured by keeping amounts and sizes well below those 
estimated to be critical; but In many cases the crltlcal masses and sizes 
are small and there Is economic pressure to approach them closely In large- 
scale operations. It is necessary, therefore, to determine accurately the 
critical conditions for fissionable materials. 

During the last several years, numerous experiments have been performed from 
which was obtained a large amount of data on critical conditions for 
fissionable material. These data are assembled In a readlly usable form In 
this Handbook. 

The critical experiments have generally been performed for Idealized 
situations. Hence they may readily be compared with calculations, and 
theoretical procedures for extending the data may be developed With a high 
degree of confidence. These procedures may be as elaborate as one wishes; 
but since the departure from experimental conditions will generally be small, 
It appears desirable to use the simplest method that will give reasonably 
accurate results. Simple calculations can be performed quickly without 
recourse to high speed computing machines, allow a wide range of variations 
In parameters to be studied easily, and do not require a large amount of 
specialized knowledge on the part of those performing them. Thls Handbook 
presents these simple methods of calculation In such a form that they may 
readily be used. 

In practical applications of critlcal mass data or calculated extensions 
thereof, It Is necessary to know how closely actual condltlons may safely be 
permitted to approach critical conditions. The margin of safety must Include 
reasonable estimates of the uncertainty In the data and In the methods of 
calculation, and perhaps should also Include an additional margin thrown In 
"for good luck". Even If the critical conditions were known accurately 
enough that actual conditions could be set so that neutron multiplications as 
high as, say, 100 could be reached but could not be exceeded, It would be 
undesirable to operate so close to the critical conditions. Conditions that 
are considered to be safe are presented In a reasonably consistent manner in 
this Handbook. The choice of safety margin Is necessarily somewhat arbitrary; 
but since the data and the methods of calculation are presented, other margins 
may readily be determined if those used here are considered to be either 
Insufficient or overly restrictive. 

There are several other compilations of data and safety guides to which the 
reader may wish to refer for the treatments of critical znasa data or for data, 
e.g. on aqueous solutions of U233 I not included In this Handbook. Notable 
among these are the K-1019 series of reports, the "Guide to Shipment of Uranium 
Materials" prepared by H. P. Henry et al., of the Oak Hedge Gaseous Diffusion 
Plant, and the Nuclear Safety Guide, which Is a product of a committee on 
Industrial criticality problems composed of members from various sites. The 
last report Is fairly general in that safe conditions for all fissionable 
materials are Included; however, data and methods of calculation are generally 
not present. 
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k eff 

GLOSSARY 

Effective neutron multiplication constant. Represents the 
average number of neutrons resulting from fission that are 
captured in fissionable material to cause another fission. 

Neutron flux. In general it is a function both of position 
7 and neutron energy E. 

r: Macroscopic cross section. It is equal to the product of 
the microscopic cross section c and the number of atoms per 
unit volume. Subscripts a, s, f, and t denote absorption, 
scattering, fission, and total, respectively. 

Diffusion constant. The Laplacian of the flux, V2@ when 
multiplied by -D gives the neutron leakage from a differential 
element of volume. 

k 

M2 

B2 

S 

v 

Neutron multiplication constant. Represents the average 
number of neutrons produced by fission per neutron absorbed. 

Migration area def ined by M2 = JrD(E,+(E,;t)dEdT 

l/Z (E,+'(E,lf)dEd; a 
Buckling. The sub script m de In .otes the material but kling 

k-1 defined as Bi = '7. The subscript g denotes the geometric 

buckling defined as 
712 Bz = (R+s)2 for a sphere, 

B; =,+$$ for a cylinder, and 

7T2 7T2 7T2 Bi = (X+2s)2 + (Y+2s)2 + (z+2s)g for a rectangular parallelepiped 

where R represents radius and X, Y, and 2 the dimensions of 
the parallelepiped and where S is the reflector saving or 
extrapolation distance, namely the distance beyond the physical 
boundaries at which the flux would become zero if extended 
analytically. In a critical assembly G = Bg. 

Reflector saving or extrapolation distance (see B2). 

Number of neutrons released per fission. 



P 

d 

L2 

Thermal utilization. The fraction of the thermal absorptions 
that occur in fissionable material. In heterogeneous systems 
the fissionable material may be considered to be the material 
of the fuel element even though it is an alloy of fissionable 
and nonfissionable material. 

The number of neutrons released per absorption in fissionable 
material. 

Fast fission factor. The factor by which the neutrons released 
by fissions in U235 are increased as the result of fissions 
in U238. 

The fraction of the fission neutrons that escapes capture 
in the resonances of U238 during moderation to thermal energies. 

Disadvantage factor. The relative value of the average neutron 
flux in a material. 

Thermal diffusion area defined by 
/I,,o(E,f)@(E,;)dEd;: 

ltihere the integral is taken over thermal energies only. 

Neutron age defined so that L" + ?: = M2. The age may be 
divided into as many parts as desired so that M2 = L2 + Cz 1 1' 
Albedo. The ratio of the neutrons returned by a medium to 
the neutrons entering it, 
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HANDBOOKOFNUCLEARSAFETY 

CHAPTER I - INTRODUCTION 

1.1 FACTORS THAT DETERMINE A CRITICAL MASS 

An assembly of fissionable material is critical, i.e., the neutron 
chain reaction is self-supporting, when on the average exactly 1.0 of 
the 2.5 to 3 neutrons that result from a fission is absorbed to 
produce another fission. If more than 1.0 neutron is absorbed to 
produce fission the number of fissions per unit time rises exponentially 
with time; if less than 1.0 neutron is absorbed to produce fission a 
single fission may on the average result in many fissions, but the chain 
is eventually terminated. 

Besides the path by which a fission neutron is absorbed to produce 
another fission, the other paths that compete for it are absorption by 
fissionable material without causing a fission, absorption by other 
materials, and escape from the assembly. The distribution of the 
neutrons among these paths is dependent on the size and shape of the 
assembly and on the neutron cross sections of the materials present. 
These cross sections, in turn, are dependent on the neutron energy. 

At the high energy (-2 Mev) at which the neutrons are born in fission, 
absorption cross sections are small; hence mean free paths for 
absorption are long. Thus a large amount of fissionable material is 
required to reduce the probability of escape to the point where keff, 
the effective neutron multiplication constant, is unity. At low 
energies cross sections are much larger and less material is needed. 

High energy neutrons lose energy by inelastic or elastic scattering 
collisions with nuclei. If the nuclei are light, the average loss in' 
neutron energy per collision is large, and only a few collisions are 
required to thermalize the neutrons, i.e., to moderate their energies 
to the point (-0.025 ev) where, on the average, collisions with nuclei 
result in no change in energy. Mixing fissionable materials with 

, moderating materials dilutes the former and hence increases the mean 
free path for fission for the fast neutrons. The moderator also 
competes with the fissionable material for the capture of neutrons. 
However, the large increase in fission cross section at low energies 
more than compensates for these effects, and the net result is a much 
lower critical mass when a good moderator is present. / 

In general, as nonfissionable material is mixed with fissionable 
material, the first effect is an increase in the critical mass as the 
result of dilution. Then, as more nonfissionable material is added, 
moderation becomes more effective and the critical mass falls if the 
absorption cross section of the added material is not too great. 
Finally, the critical mass rises again, and criticality becomes 
impossible when the amount of nonfissionable material present reaches 
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the point where the fraction of neutrons absorbed in it is sufficient 
to make keff less than unity, regardless of the size of the assembly. 

The effect of the size or shape of the assembly on its critical mass 
is fairly obvious. If one or more dimensions are made sufficiently 
small, the fraction of the neutrons escaping is so large that keff is 
less than unity. Since for a given volume a sphere has the smallest 
surface of any shape, the neutron leakage and hence the critical mass 
is least for a sphere. The critical mass increases as the shape 
deviates from being spherical. 

The neutron leakage is reduced, and hence the critical mass, if some 
fraction of the neutrons escaping from an assembly of fissionable 
material is returned to it. Placing a reflector adjacent to an 
assembly has this result. The same result can also be achieved by the 
juxtaposition of two or more assemblies of fissionable material. 

Another factor that affects the neutron leakage and hence the critical 
mass is the density of the fissionable material. It can be shown 
theoretically that for an unreflected sphere the critical mass varies 
inversely as the square of the density. Thus the critical mass of 
&phase plutonium is = 1.54 times as great as that of a-phase 
plutonium. 

Finally, when fissionable material is mixed with moderating materials, 
clumping of the fissionable material increases the critical mass. 
Neutrons thermalized in the moderator have difficulty in penetrating 
to the center of the clumps because of the large neutron cross section 
of the fissionable material. As the result,of this self-shielding, the 
fraction of the neutrons absorbed in the moderator is greater than it 
would be if the two materials were mixed uniformly. 

In Table I .l critical masses of U235 taken from the chapters that follow 
are presented to illustrate the dependence of the critical mass on some 
of the factors just discussed. 

TABLE I.1 

Critical Masses of Pss 

Form Mass, kg of UgSs 
Unreflected sphere of uranium containing 93.5s 

U’S” 48.6 
Water-reflected sphere of uranium containing 
93.5% up== 22.8 
Unreflected sphere containing a water solution 

of U2" at about 75 g/liter 1.440. 
Water-reflected sphere containing a water 

solution of U235 at about 52 g/liter 0.840 
Unreflected Infinite 8.70~Inch-diameter 

cylinder containing water solution of U2" 00 
Water solution of U2" at 11.94 g/liter 00 
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1.2 CONSEQUENCES OF ATTAINING A CRITICAL MASS 

When a fission occurs, the energy released is approximately 190 Mev 
(8.3 x lo-l8 kw hours, 7.3 x 10-l* calories). Most of this energy 
appears as kinetic energy of the fission fragments and is dissipated 
in heating the assembly of fissionable material. Approximately 7.8 Mev 
of prompt y radiation is emitted, and nearly an equal amount of delayed 
Y radiation is associated with the decay of fission products. At a 
distance of one foot from a fission the gamma dose is thus about 
7.2 x lo-l3 rem/fission*. The fast neutron dose at this same distance 
is about 6.8 x lo-l2 rem/fission. In an assembly of fissionable 
material the doses are reduced considerably by self-absorption, but 
may still be sufficient to be lethal in even the mildest of nuclear 
incidents. 

When an assembly of fissionable material is supercritical, the number of 
fissions per unit time increases exponentially at a rate that depends 
upon the amount by which keff exceeds unity. The generation of heat 
causes the assembly to expand, thus increasing the neutron leakage and 
hence reducing keff. In solutions, radiolytic gas generated by the 
fission fragments is responsible for most of the expansion until the 
solution boils. The number of fissions that will have occurred by the 
time expansion has made the system subcritical depends upon the rate 
at which keff increases and upon any constraints on the expansion of 
the system. In a nuclear weapon these factors are adjusted so as to 
make this number exceedingly large. In any accidental assembly of a 
critical mass, however, it is unlikely that the burst would approach 
within several orders of magnitude that of a weapon. Calculations of 
radiation bursts have been made for solutions of U*"' on the basis of 
a simplified model(lol). These calculations show t!hat even for fairly 
well constrained systems the magnitude of the burst is not greatly 
dependent on the rate of assembly until rates of increase in keff of 
the order of one per cent per second are approached. At lower rates 
(and even at rates this high for unconstrained systems), the number of 
fissions in the initial burst was calculated to be about 10X7. 4 

This result is in general agreement with the magnitudes of the bursts 
that have been observed in the few accidents that have occurred. 
Accidents that have occurred in critical experiment laboratories(102) 
have generally been terminated within a short interval of time by 
safety devices. In the absence of such devices (particularly in the 
case of solutions), bursts can occur one after another until sufficient 
material is expelled or the concentration or shape is sufficient1 
altered to keep keff less than unity. The incident that occurred "') T 
in a production area at Oak Ridge had a duration of about 20 minutes, 

* 1 roentgen equivalent man (rem) is defined as: that amount of 
radiation absorbed in tissue which has the relative biological 
equivalence in man of 1 roentgen of X- or gamma rays. 
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during which interval a total of 1.3 x 10z8 fissions occurred in a 
series of bursts. The man closest to the incident owes his life to his 
prompt departure from the area immediately following his observance of 
the blue glow characteristic of such incidents. The incident at 
Los Alamos(lo4) resulted in 1.5 x 1017 fissions and in the death of one 
operator. The violent disturbance created by the burst caused the 
termination of the accident. . 

The situation is changed somewhat if the fissionable material is 
confined in shielded areas that are inaccessible to personnel. In 
such areas contamination from radioactive materials is expected; hence 
cleanup following a nuclear incident that expels radioactive material 
is no great problem. The shielding is generally sufficient to prevent 
radiation doses from being serious ) particularly if alarms are used in 
the event of an incident to warn personnel to evacuate nearby areas. 
In such areas somewhat smaller safety margins may be tolerated, and 
more reliance may be placed on procedures. In the incident that occurred 
at the Idaho Chemical Processing Plant(lo5) the shielding limited the 
maximum radiation exposure to 50 rem despite the occurrence of about 
10le fissions, and this dose, which was chiefly due to beta radiatioq 
is believed to have resulted from airborne fission and decay products 
released through a sampler opening and through floor drains. 
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1.3 THEORY 

In a critical assembly of fissionable material the number of neutrons 
produced by fission per second exactly balances the number absorbed 
and the number that escape, i.e., keff = 1. In describing these events 
mathematically it is convenient to express them in terms of the neutron 
flux, the product of the neutron density in neutrons/cm3 and the neutron 
speed in cm/set. The neutron flux is a function both of the neutron 
energy and of position within the critical assembly. For a particular 
assembly it is possible to find energy intervals, or groups, within 
which the flux may be considered to be separable into a product of a 
function of energy, Q(E), and a function of position, O(T). Within an 
energy group the absorption of neutrons per second per unit volume of 
the assembly is represented by (Ca + Cr) Q(T) where Ca is the true 
macroscopic absorption cross section of the material of which the 
assembly is composed, and where C r is a fictitious absorption cross 
section that, when multiplied by the flux, gives the number of neutrons 
lost from the group as the result of energy changes resulting from 
collisions between neutrons and the materials of the assembly. The 
escape or leakage of neutrons from a unit volume is given, according to 
the diffusion approximation, by -DV*@(f) where D is the diffusion 
constant. The production of neutrons per unit volume includes neutrons 
entering from other groups as the result of the energy changes just 
mentioned and neutrons in that fraction of-the fission spectrum 
encompassed by the group that result from fissions occurring in all 
groups. Within a group and within a region in which they are 
independent of position the constants Cat Cr., and D are given by 

Za = 
J&(E)@ (WE JC,(E)~ (WE 

/@(E)dE ' cr = J@(E)dE ' 

and 
D = JD(E)@(E)dE 

JO(E)dE ' 

This representation of the fissionable assembly is known as the multi- 
group model. A second-order differential equation describes the 
neutron diffusion within each group. The equations are coupled through 
the source and fictitious absorption terms which give the neutrons 
transferred from one group to another. The boundary conditions 
satisfied by the various @("r) at the interfaces between regions, as for 
example between two fissionable materials of different properties or 
between fissionable material and reflector, are that the neutron flux 
Q(3) and the net neutron current -DVO(-+r) be continuous. At the 
external boundary of an assembly where for every neutron escaping none 
is returned, the boundary condition is that the flux extrapolate (by 
analytic continuation) to zero beyond the physical boundary at a 
distance that depends upon the properties of the assembly. 
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For uniform assemblies in which the properties are independent of 
position the energy band over which the flux may be considered separable 
into a product of a function of energy by a function of position 
comprises the entire energy region for a major portion of the core. 
This one-group representation results in a considerable simplification 
since only one differential equation is required and the production 
term can be written simply as ma@ where k represents the number of 
neutrons produced by fission per neutron absorbed. The one-group 
equation is 

DV*+ - Ea@ + kZa@ = 0. (1.1) 

The constants D and C, are obtained by integrating over the entire 
energy region. The neutron multiplication constant k is given by 

kZa = 
JkZaO (E) dE 

J@(E)dE ' 

Even with the one-group model the calculation of D, Za, and k may be 
difficult because of the difficulty in obtaining a(E). The flux as a 
function of energy is determined by the scattering and absorption cross 
sections as functions of energy. In moderated systems with low 
absorption the neutron energy distribution at thermal energies is 
nearly Maxwellian and at higher energies Q(E) is proportional to l/E. 
For other systems Q(E) has a more complicated form. It is often 
convenient to obtain Q(E) by a multigroup calculation in which o(f) is 
assumed to be the same for all groups. In effect, this procedure 
breaks the flux-weighted integrals for k, Za, and D into summations 
over the number of groups employed. 

Equation 1.1 may be rewritten as 

V*@ + B*@ = 0' (1.2) 
. 

where B* k-l D = 'M' and M* = c . The migration area, M*, can be shown to a 
be one-sixth the mean squ&e distance travelled by a neutron from the 
point at which it is born to the point at which it is captured, and 
hence its magnitude is a measure of the probability that a neutron will 
escape from an assembly of given size. 

Solutions to Equation 1.2 are 

Sphere: @  = A Sin Br 
r 

Infinite cylinder: @  = A' Jo (Br) 

0*3) 

04 

(1~5) Infinite slab: @  = A" cos BX 
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where A, A*) and A" are constants and r and x are distances measured 
from the center of the assemblies. The boundary condition that the 
flux extrapolate to zero beyond the physical surface of the assembly of 
fissionable material leads to the following relations between the 
buckling (B'>1 the .extrapolation distance (S), and the physical 
radii (R) or half-thickness (X). 

2 

Sphere: B2 = (1.6) 

Infinite cylinder: B2 = (2.405)2* 
(R+S)2 - 

Infinite slab: B2 = -Ty 4(x+s)2 

(1 a-7 > 

(1.8) 

Thus in a critical assembly, one of the three parameters R(or X), S, 
and B is determined by the other two. 

For finite cylinders and parallelepipeds the flux is assumed to be 
separable as Q(r) Q(z) or e(x) Q(y) Q(z). If S is assumed to be 
the same in all directions, the results are 

Cylinder: B2 = (2.405)2+ 7T2 
(R+S)" 4(x+sy K 3-P (1*9> 

. (,,,q 

parallelepiped: B2 = <q&-y + <T&p? + -&3-y (1.10) 

Reflected assemblies may also be handled with Equation -1.2, provided 
the flux is separable into space and energy components over the central 
portion of the fissionable core. A buckling can be determined for this 
region. The critical size is then determined from Equations 1.6-1.10 
with the proper choice of S. The effect of the reflector is to 
increase S and hence to decrease the critical size. In this Handbook 
the term reflector saving rather than extrapolation distance will 
generally be applied to S for reflected systems. To calculate the 
reflector saving requires a calculation of the critlca-i size, in which 
case several energy groups may be required, but only a few such 
calculations.are required since the reflector saving varies slowly with 
shape. 

It is customary to speak of the geometric buckling (A;) as being 
defined by Equations 1.6-1.10 (or similar equations for more complicated 

k-l shapes) and the material buckling (B$) as being defined by-F* The 
critical equation is then 

2 

%l = BE. (1.11) 

*The first zero of Jo (y) is at y = 2.405. 



1.4 EXTENSIONS OF EXPERIMENTAL DATA 

Many data exist that give experimentally determined critical conditions 
for fissionable material; that is, conditions for which Equation 1.11 
is satisfied. In many cases direct reference to such data is 
sufficient to indicate the conditions that may be considered safe. In 
other cases extrapolations or interpolations of the data are required. 

It is desirable to have a theoretical basis for making such extensions. 
In this Handbook twc methods are used. For large bucklings, and hence 
small assemblies, the material buckling corresponding to a particular 
set of critical conditions is calculated, sometimes by fairly simple 
and approximate methods, and the reflector saving S is determined from 
Equation 1.11 and the proper equation among Equations 1.6-1.10. Such 
values of S serve as parameters to relate theory and experiment. They 
vary slowly with shape and composition; hence extrapolations of 
experimental data can be made with a high degree of confidence. For 
small bucklings, S is very sensitive to errors in the buckling, and 
conversely the buckling is insensitive to S. In this range either 
calculated or experimental values of S are employed or S is chosen to 
minimize the variation of buckling with shape. Extensions of the data 
are then made by calculating the expected changes in S and B$ which 
can be calculated by simple methods to higher accuracy than the 
absolute magnitudes of S and B$. For intermediate bucklings either 
approach is satisfactory, and the one employed depends upon factors 
such as the accuracy with which the buckling can be calculated. 

In either approach, Bi and S are mutually dependent. If someone wishes 
to use what he considers to be a more accurate value of BE than the one 
used in this Handbook, he must also use different values of S obtained 
by fitting the data to his buckling. Similarly, small bucklings, 
corresponding to a particular value of S, are altered if the value of 
S is changed. * 

For large bucklings (> 0.003 cmo2) the first procedure is not greatly 
dependent on whether or not the correct Bg is used. In test 
calculations, S was assumed independent of shape, and a number of 
dimensions were chosen consistent with an S of 6.50 cm and bucklings of 
0.003, 0.01, and 0.03 cmo2. Variations in S corresponding to bucklings 
higher and lower than these values by 5 and 10% were then calculated. 
The results are presented in Figure 1.1. The principal effect of 
changing the buckling is to change the general level of S. Variations 
in S become appreciable only for the extreme shapes. One clearly must 
be careful, however, in extrapolating S very far outside the range of 
shapes for which it has been determined. For example, if values of S 
determined from experiments with spheres are to be used to obtain 
critical or safe dimensions of slabs, it would be wise to err on the 
side of using too small a BE. 
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FIG. 1.1 DEPENDENCE OF REFLECTOR SAVING ON BUCKLING AND SHAPE 
Dimensions were chosen so that S would be independent of shape for 
B2 = 0.003, 0.010, and 0.03 cma2. The effect on S of f 5% and k 10% 
changes in B2 are presented. 
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Actually there are theoretical reasons for expecting S to vary with 
shape. According to the one-group model, the reflector savings for a 
slab and a sphere surrounded by reflecting material are given, 
respectively, by 

Dr ' cot BS = - 
Dc B 

coth ret, (1.12) 

and 1 cot BS = - Dr Dr tc 
n-BS ( D, - 1) + DB coth #t, 

C 
OJ3) 

where ~~ = 1 ~2 in the reflector, t is the reflector thickness, and r 
and c denote reflector and core, respectively. Thus only if Dr = Dc 
would S be expected to be the same for a slab and a sphere. For finite 
cylinders and parallelepipeds the separation of variables employed in ' 
the core cannot truly extend into the reflector, and corner effects 
must tend to make the effective value of S smaller. Thus the reflector 
saving for a cube should be smaller than that for a sphere. If this 
were not so, the critical mass for a cube would be less than that for 
a sphere for reflector savings in excess of 0.309 go It is, therefore, 
difficult to determine from variations in S with shape whether‘or not 
the correct buckling has been used. 
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1.5 MARGINS OF SAFETY 

The effective multiplication constant, keff, may be defined as 

k 1+M2B2 m 
keff = 1+M2B2 = l+M2B2' 

g g 
(1.14) 

Clearly keff is unity if B2 = 
!s 

G and is less than unity if BE > g . 
Assemblies in which Bg > Bm are therefore subcritical. 

How much margin should be allowed in Bg for safety or what maximum 
value of keff may be considered safe are difficult questions to answer. 
Even when experimental data are available for a particular case there 
is some uncertainty in the conditions for which keff is exactly unity, 
and this uncertainty increases as situations deviate from those studied 
experimentally. Particularly uncertain are the effects of interactions 
between assemblies of fissionable material and/or between such 
assemblies and nearby reflectors. Aside from these uncertainties it is 
undesirable on general principles to permit high values of keff or of 
the neutron multiplication, m = 1 

l-k,ff' 
Presumably smaller safety 

margins would be tolerated for situations that are considered unlikely 
or where an accident would have relatively minor consequences. 

In this Handbook three levels of safe conditions are specified 
corresponding to keff's of 0.98, 0.95, and 0.90, i.e., to over-all 
neutron multiplications of 50, 20, and 10. In situations where very 
good experimental data are available the maximum value may be 
acceptable. It may also be acceptable where the data are not quite so 
good or where some extrapolations are required, provided the fissionable 
material is located in a shielded area, or provided the attainment of 
this high a value is considered so unlikely that one is willing to take 
the risk that a margin of 0.02 in keff may be insufficient to cover 
uncertainties in data and calculations. For situations in which 
appreciably higher multiplications than those existing under normal 
operating conditions cannot be attained, and in which calculated 
extensions of data are required, the maximum safe allowable value of 
keff should probably be set at 0.90. When the data are good or 
extensions thereof are small, or where calculations are definitely 
known to be conservative, perhaps as the result of the omission of 
certain factors, a value of 0.95 may be acceptable. Admittedly these 
choices are arbitrary and those using this Handbook may wish to use 
somewhat different margins, which they may easily do from the data and 
calculations presented. 

To express margins of safety in this way requires a reasonably accurate 
value for k. If the first method for fitting the data is employed, 
such a value is necessarily obtained in calculating B$ If the second 
method is employed, particularly if S is chosen by minimizing variations 
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in g with shape, a value for k may not be available. It can be 
calculated, however, either from 

JkC,@ (E) dE 
k = JZa@(E)dE 

or from k = 1 + M'B;. The latter method is much simpler, provided 
satisfactory estimates of M2 are available. Actually no more than 
reasonable accuracy in k is required. If Equation 1.14 is solved for 
Bi (the safe value corresponding to a partiiular keff), and if M2 is 

k-l replaced by ~2) 

B2 neff = 
t3 k-l B2 m (1.15) 

and errors in k tend to cancel out. 
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CHAPTER II - METAL SYSTEMS 

2.1 INTRODUCTION 

In this chapter critical and safe conditions are given for fissionable 
materials both as pure metals and when alloyed with other metals. 
Dispersals of fissionable material in materials commonly known as 
moderators are relegated to Chapters III and IV, but the effects of 
such materials as reflectors are included here. The interaction of 
units of fissionable material in air is treated in Chapter V as part 
of a general treatment of interaction problems that include solutions 
as well as pure metal. The most extensive treatment is given to U235, 
since the most data are available for this material, and since the 
general treatment of this material is applicable also to plutonium and 
u233 0 
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2.2 URANIUM-235 

2.2.1 HIGHLY ENRICHED URANIUM 

A large amount of data ex1sts(201-204~206) for uranium that contains 
about 93.5% U235. This has been chosen as a standard concentration, 
and data obtained for slightly different enrichments have been 
adjusted(2'2) to this value. The standard density has been taken to 
be 18.8 g/cm3 and again adjustments (202) in the data to this figure 
have been made where necessary. 

?;:;om the critical mass of a bare sphere of uranium (93.58 U235) and 
from an extrapolation distance of 2.15 cm (consistent with theory) a 
buckling of 0.0837 cmD2 is calculated for this material. This buckling 
is in good agreement with the value (0.0836 cmW2) calculated for this 
Handbook from a six-group diffusion theory model employing constants 
given In Reference 2.7. The six-group calculation gives a k of 2.300. 
The migration area, M2, consistent with s = 0.0837 and k = 2.300 is 
15.53 cm2. 

2.2.1.1 Spheres 

For spheres the values of R + S corresponding to keff*S of 1, 0.98, 
0.95, and 0.90, obtained from Equations 1.6 and lJ5, are, 
respectively, 10.86, 10.67, 10.39, and 9.93 cm. The radii corresponding 
to these values of keff are obtained by subtracting the appropriate 
value of S. The minimum value of S Is that for a bare sphere far from 
reflectors, namely 2.15 cm. Reflectors or nearby units of fissionable 
material increase S, and hence decrease R and the mass. Reflectors are 
most effective when they are in contact with the sphere, but reflectors 
even some distance away may contribute significantly to S. 

In Figure 2.1 masses of U235 in uranium (93.5% U*") spheres are plotted 
versus S for the four values of keff given. Experimental data giving 
the critical mass as a function of reflector material and thickness are 
expressed as reflector savings in Figures 2.2 and 2.3. Given an S, 
determined from Figures 2.2 or 2.3, or from estimates of,interactions 
with other units or with nearby reflectors (see Chapter V), one obtains 
from Figure 2.1 the critical or the safe mass (withvarious margins of 
safety) of U235 In a sphere of uranium (93.5% U235). 

2.2.1.2 Other Shapes 

Most of the critical mass data have been obtained with, or have been 
adjusted to, spherical shapes, since a sphere has the smallest critical 
mass Gf any shape. In handling fissionable materials, however, other 
shapes may be encountered and one may wish to take advantage of the 
deviation from the spherical shape in setting safe mass limits. Data 
are available(2'1) that give the critical heights of cylinders of 
various diameters, surrounded by various materials as reflectors. 
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FIG. 2.2 REFLECTOR SAVINGS OF MODERATING MATERIALS FOR URANIUM (93.5% U235) 
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FIG (r 2.3 REFLECTOR SAVINGS OF NONMODERATING MATERIALS FOR URANIUM (93.5% U235) 
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Subcritical experiments(2'8J2's) have been performed with rectangular 
parallelepipeds, with multiplications in some cases in excess of 10, 
and the results may be extrapolated to give critical conditions. The 
critical mass of a cube has been determined.(2'10) As in the case of 
spheres, these data, obtained with various reflectors, may be expressed 
as effective reflector savings by equating geometric and material 
bucklings, with the assumption that S is the same on all surfaces. 
Values so obtained are plotted for cylinders in Figure 2.4 and are 
tabulated for rectangular parallelepipeds in Table 11.1. These values 
are somewhat dependent on shape. For cylinders with height 
approximately equal to diameter, as might be expected (see Section 14, 
the values are smaller than the corresponding ones for spheres. 

TABLE II.1 

Reflector Saving, S, for Rectangular Parallelepipeds 
of Uranium (93.5s U235) in Water 

Dimensions, in. Max Multiplication S, cm 
2.70 x 5x 8 * 14 3.81 

1.31 x 10 x 16 % 6 4.23 

1.14 x 16 x 20 * 2.8 4.22 

4.295 x 4.295 x 4.295 CL100 3@95 

Determining safe conditions for shapes other than sphere8 is more 
complicated since there are two (or three) dimensional parameters to 
adjust and since the reflector saving is dependent on shape. 
Corresponding to keff's of 1, 0.98, 0.95, and 0.90 the geometric 
bucklings are, respectively, 0.0837, 0.0867, O.Ogl5, and 0.1002 cmB2. 
For cylinders the height8 and diameters consistent with these buckling8 
are obtained from Equation 1.9. 

B2 7r2 23.1361 
Es = (H+2S)' + (D+2S)2 

(Equation 1.10 is used for parallelepipeds.) The reflector saving, S, 
is obtained from experimental data (e.g., Figure 2.4) or extensions 
thereof, or from interaction calculation8 or mea8urement8. In 
Figure 2.5, H + 2s is plotted ver8u8 D + 2S on a reciprocal scale for 
the four values of keff. Corresponding to given D and S, the critical 
or safe value of H + 2s and hence of H is read from the graph. 

Since the data for nonspherical shape8 are not so extensive a8 for 
spheres, extrapolation8 of the data may often be necessary. Figure8 2.2 
and 2.3 giving the reflector savings for spheres may be used in these 
extrapolations, attention being paid to the effect shape ha8 on S by 
taking ratios between values read from Figure 2.2 or 2.3 and Figure 2.4. 
In such cases one should use somewhat larger safety margin8 to allow for 
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errors. The margin in keff associated with margins in S is readily 
apparent from Figure 2.5 and a sufficient margin should be allowed in 
keff to cover the estimated uncertainty in S in addition to the margin 
allowed on general principles. 

202.2 OTHER ENRICHMENTS 

The buckling and the multiplication constant as functions of enrichment 
were determined for this Handbook by six-group diffusion theory 
calculations, again based on the constants given in Reference 2.7. 
These calculations, together with geometric bucklings corresponding to 
k effrs of 0.95 and 0.90, are presented in Table II .2 and are plotted 
in Figure 2.6. At any particular concentration of U235, critical and 
safe conditions can be determined in the same manner as at 93.5$, U235 
provided the reflector saving is known. A limited amount of critical 
mass(201) data exist for unreflected -zanium and for uranium reflected 
by a thick layer of natural uranium. These data have been fitted to the 
calculated bucklings to obtain effective values of S with the results 
shown in Table II.3 &nd in Figure 2.7. The increase in S with 
decreasing concentration may be the result of errors in the calculated 
buckling, errors in the experiments, or a real effect associated perhaps 
with the in!creased radius of the assembly. Equation 1.12 indicates that 
S increases as the buckling decreases. In any case this increase must 
be taken into account in determining safe conditions. 

Bucklings have been measured in exponential experiments (2.11) at low 
concentrations. The experiments indicate that the buckling is zero at 
a concentration of 4.2 to 5.4% U235. The higher value is believed to 
be more realistic and compares well with the calculated value of 5.66%. 
At a concentration of 9.18% experimental bucklings of 0.00517 cmm2 and 
0.00649 cmo2 are reported, the lower buckling being believed to be more 
reliable. From Figure 2.6 the corresponding calculated buckling is 
0.0048 cmo2. T:he experimental values of S determined from radial flux 
traverses are 1.9 cm with no reflector and 7.1 cm for a 3-inch-thick 
natural uranium reflector (determined at a concentration of g.lsg>. In 
this range of low concentration the second method (see Section 1.4) of 
extending data should be used in which experimental bucklings are 
employed. 

When the experimental critical mass data are plotted as critical mass 
of u235 versus per cent concentration of U235 in uranium metal, a 
straight line is obtained on a log-log plot for concentrations greater 
than 20% for both .the bare uranium and the uranium reflected by thick 
natural uranium. At lower concentrations the plot curves upward toward 
infinite mass betwften 5 and 6% U235. The slope of the straight line 
portion is such that the criticalmass of U235 is proportional to the 
-0.73 power of the concentration. 
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TABLE II.2 

Uranium Bucklings Versus Concentration of U235 

$ u235 

100 

93*5 
60 

30 
10 

5.66 

5.05 
4.50 

G (keff = 1) BE (keff = 0.95) Bi (keff = 0.90) k 

0.0896 cm-= 0.0979 0.1072 2.314 
0.0836 cm-= 0.0913 0.1000 2.300 

0.0534 cm'= 0.0585 0.0643 2.191 

0.0263 cm-= 0.0292 0.0323 1.943 

0.0058 cm'= 0.0070 0.0083 1.347 
0 - - 1.000 

- 0 - I 

- - 0 - 

TABLE 11.3 

Reflector Saving, S, Versus Concentration of U295 

No Reflector Thick Natural Uranium Reflector 

S, cm $ U235 $ u295 S, cm 

93.5 2.15 93e5 4.80 

53*5 2e41 80.5 5J3 

37m5 2.64 67e6 5e53 

29.0 2.89 66.6 5*53 
16.2 2.86 4L3 6.27 

The calculated buckling is nearly a linear function of concentration. 
In the range of 93e5 +6e5$ U235, relations can be derived that permit 
the calculation of the effect of changes in concentration from the 
standard g3e5$e These relations are 

B2 = OeOOOg323 y - OeOO36I, 

k= 0.4796 log10 y + I.3548 

where y is per cent of U235 by weight in uranium of density 18.8 g/cm'. 
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2e2e3 DENSITY 

The migration area, M2, in any material is inversely proportional to the 
square of the density; hence the material buckling of uranium is 
directly proportional to the square of the density. If there are no 
effects associated with the curvature of the boundary, the reflector 
saving due to any material is inversely proportional to the density of 
the uranium. Thus the critical mass of a sphere of uranium as a 
function of density is given by 

where m is the mass and p the density and where the subscript zero 
denotes the reference state. 

According to Equation 1.13, the reflector saving for a critical sphere 
of uranium surrounded by a reflector is given by 

cot BS = 1 Dr DrK - ( - - 1) + DB coth /ct. PBS DC C 

As the core density decreases, B decreases in a manner proportional to 
the density and D, increases in a manner inversely proportional to the 
density, hence the product D,B is unchanged. If the reflector density 
remains constant, the decrease in Dr/Dc with decreasing core density 
requires that S increase more than if inversely proportional to the 
density. 

This effect has been observed experimentally(2") for uranium (93.5% 
U 235 ) cores surrounded by a thick reflector of natural uranium with the 
results given in Table 11.4. In the range of densities covered by the 
experiment, S varies with the -1.28 power of the density rather than 
the -1 power. In terms of critical mass these data show the mass to 
vary as the -1.2 power of the density. 

(2.6) 

Experiments performed with 
beryllium reflectors show that the mass varies with a power from 
-1.2 for a very thick reflector to -2.0 for no reflector, the 
intermediate points being at -1.6 for a 5-cm-thick reflector and at 
-1.8 for a 2-cm-thick reflector. Clearly, in extending data obtained 
at one density to a lower density, the increase in reflector saving 
must be allowed fore In proceeding in the opposite direction it is, 
of course, conservative merely to decrease the reflector saving in a 
manner inversely proportional to the density. 
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TABLE II.4 

Reflector Saving, S, Versus Density of Uranium Core 
The reflector is natural uranium and the core is uranium (93e5$ U235)e 

Relative Critical Critical 
Density, p/pa Mass, kg U295 Radius, cm S, cm 4.81 Po/P,cm 

1 16.17 6.03 4.81 4.81 

0.854 19.67 6.79 5.90 5.63 
0.846 20.06 6.85 5.96 5.69 
0.702 25.31 7.88 7*57 6.85 

0.500 36.98 10.01 Il.67 9.62 

If the density of the reflector decreases to the same extent as that of 
the core so that Dr/Dc remains unchanged, and if its thickness 
increases inversely with the density so that Kt remains unchanged, 
Equation 1.13 indicates that S increases inversely as the density. 
Thus for bare systems and for ones in which the density of both 
reflector and core are changed and the thickness of the reflector is 
increased inversely with the density, the critical mass is inversely 
proportional to the square of the density. 

For an infinite slab of uranium, S varies inversely with its density 
regardless of whether or not the reflector density varies, provided 
the amount of reflector per unit area of slab remains constant. The 
critical thickness thus varies inversely with density and the critical 
mass of uranium per unit area of surface is unchanged. For an infinite 
cylinder, if S varies inversely with density, the critical radius does 
likewise and hence the critical mass per unit length varies inversely 
with the density. However, as in the case of the sphere, the radius is 
involved in the equation for the reflector saving, and for a reflected 
cylinder S would be expected to increase more than inversely with the 
density and hence the mass per unit length somewhat less if the density 
of the reflector remained the same. 

2.2.4 DILUTION 

Estimates have been made(20L2) of the critical mass of U235 in the form 
of bare spheres of uranium (93.5% U235 ) diluted with various materials 
as a function of the concentration of diluent. These are presented in 
Figure 2.8. For reflected spheres the masses should be scaled downward 
by the ratio of the critical masses of reflected and bare undiluted 
uranium spheres. 

Since these masses are estimates and except for small dilutions are not 
directly confirmed by experiment, generous margins of safety should be 
allowed. 
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FIG. 2.8 CRITICAL MASS OF U235 IN BARE SPHERES OF URANIUM 
(93.5% u 235 ) DILUTED WITH OTHER MATERIALS 
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2.3 PLUTONIUM 

Data for plutonium systems(201~2e392'5) are much less extensive than 
for uranium. Moreover, there are two forms of plutonium to be 
considered, namely the 8 phase with a density of 15.8 g/cm3 and the 
a phase with a density of 19.6 g/cm'. The Pu=~* concentration is an 
additional variable, but in amounts less than 10% it may be 
considered(*'*) equivalent to PU23ee 

A six-group calculation (based on constants given in Reference 2.7) 
for >lutoniurn give: 3 material bucklings of 0.1469 cm-= for 6-phase 
plutonium and Oe2261 cm-= for a-phase plutoniume The multiplication 
constant is 2.916 and the respective migration areas are 13.04 and 
8.47 cm*. Geometric bucklings corresponding to keff's of 0.98, 0.95, 
and 0.90 are 0.1515, 0.1587, and 0.1718 cm-= for '&phase plutonium and 
0.2332, 0.2443, and 0.2645 cm-* for a-phase plutonium, respectively. 

2.3.1 SPHERES 

In Figure 2.9 curves of mass versus reflector saving are presented for 
the four values of keff for spheres of both S-phase and a-phase 
plUtOIliUIL Thus as in the case of uranium, the critical or safe mass 
can be read from the proper curve provided one knows Se 

The available data(2e1'203J205) for h-phase plutonium spheres reflected 
with various materials when fitted to a buckling of 0.1469 cm-= give the 
reflector savings plotted in Figure 2.10. The data as reported 
indicate some uncertainty in the critical mass with an infinite 
reflector of H20. 

The uranium (93e5$ U*=" ) data expressed as reflector savings 
(Figures 2.2, 2.3; and 2.4) are useful in extending the plutonium data. 
There are theoretical reasons(2e7) for expecting reflector savings of 
thin reflectors to have a constant ratio for different core materials 
regardless of the reflector material. The ratios of the reflector 
savings of various thicknesses of various materials for plutonium to 
the corresponding reflector savings for uranium (93e5$ U235) might thus 
be expected to be dependent only on the reflectorsaving for uranium. 
This relationship appears to be approximately true. In Figure 2.11 
ratios of reflector savings of such diverse materials as uranium 
(93.5% u235) and carbon are plotted versus reflector savings for 
uranium (93e5$ U235). Reflector saving s ratios for both b-phase and 
a-phase plutonium with respect to the uranium are presented. In the 
case of a-phase plutonium, the graph(2e3) from which these ratios were 
determined was for a density of 19.5, and no correction was made to 
the standard value of lg.6 being used in this Handbook. 
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23.2 OTHER SHAPES 

Some data(2'6) have been obtained with +phase plutonium cylinders 
surrounded by various reflectors. Expressed as reflector savings, 
these data are plotted in Figure 2.12. Graphs of H + 2s versus D + 2s 
are presented in Figure 2.13 for both & and a-phase plutonium for 
keff's of 1.0, 0.95, and 0.90. As in the case of uranium, estimates 
of the proper reflector savings to use in cases for which data are not 
directly available can be made from the data that are available. Such 
estimates should be made very carefully, since, as may readily be 
verified, keff is very sensitive to S. 

2.3.3 DENSITY AND DILUTION 

The same general remarks apply to the effect of density on the critical 
mass of size of plutonium as apply to uranium. Dilution of plutonium 
by materials such as aluminum presumably to a first approximation 0 
increases the critical mass by the same factor as estimated for uranium. 
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221 



15 

20 

25 

30 

40 
50 

1oQ 

sI’pu’(p = ‘1s.i 
I I I 

k .ff = 0.90 
k .ff = 0.95 
k l ff = 1.00 

. 
- loo so 40 30 25 20 IS 10 9 

D t 25, cm 

FIG. 2.13 DIMENSIONS OF PLUTONIUM CYLINDERS AS A FUNCTION OF S AND k,ff 

222 



2.4 URANIUM - 233 

Data for U233 are very meager. 
2 

Six-group calculations give 
%l = 0.1672 cm-*, k = 2.547, and M* = 9.25. In Figure 2.11 reflector 
savings ratios of U*=' to uranium (93.5% U235) are plotted versus the 
reflector saving for uranium (93.58 U235). Estimates of S can thus be 
obtained from this graph and the reflector savings reported for 
uranium (93.5% U235). Plots of mass versus S for keff values of 1.0, 
0.95, and 0.90 are presented in Figure 2.14. In Figure 2.15,~ + 2s is 

plotted versus D + 2s for cylinders on a reciprocal scale for the same 
three keff values. The standard density for U233 is taken(2'3) as 
18.5 g/cm3. 
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CHAPTER Ill - HETEROGENEOUS MOOERATED SYSTEMS 

3.1 INTRODUCTION 

Fissionable material must often be handled when mixed with moderating 
materials. In the Purex process, plutonium is separated from uranium 
and from fission products in aqueous and organic solutions. Spent 
fuel elements are stored under water, and fissionable material is 
recovered from such elements by dissolving them in acid. In fuel 
element fabrication processes cleaning and etching baths may be 
employed. 

Even when the fissionable material is handled in air, attention must 
be given to the possibility that moderators may inadvertently be 
permitted to intermingle with it. As pointed cut in Chapter I, such 
intermingling can lead to a drastic reduction in the critical mass. 
The principal moderator one needs to be concerned about is Hz0 (or 
other hydrogenous substances). Carbon may also be of importance in 
some special cases, but moderators such as Be and D20 are ordinarily not 
encountered in nuclear safety problems. Hydrogenous materials are 
both excellent moderators and very common substances, and guaranteeing 
their exclusion may be difficult if not impossible. It is, therefore, 
often customary to handle fissionable material as though it actually 
were moderated by water, although this means that in the absence of 
moderation the margins of safety are very large. 

A considerable simplification results if the fissionable material and 
moderator are homogeneously mixed as in the case of solutions or of 
mixtures of very fine machining chips and moderator. In these cases 
there is no self-shielding of the fissionable material for thermal or 
resonance neutrons. Data for solutions are very extensive because of 
their importance in separations and recovery processes. A separate 
chapter (Chapter IV) is therefore devoted to the treatment of 
solutions and homogeneous moderated systems; the present chapter is 
restricted to heterogeneous systems. 
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3.2 THEORY 

3 2.1 EFFECT OF MODERATION . 

When moderator and fissionable materials intermingle, the neutron 
energies become degraded. For most moderators the degradation is not 
sufficient for moderator to replace fissionable material on a volume- 
per-volume basis, hence the critical volume increases and the critical 
buckling decreases. The energy degradation is sufficient, however, 
to reduce the critical mass at optimum moderation by a large factor 
because of the increase in fission cross section with decreasing 
neutron energy. In a fission spectrum the average fission cross section 
of U23s is 1.22 barns. In a neutron spectrum with a Maxwellian 
distribution of energies about the room temperature thermal value of 
0.025 ev the average fission cross section is 504 barns. Moderation, 
however, cannot reduce the critical mass by as large a factor as the 
ratio of the cross sections indicates because (1) the migration area of 
the neutrons is greater in the moderated system than in pure U2"5, 
(2) some fraction of the neutrons is absorbed in the moderator, and 
(3) the number of neutrons produced per neutron absorbed in fissionable 
material is less at thermal energies. 

Besides increasing the cross sections, moderation changes their relative 
values. For unmoderated uranium metal, the neutron multiplication 
factor (k) was calculated in Chapter 11 to be unity at a U235 concen- 
tration of 5.66%. Lower concentrations are subcritical because the 
fraction of neutrons with energies below the fission threshold of 
U238 (-1 Mev) b a sorbed to produce fissions in U235 is too small. In a 
Maxwellian thermal neutron spectrum, however, the fission cross section 
of U23s is enough larger than the U238 absorption cross section that 
in a moderated system employing natural uranium (0.7148 U235) k would be 
1.327, were it not for the resonance absorption of neutrons in U236 
during moderation and the absorption of neutrons by the moderator. 
In a homogeneous H20-moderated system of optimum concentration an 
enrichment to only about l$ U235 is required to make k unity. 

Distribution of the fissionable material throughout the moderator in 
clumps rather than homogeneous dispersion decreases the probability 
that a fission neutron will be moderated, and also decreases the 
probability that if a fission neutron is moderated it will be absorbed 
in fissionable material. For high concentrations of U235 the result 
is an increase in the minimum critical mass obtainable at optimum 
moderation, with the mass approaching that of reflected metal as the 
size of the clump increases. For low concentrations of U235 the high 
energy fissions in U238 are increased and the absorption of moderated 
neutrons in U238 and U235 is reduced. The greatest reduction in 
abs orpt ion occurs in the res onan ce energy region (-5 to -10, 000 ev) 
whe re t he effective absorpti ,on c ross section of U236 is much , higher 
wit h re spect to the fission cros s section of U23s than at th ,ermal 
energies. As a result, for optimum moderation and clumping, uranium 
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can be made critical in H20 when the U23s concentration is only 
slightly in excess of that of natural uranium. 

3.2.2 EXTENSION OF DATA AND CALCULATION OF SAFETY MARGINS 

Because of the much wider energy region for moderated systems, and 
because of the added complication of heterogeneity, multigrouD 4. 
calculations of the buckling are much more difficult than for pure 
metal systems and may be less accurate. Moreover, especially for low 
concentrations of Ua3', the bucklings may be small, and hence reflector 
savings that are determined by fitting data to calculated bucklings 
may be very sensitive to the particular buckling employed. Accordingly, 
for heterogeneous moderated systems the second approach outlined in 
Section 1.4, in which the data are fitted to calculated or experimental 
reflector savings or to reflector savings that are chosen to minimize 
the variation of buckling with shape, is much more satisfactory and 
is the one generally used in this chapter. 

Simple formulas may be employed to extend the data or to express 
margins of safety in terms of keff. The expression for the geometric 
buckling corresponding to a particular keff that is considered to be 
safe is given by Equation 1.15. A similar expression may be written 
for an extrapolated buckling B2 in terms of a known value BE, namely 

As in Equation 1.15, k, appears both in the 'numerator and in the 
denominator; hence the buckling is not greatly sensitive to small 
errors in k,. Although the calculation of accurate values of k or 
of M2 may require considerable care, it is not expected that this is 
so in the case of k/k, and M,$M2, since errors should tend to cancel 
out. It is generally best to calculate k, itself as k, = 1 + MEGo, 
where Go is the experimental buckling and $ is either determined- 
experimentally or calculated. In extending data, reflector savings 
should, of course, be calculated for the extended situation, but for 
large systems the accuracy of the calculations need not be very great. 
Equation 1.12 may be employed to estimate the change, although a two- 
group calculation might be expected to give better results. 

In calculating k it is convenient to break it down into several factors. 
According to the definition given in Chapter I, 

Jk(E)C (W(E)dE 
k= a 

SC (E)@(E)- . a 
If the fission cross section is represented by Cf(E) and the number 

"=f of neutrons released per fission by v(E), k(E) = C, and 
a 
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The absorption cross sections of most substances, including fissionable 
materials, vary approximately inversely as the neutron velocity in the 
thermal energy range. For moderators this behavior continues to high 
energies. Hence, when a large fraction of the fissions is caused by 
thermal neutrons, it is convenient to separate the l/v absorptions from 
the remainder. If Cfo and Cao represent the l/v portion of the cross 
section, if V. represents the constant'thermal value of V, and if 
A+(E) 9 &(E) 9 and N(E) represent deviations from the l/v cross 
sections and the thermal value of v as functions of energy, 

k= voCfo(Eo) 
c (E) a0 0 l+ 

$ACa@dE 

S’ao@ dE 

where E, is some convenient reference energy such as 0.025 ev. The 
particular value of E, in the thermal range is unimportant if the cross 
sections vary strictly as l/v in this region, since the energy 
dependence cancels out in the flux weighted integrals. 

The term 
VC (E > fo 0 
c (E) 

a0 0 

is commonly represented as the product of two factors, 

cc > 
f ao fissionable material (=fo) = 

('ao)all materials 
ano=@ ) V. 

ao fissionable material 

Actually some cross sections deviate slightly from l/v behavior in the 
thermal energy range. It is usually customary to include this deviation 
in the computation of f and of q by means of a 'non-l/v" factor, which 
is of course dependent on the shape of the neutron spectrum at thermal 
energies. The neutron spectrum often assumed for the calculation of the 
'non-l/v" factor is Maxwellian(3'1), although in the presence of 
absorptions this spectrum is only an approximation to that which actually 
exists. 

If the epithermal non-l/v absorptions and fissions occur at approximately 
equal energies and with approximately the same ratio of fissions to 
absorptions as at thermal energies, as for example is the case for 

235 u Y they tend to cancel each other. They may be allowed for by 
modifying the thermal value of 7, but the error introduced if they are 
ignored is small. In highly enriched, moderated uranium, then, a two- 
factor formula for k, namely k = qf is adequate. . 
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For low enrichments, additional factors are required to take account 
of the non-l/v events in U238. Fissions occ?Jr in U238 at neutron 
energies in excess of 1 Mev and resonance absorptions occur over the 
entire epithermal region with major contributions from the resonances 
of lower energy which start with a large resonance peak at about 7 ev. 
It is customary to represent these events by the product of two factors, 
E and p, where E gives the increase in the number of fast neutrons as 
the result of fissions in U238 and p gives the probability that a fast 
neutron escapes capture in the resonances of U238 during its moderation 
to thermal energies. The multiplication constant is then represented 
as the product of four factors 

In heterogeneous systems the calculation of f requires a knowledge 
of the self-shielding or disadvantage factors, as well as a knowledge 
of the thermal cross sections. The disadvantage factor of material 
i may be defined as 

di = F 
i 1 

where Ti is the average neutron flux in material I. The thermal 
utilization, f, is then given by 

mm 
f fissionable material = 

c all materials ( ypi > 

where Vi is the volume of the i th material. Diffusion theory is 
generally inadequate for computing di, although its use in nuclear 
safety calculations is conservative since it underestimates the self- 
shielding of the fissionable material. The P3 approximation to the 
neutron transport equation gives much more nearly correct values for 
the disadvantage factors. This is the method used at the Savannah 
River Laboratory for calculating f; an IBM-650 code is available for 
calculating f in cylindrical geometry. 

The factors e and p are also functions of the heterogeneity of the 
system. For large clumps E tends to be large because the probability 
of a fission neutron escaping from the clump without causing a fission 
in U238 is relatively low, and p also tends to be large because the 
self-shielding against resonance energy neutrons entering from the 
moderator is large. As the spacing between clumps, and hence the 
relative amount of moderator present, increases, e decreases because 
the probability of a fast neutron escaping from one clump and entering 
another clump without having its energy degraded by collisions with 
moderator atoms decreases. Two somewhat compensating effects occur 
in p as the spacing is increased: the increased amount of moderator 
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increases the probability (p) that a neutron will be thermalized without 
resonance capture, and the increased spacing decreases the shielding 
of one clump by another against neutrons of resonance energy. At 
large spacings the interaction effect in e and the shielding of one 
clump by another against resonance neutrons are insignificant. 

The calculation of e and p is somewhat complicated for close-spaced 
clumps. J. W. Wei1(3'2) describes methods for calculating E in 
uranium-water lattices, and a Monte Carlo code is available at the 
Savannah River Laboratory. Experimental values(3'3) also exist, which 
can be used to normalize the calculations. The calculation of p is 
described in Reference 3.4 and requires a knowledge of the resonance 
integral, which has been determined experimentally(3'5) as a function 
of the surface-to-mass ratio of the uranium. For close-spaced clumps 
the effective surface of a clump is reduced by the shielding provided 
by the other clumps. Methods are available(3'6) for computing this 
effect. 
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333 HIGHLY ENRICHED URANIUM IN WATER 

For clumps of uranium (93.55 U235) of a given size, increasing the 
spacing between clumps, and hence increasing the relative amount of 
moderator present,. decreases the material buckling and thus increases 
the critical size of the system. The decrease in buckling results 
from an increase in migration area as it approaches that for pure 
moderator and from a decrease in k, due to the degradation of neutron 
energies and to the absorption of neutrons in the moderator. These 
effects tend to increase the critical mass, but they are opposed by 
the increase in fission cross section, which results from moderation of 
the neutrons and tends to reduce the amount of fissionable material 
required for criticality. The result is that the critical mass has a 
minimum as the relative amount of moderator increases. As the size 
of the clump decreases, this minimum critical mass decreases because 
of the decrease in self-shielding for moderated neutrons, and the 
relative amount of moderator at the minimum mass increases. 

Experiments to determine the critical mass have been performed(3'7) 
with approximately cubic arrays of l-inch and l/2-inch cubes of uranium 
(-94.48 U235) arranged at various regular spacings in water. In 
Figure 3.1 the reciprocal of the length of one side of the array (the 
volume to the -l/3 power) is plotted against the logarithm of the 
fraction of the volume occupied by the uranium blocks for blocks of both 
sizes. Interpolations made from these slowly varying curves were 
used in constructing the graphs of critical mass versus the logarithm 
of the uranium volume fraction shown in Figure 3.2. 

Other experiments(3'7) have been performed with approximately cylindrical 
arrays of l/8-inch diameter, 12.inch-long rods of uranium (93.68 U235) 
arranged at various regular spacings in water. In Figure 3.3 the 
reciprocal of the diameter of the array and the critical mass are 
plotted against the logarithm of the volume fraction of uranium in 
the lattice. Since the rods were all of the same length, varying the 
spacing introduces a variation in the ratio of height to diameter Laf 
the array as well. The minimum mass occurs at a height-to-diameter 
ratio of about 1.3. For an assembly of 118~inch-diameter rods of optimum 
shape the critical mass is about 10% lower. Some experiments(3'7) were 
performed in which the arrangement of rods was nonuniform. Although 
the critical mass in some cases was less than that of a uniform array 
with the same average volume fraction of uranium, in no case studied 
was it less than that at optimum spacing. 

The minimum critical masses of the arrays of cubes and rods can be 
plotted against the volume-to-surface ratio of an individual unit to 
permit interpolations for clumps of other sizes and shapes. As the 
volume-to-surface ratio approaches atomic dimensions, the minimum 
critical mass for a solution must be approached. At the other end of 
the range the minimum critical mass must approach that for solid uranium. 
Inspection of Figure 3.2 indicates that for blocks larger than l-inch 
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cubes there may be a minimum critical mass as a function of volume fraction 
that lies above the mass of the solid metal. In the range of the 
experimental data, the minimum critical mass is nearly a linear function 
of the logarithm of the ratio of volume to surface. 

In addition to the experiments with uranium blocks and rods, some 
experiments (308) have been performed in which machining chips were 
immersed in water at H/U235 ratios between 60 and 120. The experiments 
were performed in 8- and lo-inch diameter cylinders reflected by water, 
Critical masses were between 18 and 92% higher than for solutions at the 
same H/U235 ratios in the same diameter vessels. 

Margins of safety are not given for these systems because of the 
difficulty of computing k and B'. Moreover, no variation in shape was 
made in the experiments so that B2 and S could be obtained by choosing 
S to minimize variations in B2. According to solution data, (see 
Chapter IV) a reasonable value for S appears to be about 6 cm. With this 
value bucklings can be obtained and equated to solution bucklings, and 
the thermal disadvantage factor of the uranium can be obtained. Values 
of k can then be obtained, and margins of safety calculated in the usual 
manner. The validity of such an approach is perhaps questionable for 
the l-inch blocks, but for the 1/8=inch rods and the machining chips it 
should give good results. The interest in these data is insufficient, 
however, to justify presenting the results of such an analysis here. 
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FIG. 3.1 CRITICAL SIZE OF CUBIC ARRAYS OF CUBES OF URANIUM (-94.4% U235) IN WATER 
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3.4 SLIGHTLY ENRICHED URANIUM IN WATER 

3.4.1 GENERAL CONSIDERATIONS 

For arrays of clumps of uranium (<5$ U235) in water, the buckling has 
a maximum as the spacing between clumps is varied. The maximum is the 
result of the opposing effects of the increase in the ratio of U235 
fissions to U238 absorptions and the increase in moderator absorptions 
(and, for some moderators, the increase in migration area) as the 
proportion of moderator is increased. The critical mass, of course, 
passes through a minimum since it approaches infinity both as the 
spacing approaches zero and as it becomes very large. 

The maximum buckling as a function of the water-to-uranium ratio is in 
turn a function of the size of the clump. For large clumps the neutron 
spectrum in the clump approaches that in pure metal, and the self- 
shielding against thermal neutrons entering from the moderator is large; 
hence the maximum buckling tends to be small or even negative. For 
smaller clumps the maximum buckling is higher as the result of 
relatively fewer absorptions in the moderator and of a more nearly 
thermal neutron spectrum. The maximum buckling then falls off as the 
clumps become very small, since the decrease in self-shielding against 
resonance absorptions in U238 eventually predominates, and the buckling 
approaches that for a solution. The relative volume of moderator at 
maximum buckling increases as the size of the clump decreases. 

The critical mass shows much the same sort of variation except that it 
has minima, whereas the buckling has maxima. For a clump of given 
size it passes through a minimum as the spacing between clumps in the 
moderator is varied. This minimum mass in turn passes through a minimum 
as the size of the clump is varied. The minimum masses and maximum 
bucklings do not, of course, occur at the same moderator-to-uranium 
ratios. Since the rate of decrease in concentration of fissionable 
material with increasing moderator concentration at the point of 
maximum buckling is generally greater than the rate of decrease of 
buckling, the minimum critical mass occurs at a higher moderator-to- 
uranium ratio than that at which the maximum buckling occurs. 

3.4.2 EXPERIMENTAL DATA 

There is a large amount of data giving bucklings that have been measured 
with lattices of slightly enriched uranium rods in H20. These bucklings 
are necessarily associated with values of the reflector savings of the 
essentially infinite H20 reflector which surrounded the lattices. In 
the Brookhaven experiments(3'3y3'9'3'10~ either lattices of various 
effective diameters were employed and the reflector saving was chosen 
that minimized the variation in the buckling, or reflector savings 
were determined by fitting radial flux traverses to J,(B,r). In the 
Hanford experiments(3'1193'12) the reflector savings were estimated 
from the Brookhaven results. In both sets of experiments the lattices 
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were approximately cylindrical and the effective radius of the cylinder 
was taken to be dm, where N is the number of rods in the lattice 
and A is area of the lattice cell associated with each rod. 

The experiments both at Brookhaven and Hanford were exponential rather 
than critical experiments. A reactor or neutron sources furnished a 
plane source of thermal neutrons at the base of the cylindrical array 
of rods, and the attenuation of this source was fitted to the theoretical 
flux shape Q(z) = A sinh K~(Z + S) where z is measured downward from 
the top of the assembly. In this manner ICY was determined. The 
buckling is given by B* = Bg - ICY where BG = 

The data were obtained with aluminum-jacketed rods, and there was 
generally a small air gap separating the aluminum sheath from the 
uranium. At the same water-to-uranium ratio the effect of the aluminum 
on p and e is small and tends to be in opposite directions for the 
two factors. Extensions of the data to unclad rods can thus be made 
solely on the basis of the change in M* and in f. It is a reasonable 
assumption that 

M2 
c= 

(l+!g(l+y+g 

( 

V V V 

) 

2 9 
l+H,O+ A1 air 

V U v U + v U 

where Mil and M* denote respectively migration areas for the lattices 
of clad and bare rods. 

Extensions to bare rods have been made for this Handbook by means of 
this approximation and by P 
use being made of Equation 

calculations to determine the f/fAl ratio, 
.1. The values of M* used in computing k, 

are either those obtained experimentally(3'393010) or values inferred" 
from these where such data do not exist. For lattices of bare rods 
the reflector savings are smaller; but the differences are small, and 
it is conservative to ignore them. For convenience all the experimental 
bucklings have been adjusted to average values of reflector saving 
determined from the Brookhaven data. These average values are plotted 
in Figure 3.4. In making these adjustments it was assumed that the 
experimental bucklings apply to infinite cylinders. 

Extension of the bucklings obtained for bare rods to other enrichments 
have also been made for this Handbook. A change in enrichment was assumed 
to affect only f and 7, with e, p, and M* remaining unaffected. The f 
ratio was obtained by P 

3 
calculations made with thermal Maxwellian 

cross sections, and the q ratio was obtained from thermal values. The 
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reflector savings are considered unchanged from the values plotted in 
Figure 3.4. In cases where data were obtained at more than one enrich- 
ment with the same diameter rod, average values are chosen for the 
bucklings extrapolated to other enrichments. 

In Table III.1 the bucklings of bare rods are presented at the enrichments 
at which the bucklings for clad rods were measured and at concentrations 
of 0.714% (natural uranium), 1.0, 2.0, and 3.0% U235. There are 
numerous ways in which these bucklings can be plotted to furnish useful 
interpolations and extrapolations. 

In Figures 3.5-3.8 graphs of B* versus water-to-uranium ratio are 
presented for each rod size at each of the four enrichments. In 
constructing these graphs the shapes of the curves, particularly the 
maxima, were determined by interpolations made on auxiliary graphs of 
f, k/f, and M* against vH20/vue 

3.4.3 MARGINS OF SAFETY 

In terms of keff, the data at these low enrichments are very good. The 
Brookhaven data give the error in the buckling as generally considerably 
less than -+10D4 cm'*. With an average value of M* of 32, which is 
suitable for margin of safety calculations, the corresponding error in 
keff is less than kO.0032. Although there are uncertainties in extending 
the data to bare rods, the greatest being in the M* ratio, the total 
magnitude of the buckling correction is at most about 10 x loo4 cm'* or 
about 0.032 in keff; and this large a correction applies only to the 
0.387.inch-diameter rods at the highest enrichment and to the 1.34.inch- 
diameter rods at low water-to-uranium ratios. For large rods, low 
enrichments, and high water-to-uranium ratios, the correction is only a 
fraction of this. In the extension of the data to the four enrichments 
chosen, the spread in the three values of buckling obtained by 
extrapolating the Brookhaven data for enrichments of 1.027, 1.143, and 
1.2998 is at most about 3 x loo4 cm'*. For natural uranium at a water- 
to-uranium ratio of 1.5 and for a rod diameter of 1.1 inches the 
extrapolation of the data gives a bucklin 
be compared with an experimental buckling 7 

of -3 x loo4 cm'*. This may 
3013), corrected for the 

presence of cladding, of -0.5 x loo4 cm'*. 

From the foregoing remarks it appears that the maximum safe value of 
keff may generally be taken to be as large as 0.98. The corresponding 
margin in buckling is 6.4 x loo4 cm'* + 0.02 B*. For situations that 
do not deviate greatly from those studied experimentally, even higher 
values of keff may be considered acceptable, but one s.hould consult 
the original data to satisfy himself that this is so. 
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TABLE III. 1 

Material Bucklings of Lattices of Uranium Rods in Water 
0.387.inch-diameter rods 

Buckling in cm-* x lo4 at U235 concentrations of: 

v~20/vu 0.714s 3.0% 1.0% 1.o27$(a) 1.143$(a) i.2ggpda) 2.0% 

1 -31.00 4.40 7.10 17.80 28.50 63.60 88.60 

1.5 -12.90 24.70 26.40 39.70 51.40 88.60 115.80 

2 - 9.70 33.60 36.40 50.90 63.80 108.20 140.40 

3 -10.30 35.40 37*5o 53.70 68.70 115.80 151.30 

4 -20.60 27.00 29.70 46.10 62.10 112.80 151.30 

0.600~inch-diameter rods 
Buckling in cm-* x lo4 at U235 concentrations of: 

v~20/vv 0.714% 1.0% 1.027$(~) 1.143$(a) i.2gg$bl 3.0% 2.0% 

1 -24.50 11.70 13.40 25.80 37.40 72.30 97.80 
1.5 - 8.00 31.10 34.30 45.90 58.20 97.50 125.60 

2 - 4.50 37.60 40.60 53.80 67.30 log.90 140.80 

3 -13.70 32.80 36.00 51.10 65.80 114.20 149.80 

4 -30.00 18.80 22.50 38.10 53.60 106.00 144.70 

0.750~inch-diameter rods 

Buckling in cm-* x lo4 at U*" concentrations of: 
V /v H20 U 0.714% l.O27$(a) 1.0% 3.0% 2.0% 

1.334 - 8.80 29.40 32.30 93.90 121.00 

1.584 - 4.60 34.60 37.60 101.00 129.00 

1.834 - 3.90 37.10 40.20 107.00 137.00 

2.334 - 7.80 36.00 39.30 111.00 144.00 

2.834 -13.10 31e7o 35.10 110.00 143.00 

3.834 -30.50 15.50 19.00 96.90 133.00 
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TABLE III.1 (Continued) 

0.92%inch-diameter rod 
Buckling in cm'* x lo4 at U235 concentrations of: 

VH,O /v U 0.714s l.oo7$(a) 2.0% 3.0s 

1.37 
1.74 
1.94 

2.15 

V /v H20 U 

1.31 

1.46 

1.73 
2.30 

2.92 

V /v Hz0 U 

0.86 

1.33 
1.85 

- 7.10 31.90 95.60 123.00 

- 3.40 37.50 105.00 133.00 
- 6.20 36.10 106.00 136.00 

-1o.go 32.20 104.00 135.00 

1.34.inch-diameter rod 
Buckling in cm-* x lo4 at U235 concentrations of: 

0.714s l*44$Ca) 1.0s 3.0% 2.09s 

-11.40 26.10 61.70 88.40 114.00 

- 9.20 28.90 65.10 92.30 11g.00 
-10.70 28.20 65.20 93.20 120.00 
-22.80 17.90 57.00 86.60 116.00 

-37.70 26.50 41.70 71.40 100.00 

1.66.inch-diameter rod 
Buckling in cm'* x lo4 at U235 concentrations of: 

1.007$da) 0.714s 2.0% 3.0s 

-19.80 17.50 77.50 103.00 

- 9.90 28.20 89.80 116.00 

-17.00 22.10 85.80 113.00 

(a) U23s concentrations for which experimental data were obtained 
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FIG. 3.5 MATERIAL BUCKLINGS OF ARRAYS OF URANIUM ( 0.714% U2=) RODS IN WATER 
(The curves are for various rod diameters.) 
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The safe bucklings corresponding to particular choices of keff are 
obtained from Equation 1.15, which with M2 = 32 becomes 

B2 safe = 
1 

k eff 

lokerr ( 32 

Safe dimensions of water-reflected systems are then calculated from 
the appropriate equation among Equations 1.6-l JO and the reflector 
savings read from Figure 3.4. For large rods at high enrichment it may 
be physically impossible to arrange them in such a manner as to give 
a good approximation to the calculated safe cylinder (or other shape). 
This effect, provides an additional margin of safety and, of course, 
enters into the experimental determinations of the bucklings. The 
safe masses are calculated easily from the composition and size of the 
safe assemblies. In setting safe conditions allowance should be made ' 
for extremes in all variables such as enrichment and the dimensions of 
the uranium pieces. 

3.4.4 EXTRAPOLATION OF DATA 

It may be necessary in certain applications to extend the bucklings of 
Table III.1 and Figures 3.5-3.8 to situations that differ from those 9 
studied experimentally, other than in enrichment and cladding. Some 
of the possibilities are described in the following paragraphs, along 
with precautions which should be observed and methods of calculations. 

3.4.4.1 Assembly Shape 

The lattices studied are by nature anisotropic, and the migration area 
in the direction parallel to the rods might be expected to differ 
somewhat from its value in the perpendicular direction. In this case 
a single material buckling does not truly exist since the critical 
equation is 

k= 1 + M=B= + M=B= rr z z 

where r represents the radial or perpendicular direction and z the axial 
direction, If ME > M$, as appears to be the case,(3'3) applying 
bucklings determined in exponential experiments where Bi<O to finite 
cylinders where Bg >0 is conservative since the critical buckling, 

B= + B= = r Z 

k-l 
F r 

M2 - M= 
Z r 

M2 .r 
B2 

Z’ 

actually decreases 

as Bz increases. The anisotropy, however, has not been measured in many 
cases and is somewhat uncertain. Moreover, there may be changes in S 
with shape; hence somewhat larger margins of safety should be allowed 
for assemblies differing considerably in shape from those studied 
experimentally. 
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3.4.4.2 Shape of Uranium Clump 

The uranium pieces may not be solid rods. _----- To a first approximation 
the equivalent solid rod is one which has the same surface-to-volume .-._- ----_c_ --- _ 
ratio. The probability of a fission neutron escaping the -piece*'without 
a2Zilision, upon which E depends, is very nearly a function only of 
surface-to-volume ratio for a uniform source distribution in such 
diverse shapes as slabs, cylinders, spheres, and hemispheres. The 
resonance integral, too, is a function of surface-to-volume ratio. 
However, thermal disadvantage factors and interaction effects between 
clumps may be shape dependent. At the same water-to-uranium ratio a 
hollow cylinder with the same volume as a solid cylinder would have 
lower values of p and e because of the greater surface, but higher 
values of f because of the higher thermal disadvantage factor in the 
uranium. It is not known whether it is possible to obtain with 
different shapes or hollow rods, bucklings greater than the maximum 
achievable with solid rods; however, allowance should be made for this 
possibility in setting safe limits. Data exist (3.12,3.14-3.16) for SOme 
particular shapes that may be compared with data for solid cylinders 
of the same volume or surface-to-volume ratio or that may be useful 
in evaluating methods of calculating the changes in E, p, and f in 
going from a solid cylinder to some other shape. 

3.4.4.3 Arrangement of Pieces 

The bucklings in Table III.1 are for arrays of regularly spaced rods. 
Experiments performed at Hanford(3017,3018) with uranium slugs close 
to the optimum size for maximum buckling indicate that a random 
arrangement generally has a lower buckling than a regular array at a 
water-to-uranium ratio corresponding to the average of the random array. 
This result appears reasonable if the average water-to-uranium ratio is 
close to the optimum since this ratio is the result of rods with 
separations on both sides of the optimum. Irregular arrays of very 
small uranium rods might very well, however, have bucklings larger 
than regular arrays since grouping several small rods together would 
tend to approximate a larger rod. 

3.4.4.4 Other Reflectors and Moderators 

The bucklings in Table III.1 apply to the situation in which a regular 
lattice of rods is immersed in water and a thick layer of water 
surrounds the assembly. If the immersion medium is an organic liquid, 
corrections to these bucklings may be necessary. If the organic liquid 
has a lower hydrogen density than water, both M2 and f are larger because 
relatively fewer neutrons are moderated and captured by hydrogen atoms. 
Except for very small or negative bucklings the net result is a decrease 
in buckling. 
approximation. 

The change in f can be calculated by the diffusion or P3 
The change in M2 can be estimated from the approximation 
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V mod. l+ 
‘2 M = 

l+P 

vU 
V mod. 

M2 

vU 

where M'= is the migration area with the organic liquid, M2 the 
migration area with water, Vmod and VU are the volumes of moderator 
and uranium, and p is the hydrogen density in the organic liquid 
relative to that in water. The reflector saving, to a first approximation, 
is unchanged since changes in B are compensated by-changes in tc 
(see Equation 1.12). 

In a dissolver the immersion medium may be nitric acid. As dissolution 
progresses uranium goes into solution and the uranium pieces become 
smaller. The increase in surface-to-volume ratio decreases p and e, 
and the decrease in self-shielding increases f. The solution that 
finally results has a lower buckling than that achievable with pieces 
of optimum size, but if sufficiently large pieces are dissolved, the 
buckling may pass through a maximum as the dissolution progresses, It 
is of course conservative to assume that p and e do not change as 
dissolution progresses and to calculate f by the P3 approximation. The 
poisoning due to nitrogen decreases f. The displacement of hydrogen 
by nitrogen increases M2, but it is conservative to ignore this effect. 

In some circumstances an array of enriched uranium might be surrounded 
by natural uranium. The reflector saving provided by the natural uranium 
is readily calculated from Equation 1.12 with DC = Dr and K: = -B2 for 
natural uranium. 

3.4.4.5 Moderator Density 

When uranium pieces are handled in air, reliance may be placed on 
control of the spacing between pieces to ensure that a nuclear incident 
will not occur in the event of flooding by water. As Table 111.1 
illustrates, either a close-packed arrangement or a widely spaced 
arrangement results in a considerable increase in critical mass over 
the value at optimum spacing. Although it is possible to increase the 
separation between pieces sufficiently that an infinite mass is 
subcritical in the event of flooding, there is danger in relying too 
heavily on this procedure since full flooding is not the worst 
circumstance. At the large separation the optimum water-to-uranium 
ratio is achieved by filling only a fraction of the available space 
around each piece with water, such as flooding with water of density 
less than 1 g/cm? The critical mass is, of course, greater than for 
an array at optimum moderation with water of full density, but is by 
no means infinite. Examples of situations in which such partial flooding 
or its equivalent might occur are the spraying of an array with a hose, 
or the separation of pieces from each other by wooden or plastic partitions. 
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The buckling of a partially flooded array, containing voids, can be 
obtained from that of a compact array of the same water-to-uranium ratio 
by calculating the change in M2, which is given by 

M2 voids 
l  ML = 

v . void 
V V H,O+ U 

where Goid and M2 denote respectively the migration areas of the 
arrays with and without voids. 

In addition to the change in M2 there may be changes in k that are 
functions of the placement of the voids. Thus a positive buckling for 
natural uranium rods in water has been reported(3's) when an annular 
void surrounds the rods. The voids also affect the reflector saving, 
which increases at least as fast as M; the increase may be even greater 
if the considerations discussed in Chapter II apply here. In view 
of these uncertainties generous margins of safety should be applied 
to such arrangements if partial flooding is considered possible. 

325 



3.1 

32 0 

3@3 

34 0 

3.5 

36 l 

37 l 

38 0 

39 a 

3.10 

Hughes, D. J. and J. A. Harvey. Neutron Cross Sections. 
Brookhaven Neutron Cross Section Compilation Group. AEC Research 
and Development Report BNLr325, 334 pp. (July 1955). 

Well, J. W. Fast Fission Effect in Uranium-Water Lattices. 
General Electric Co. Knolls Atomic Power Laboratory, 
Schenectady, New York. AEC Research and Development Report 
KAPLlO43, 31 pp. (January 1954). 

Kouts, H. and R. Sher. Experimental Studies of Slightly 
Enriched Uranium, Water Moderated Lattices. Part I. 
0.600~In.-Diameter Rods. Brookhaven National Laboratory, 
Upton, N. Y. AEC Research and Development Report BNb486, 
41 pp. (September 1957). 

Glasstone, S. and M. C. Edlund. The Elements of Nuclear Reactor 
Theory. New York: D. Van Nostrand & Co. 416 pp. (1952). 

Hellstrand, E. "Measurements of the Effective Resonance 
Integral in Uranium Metal and Oxide in Different Geometries". 
J. Applied Physics, 28, 1493-1502 (December 1957). - 

Dancoff, S. M. and M. Ginsburg. Surface Resonance Absorption 
in a Close-Packed Lattice. United States Atomic Energy 
Commission, Technical Information Service Extension, Oak Ridge, 
Tenn. AEC Research and Development Report CP-2157, 9 pp. 
(October 1944). 

Hoogterp, J. C. Critical Masses of Oralloy Lattices Immersed 
in Water. Los Alamos Scientific Laboratory, New Mexico. AEC 
Research and Development Report ~~-2026, 56 pp. (March 195‘7). 

McLendon, J. D. and J. W. Morfitt. Union Carbide and Carbon 
Chemicals Co. Y-12 Oak Ridge, Tenn. AEC Research and Develop- 
ment Report Y-A2=7l., 17 pp. (February 1952). (Secret). 

Kouts, H., et al. "Exponential Experiments with Slightly 
Enriched Uranium Rods In Ordinary Water". Proc. U. N. Intern. 
Conf. Peaceful Uses of Atomic Energy, Geneva, 2, 183-202 (1955) 
~600. 

Kouts, H. et al. "Physics of Slightly Enriched, Normal Water 
Lattices (Theory and Experiment)". Proc. U. N. Intern. Conf. 
Peaceful Uses Atomic Energy, 2nd Geneva, 12, 446-482 (1958). 
~1841 l 

326 



3.11 Clayton, E. D. Exponential Pile Measurements in Water Moderated 
Lattices with Enriched Uranium Rods. Hanford Atomic Products 
Operation, Richland, Washington. AEC Research and Development 
Report Hw-40930, 45 pp. (January 1956). 

3.12 Block, E. 2. and E. D. Clayton. "Buckling Measurements with 
Enriched Fuel Elements in Light Water". Nuclear Physics 
Research Quarterly Report - July, August, September 1956. 
General Electric Co. Hanford Atomic Products Operation, Richland, 
Washington. AEC Research and Development Report HW-47012, 56 pp. 
(November 1956). pp. 12-19. 

3.13 Kouts, H., et al. "Reactor Parameters of a IXght Water-Normal 
Uranium Lattice". J. of Nuclear Energy, 2-3, 141-142 (1955-56). 

3.14 Clayton, E. D. and E. 2. Block. "Buckling Measurements with 
Enriched Hollow Fuel Elements in Light Water". Physics Research 
Quarterly Report - April, May, June 1956. General Electric Co., 
Hanford Atomic Products Operation, Richland, WashlngtonL AEC 
Research and Development Report HW-44525, 75 pp. (July 1956). 
PP. 59-67. 

3.15 Block, E. 2. "Enriched Uranium-Water Lattices'*. Nuclear Physics 
Research Quarterly Report - April, May, June lgy. General 
Electric Co. Hanford Atomic Products Operation, Richland, 
Washington. AEC Research and Development Report Hw-51983, 81 pp. 
(Awust 195711 pp. 49-54. 

3.16 Fox, J. K., J. T. Mihalczo, and L. W. Gilley. "Critical 
Experiments with 2.09% U2"' Enriched Uranium Metal Plates in 
Water". Oak Ridge National Laboratory, Tenn. AEC Research 
and Development Report ORNIdF-58-8-3, 8 pp. (August 1958). 

3.17 Lloyd, R. C. "Buckling Measurements of Fuel Elements In a 
Random Array, Water Moderated". pp. 35. Nuclear Physics 
Research Quarterly Report October, November, December 1957. 
General Electric Co. Hanford Atomic Products Operation, Richland, 
Washington. AEC Research and Development Report HW-54591, 85 pp. 
(March 1958). 

3.18 Lloyd, R. c. 'Buckling Measurements for Fuel Elements In a 
Random Array". p. 12. Nuclear Physics Research Quarterly 
Report, January, February, March 1958. General Electric Co. 
Hanford Atomic Products Operation, Richland, Washington. 
AEC Research and Development Report W-55879, 42 pp. (April 1958). 

327 



CHAPTER IV - HOMOGENEOUS MODERATED SYSTEMS 

4.1 I NTRODUCTI ON 

In this chapter critical and safe conditions are given for homogeneous 
mixtures of fissionable and moderating materials. Only such additional 
theory as is needed here is included, since a fairly complete 
presentation of the effect of moderation is given in Chapters I and III. 
Water solutions of U235 receive the most extensive treatment because of 
the large amount of data available. The general treatment and methods 
of handling the data apply also to plutonium and U233. 

4.2 AQUEOUS SOLUTIONS OF URANIUM (-93.5% U235) 

4.2.1 THEORY 

A large number of critical experiments(401~4'4) have been performed at 
the Oak Ridge National Laboratory with solutions of U02F2 in which the 
uranium contained approximately 93.5s U235. This compound was chosen 
because of its high solubility and because of the small neutron capture 
cross sections of oxygen and fluorine. A somewhat smaller number of 
experiments (405) have been performed with UO2(NO3)2 solutions with 
various amounts of HN03 present. Except perhaps for solutions of low 
concentration, the bucklings of these solutions are large enough that 
it is practical to use the first method given in Section 1.4 for 
extending data, in which the reflector savings serve as parameters that 
relate theory and experiment. Although bucklings calculated by 
multigroup methods would probably be more accurate and hence preferable, 
a simple one-group expression is adequate. As pointed out in 
Section 1.4, even when the correct buckling is used, some variation of 
reflector saving with shape is expected; hence the small variations 
(see Figures 1.1-1.3) attributable to an incorrect buckling are not 
objectionable provided the error in the buckling is not too great. 

The expression used for the buckling is 

B2 k-l 
m =yz 

where k = $' and M2 = z + L2. Thermal cross sections are employed for 
q and f, and T is taken to be the neutron age in pure moderator. The 
thermal utilization, f, is given by 

f 
au235 

= 
H X 

ou235 +‘m’H +T’X U 
(4.2) 

where the 0's are thermal cross sections in barns, X denotes elements 
H X other than hydrogen and U235 'that may be present, and 7 and &~s 
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are atomic ratios. The diffusion area, L2, is approximated by 

L2 (1 - f)L 2 = 
0 (4.3) 

where Lg is the diffusion area of'the moderator. 

Values of thermal cross sections employed in this Handbook are given 
in Table IV.1, together with the thermal value of TJ. The U235 cross 
section contains a non-l/v factor calculated for a Maxwellian 
distribution about 0.025 ev so as to give a nearly correct cross section 
for dilute solutions. Allowance for the small contributions of U*'* and 
U 238 are included in the U235 cross section; hence these isotopes may be 
ignored for uranium containing approximately 93.5% U235. Resonance 
absorption in U238 is assumed to be compensated by fast fissions in 

238 

u l The only substance other than hydrogen and uranium considered to 
contribute significantly to f is nitrogen. Fluorine and oxygen have 
such small cross sections that they may be ignored. Absorbers such as 
boron or cadmium might be present in special cases, but they are not 
considered here. 

TABLE IV.1 

Parameters Employed in Calculating k 
for U235 Solutions 

Material 0, barns TJ 

U 235 678 2.07 

H 0.332 

N 1.88 

For U02F2 solutions the pure moderator is taken to be H,O; for U02(N02)2 
solutions it is taken to be a nitric acid solution with the same acid 
normality as that of the uranyl nitrate solution. The diffusion area in 
nitric acid solutions is plotted in Figure 4.1 against the acid 
normality. In Figure 4.2 a similar graph is presented for the neutron 
age. Both curves are calculated, and they are based on values for pure 
H20 that are consistent with experiment. 

4.2.2 URANYL FLUORIDE SOLUTIONS 

4.2.2.1 Spheres 

Some experiments (4.4,4.6,4.7,4.15) have been performed in which bare 
and water-reflected spheres were made critical by adJusting the 
concentration of the solution within the spheres. The reflector was 
effectively infinite. The spherical containers were fabricated from 
aluminum to minimize the effect of the container wall. When these data 
are fitted by means of Equation 1.6 to bucklings calculated by the 
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procedure Just outlined, the reflector savings reported in Table 1v.2 
are obtained. These reflector savings are plotted against solution 
concentration in Figure 4.3 with the not unreasonable assumption being 
made that the bare and water-reflected curves are parallel. Use of 
values obtained from Figure 4.3 by interpolation leads to Figures 4.4 
and 4.5 in which critical masses and radii of bare and water-reflected 
spheres are plotted against concentration. Also presented in these 
figures are safe masses and radii corresponding to keff's of 0.98 and 
0.95, determined from Equation 1.15. Since at a given buckling an 
increment in radius is the negative of an increment in reflector 
saving, Figure 4.5 also illustrates the margins in S that correspond 
to margins of 0.02 and 0.05 in keff. The data appear to be good enough 
that in the region of the minimum mass a keff of 0.98 allows an adequate 
margin of safety. 

TABLE IV.2 

Critical Mass Data Obtained with Spheres of U02F2 Solution 
(The data are expressed in terms of reflector savings. 
The uranium contains approximately 93.5% U2".) 

Cont., Reflector Saving(S), cm 
g U235/liter H/U235 Bare Infinite H20 Reflector 

18 J 1393 4.15 

20.4 1270 7.37 

23.4 1112 3.81 

49.4 524 6.65 

95J 268.8 6.57 

125.2 203.5 3.16 

200 126.5 6.56 

325 76.1 6.36 

483 49.9 6.12 

649 35.8 5.99 

The data and the curves are, of course, for homogeneous solutions. A 
concentration gradient In the solution affects the results. 
Goertzel(408) has shown theoretically that in a reflected sphere in 
which the concentration decreases from the center toward the outer 
boundary in such a manner as to give a flat thermal flux in the 
solution, the critical mass is 30% lower than with a zero gradient. 
Morfitt("') has confirmed this effect experimentally in cylinders 
containing a number of coaxial annular regions with successively lower 
concentrations, but he found the magnitude of the effect to be somewhat 
less than the calculated value. Conversely, a concentration gradient In 
the opposite direction would be expected to lead to a higher critical 
mass. 
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FIG. 4.3 S FOR SPHERES OF U02F2 SOLUTION (The reflector savings were obtained by equating the geometric 
bucklings to calculated material bucklings as a function of 
U235 concentration in the solution.) 
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4.2.2.2 Cylinders 

A large number of experiments(4'1-4'594'15) have been performed at the 
Oak Ridge National Laboratory in which the critical heights of bare 
and water-reflected cylinders of uranyl fluoride solution were measured 
as a function of cylinder diameter and of solution concentration. Both 
aluminum-walled and stainless-steel-walled vessels were employed, but 
almost all of the more recent data have been obtained with aluminum- 
walled vessels. For both materials the wall thickness was l/16 inch. 
Fitting the data to calculated bucklings through the use of Equation 1.9 
gives the reflector savings recorded in Tables IV.3 through 1~1.6. These 
values are generally smaller than values for spheres for the same 
concentration and reflector read from Figure 4.3. in determining 
critical and safe conditions for cylinders (and also for slabs), 
reflector savings from Figure 4.3 may therefore be used for situations 
for which fairly direct experimental data on cylinders and slabs may be 
lacking. 

TABLE 1v.3 

Critical Mass Data Obtained with Bare, Aluminum-Walled 
Cylinders of UOaF2 Solution 

(The data are expressed In terms of reflector savings.) 

Cont., 
g U2"/llter H/U23s 

34.3 755 
52.2 499 
77.9 331 
78.7 329 
78.5 328 
79.1 325 

151 169 
291 85.7 
3oo 83.1 

331 74.6 
337 73.4 
342 72.4 

350 71.5 
'x3 66.1 
402 60.8 
437 55.4 
459 52.9 
470 51.5 
480 50.1 
532 44.7 

538 44.3 

537 43.2 

829 27.1 

Reflector Saving(S) In cm for Cylinder Diameter 
In Inches of: 

8.76 9.5 10 - 12 15 20 30 -P-P-P- 

3.05 3.12 

3.06 

2.97 
2.68 
2.70 

2.67 

2.61 2.63 
2.58 2.58 

2.53 2.53 2.47 

2.49 2.47 2.43 
2.48 

2.48 2.46 2.51 2.42 

2.43 2.39 2.41 
2.41 2.36 2.35 

2.38 2.36 2.32 2.22 

2.32 
1.91 

3.05 
3.45 
3.03 2.90 

3.38 

3.00 
2.63 

2.52 

2.51 

2.71 
2.40 2.39 2.45 

2.36 2.54 2.47 

2.01 2.07 
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TABLE Iv.4 

Critical Mass Data Obtained with Water-Reflected, 
Aluminum-Walled Cylinders of UOzF2 Solution 

(The data are expressed in terms of reflector savings.) 

Concot 
g U235/liter H/U235 

26.0 999 

34.3 755 
52.2 499. 

78.7 329 
88.1 290 

116 221 

134 192 

199 127 
212 119 

254 99.5 

315 78.7 

342 72.4 

415 58.8 

424 56.7 

459 52*9 

470 51.5 
488 49.5 

538 44.3 

537 43.2 

759 29.9 

829 27.1 

827 26.2 

Reflector Saving(S) in cm for Cylinder Diameter 
in Inches of: 

6 6.5 8 10 

6.56 

6.45 

6.38 

15 30 

7.15 

6.49 

6.54 

6.24 

6.29 

6.39 
6.34 

6.11 

6*25 6.37 

6.6 kO.5 

6.26 6.02 

6.14 

6.22 6.14 6.12 6.05 

6.64(a) 

6.21 6.26 

6.09 

6.15 6.18 6.24 

5.74 

5e93 6.14 

5.78 5.60 

6.24 

6.47 

6.8 kO.5 

6*39 6.6 20.5 

+ggw 

(a) This value is considered to be in error by the experimenters.(4'15) 
(b) - is placed in front of values derived from estimates of critical 

conditions based on subcritical measurements. 
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TABLE IV.5 

Critical Mass Data Obtained with Bare, Stainless-Steel-Walled 
Cylinders of U02F2 Solution 

(The data are expressed in terms of reflector savings.) 

Cont., 
g U2"/llter 

26.0 
34.3 
52.2 
78.7 
80.5 

114 
116 
148 
205 
288 
331 
396 
394 
424 
538 

H/U23S 

999 
755 
499 
329 
320 
226 
221 

174 
123.2 
86.4 
74.6 
62.7 
62.6 
56.7 
43.9 

Reflector Saving (S) in cm for Cylinder Diameter 
in Inches of: 

9 10 12 15 20 - - 
A55(a) 

3.89 3 l .91 
3.40 3.55 3a57 

3.45 
3*37 

3.21 3.18 
3.17 3.39 

3.17 3.01 
3*05 
2.95 

2.81 
2.77 

,2.73ta) 
2.75 

2a55 

(a) - is placed In front of values derived from estimates of critical 
conditions based on subcritical measurements. 
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TABLE 1v.6 

Cont., 
g U23s/llter 

26.0 999 
34.3 755 
52.2 499 
80.5 320 

114 226 
116 221 

134 192 
141 183 
148 174 
205 123.2 

254 99.5 
288 86.4 

396 62.7 

3* 62.6 

394 61.1 

4145 58.8 
424 56.7 
538 44.3 5.97 
538 43.9 
724 31.6 

827 26.2 

869 24.4 

Critical Mass Data Obtained with Water-Reflected, 
Stainless-Steel-Walled Cylinders of U02F2 Solution 

(The data are expressed In terms of reflector savings.) 

Reflector Saving (S) In cm for Cylinder Diameter 

H/U== 6 6.5 
In Inches of: 

7 9 10 12 15 I 

6.05 6.00 
6.00 5.92 

6.18 
,6.07(~) 

6.09 5.96 5.89 
,6.07(a) 6.02 5.89 5.82 

5.88 
6.06 5.96 5.82 5.72 

5.98 5.73 5.66 

5*93 
5.98 
5.76 

5.85 5.78 5.69 5.54 
5*?2 5.61 5.50 5*38 

5.34 
5.48 5.34 5.26 

( > a S Is placed In fron 
conditions based on 

t of 
sub 

values 
crltica 

tlmates of critical derived from es 
l-measurements. 

,6.3da) 
6.36 6.10 

*6.14(a) 5.86 5.53 
5.94 5.82 

5.94 5.54 
5.56 

5.88 5.59 
5.74 

5.78 
5.64 

5.58 

5956 

5.56 
5.36 

5.30 
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For bare cylinders, stainless steel walls are seen to give slightly 
greater reflector savings than aluminum walls, whereas for water- 
reflected cylinders the opposite is true. The reasons for this 
behavior are that (1) stainless steel has a higher scattering cross 
section than aluminum and hence reduces the leakage of fast neutrons, 
and (2) stainless steel also has a higher thermal absorption cross 
section and hence captures more of the thermal neutrons headed back to 
the solution from the reflector. 

From close examination of these reflector savings one can gain some 
feeling for the uncertainty in the experimental data. Plotting the 
reflector savings against concentration or against cylinder diameter 
permits interpolations and extrapolations to be made and reveals data 
that should perhaps be regarded with suspicion. Estimates of reflector 
savings obtained from examining the values in Table IV.3 and IV.4 have 
been used to calculate the critical and safe (keff = 0.98 or 0.95) 
diameters of infinite aluminum-walled cylinders of U02F2 solution, 
both bare and water-reflected, as functions of solution concentration. 
The results are plotted in Figure 4.6. As in the case of spheres, an 
increment in the critical or safe radius is the negative of the 
corresponding increment in reflector saving; hence the margin in S 
corresponding to a margin of 0.02 or of 0.05 in keff is readily apparent 
from Figure 4.6. From a comparison of these margins with the scatter 
in the values in Table IV.3 and IV.4 a margin of safety of 0.02 in keff 
appears adequate at concentrations where data are fairly extensive. 

The curves of Figure 4.6 exhibit minima at concentrations in the 
neighborhood of 500 g of U235 per liter. Similar minima no doubt occur 
for spheres, but the data are not sufficiently extensive to show them. 
The minima may appear surprising since the critical diameters of bare 
and water-reflected cylinders of uranium (93.58 U235rmetal"gre only 
about 4.6 and 3.1 inches, respectively (see Figures 2.4 and 2.5), or 
much smaller than the minima shown in Figure 4.6; but it should be 
remembered that pure U02F2 rather than pure metal is being approached 
as the concentration increases and that the dilution of uranium by 
oxygen and fluorine increases the critical size markedly. 

In Figure 4.7 (H + 2s) and (D + 2s) are plotted against each other on 
reciprocal scales for a number of solution concentrations where H and D 
are the height and diameter of a cylinder. The concentrations are so 
chosen that the buckling at a particular concentration is equal to the 
geometric buckling corresponding to keff = 0.95 for the next lower 
concentration. The curves thus permit both critical and safe 
(keff = 0.95) cylinder sizes to be determined as functions of solution 
concentration when the appropriate values of S are employed. These 
values of S are determined from Tables IV.3 through IV.6, from data on 
the effect of reflector thickness and material, or from estimates of 
interaction. It should be noted that unless the values of S are the 
same, cylinder dimensions that are critical at one concentration do not 
correspond exactly to a keff of 0.95 at the next lower concentration. 
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In some situations the reflector may be different on different portions 
of the surface. In these cases the value of S applied to these 
different portions is varied accordingly. In Table IV.7 pairs of 
values of S are given that were determined by equating calculated 
material bucklings to geometric bucklings calculated from data (4.2,4.3) 

for water-reflected, aluminum-walled cylinders with no top reflector. 
The requirement was made that the pair of reflector savings be in 
reasonable agreement with the values of Tables IV.3 and IV.4. As can 
be seen it is gene rally possible to meet this requirement fairly well. 

TABLE IV.7 

Pairs of Reflector Savings Fitting Data for Water-Reflected 
Cylinders z' _. 1. _ 7.; .~-~wc.,,..L-...~ 3olution with No Top Reflector 

(The upper value is that for an unreflected 
surface; the lopler, a water-reflected surface.) 

Reflector Savings in cm for Cylinder Diameter 
Cont., 

g U235/liter H/U 235 
in Inches of: 

6 7@5 10 15 20 30 -- P P P - - - 

331 74.6 2.86 
6.36 

337 73.4 2.67 
6.28 

342 72.4 2.67 2.67 2.67 2.92 
6.25 6.31 6.48 6.62 

470 51.5 2.32 
6.01 

538 44.3 2.38 2.38 2.29 
6.15 6.17 5.99 

537 43.2 2.08 
5@98 

In Table IV.~ the effective reflector saving on the lateral surface of 
cylinders reflected on only one-half of this surface(403) is compared 
with the average between the values for complete reflection and no 
reflection. The effective value is somewhat less than the average 
value. 
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TABLE 1v.8 

Average Lateral Reflector Savings for 
Partially Reflected Cylinder 

Cylinder 
Cont., Diameter, Sr + So 

g U235/llter H/U235 Inches Reflector 3, cm Srj cm So. cm 2 - - 
78.5 328 10 &inch thickness of Hz0 4.60 6.45 3.06 4.76 

on bottom and on one-half 
(180~) of lateral surface 

470 51.5 8 6-inch thickness of H20 6.48 - 2.48 - 
on entire lateral surface 

470 51.5 8 6-inch thickness of H20 4.25 6.48 2.48 4.48 
on one-half (180’) of 
lateral surface 

A few experiments(4'3) have been performed with rectangular 
parallelepipeds. In one set of experiments the heights of reflected 
slabs of solution were measured as functions of their thicknesses. 
The containing walls were constructed of "Lucite", and the thickness 
of slab was varied by inserting thin sheets of "Lucite" adjacent to 
one wall. Since "Lucite" appears to be a somewhat better reflector 
than water (see Table IV.12), the critical thicknesses of water- 
reflected slabs of the same height would have been somewhat greater. 
The slabs were surrounded by water on all surfaces except the top. 
The reflector saving for this surface was estimated from Table IV.3, 
but the reflector savings for the water-reflected surfaces that fit 
the data are fairly insensitive to the particular value of reflector 
saving used for the top surface. 

These and other data obtained with rectangular parallelepipeds are 
presented in Table IV& The reflector savings of Table IV.9, or of 
Figure 4.3 at concentrations where data are lacking, may be used In 
conjunction with Figure 4.7 to determine the critical and safe 
thicknesses of infinite slabs. 

By multlpllcation of the critical and safe thicknesses of Infinite 
water-reflected slabs by the solution concentration, mlnlmum critical 
and maximum safe masses of U*=§ per unlt area can be determined. Such 
masses are useful in cases where precipitation or evaporation Is 
possible. For U2=' the minimum critical mass per unit area Is 
335 g/ft2 l The maximum safe mass at keff = 0.95 Is 280 g/ft2. The 
concentration at which the minimum mass occurs Is 25 g U235/liter. 
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TABLE IV.9 

Critical Mass Data Obtained with Rectangular Parallelepipeds 
of UOzF2 Solution 

(The data are expressed in terms of reflector savings.) 

Cont., Length(a), Width(a), Reflector Saving (S), cm 
g U235/liter H/U235 inches inches No Reflector H20 Reflector 

77.9 331 20 20 2.93 
6 48 2.87 

87.8 293 2.92 6.23 

342 72.4 20 20 2.83 6.6 +0.5 

469 51@5 2.06 58 6.40 
1.995 58 6.42 . 

532 44.7 2.12 58 6.38 
2.06 58 6.38 
2.00 58 6.41 
1.995 58 6.40 

538 44.3 20 20 7@35 20.5 

829 27.1 20 20 2.2 kO.5 63 0 kO.5 

(a) The height is the dimension varied to make the parallelepiped 
critical and hence is different for each case. 

4.2.3 URANYL NITRATE SOLUTIONS 

4.2.3.1 Spheres 

Experiments have been performed (4'4) with bare spheres of UO2(NO3)2 
- solution having diameters of 27.5 and 48 inches. The H/U235 ratios 

were respectively lr9 and 1849, and the concentrations were 18.75 and 
14.11 g U235/llter. The N/U="' ratio was 3.64 In the former case and 
presumably about the same in the latter. Expressing the data as 
reflector savings gives values of 4.32 and 5.05, respectively. The 
increase in S with H/U235 is probably partly the result of Increased 
sensitivity to errors in buckling as the buckling decreases. These 
reflector savings are slightly larger than those obtained with spheres 
of U02F2 solutions, but the buckllngs of these nitrate solutions are 
enough lower than those of the fluoride solutions to make the critical 
masses slightly larger. 
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4.2.3.2 Cylinders 

In Tables IV.10 and IV.11, reflector savings for U02(NO& solutions 
are presented that were obtained by fitting data(405) to calculated 
bucklings. Except at high concentrations (low H/U2" ratios) the 
values are of the same order of magnitude as those for U02F2 solutions. 
At high concentrations the nitrate values are lower, presumably because 
U02(N03)2 displaces more solvent than U02F2, and hence taking T as 
small as it is in pure moderator is a poorer approximation. 

TABLE IV.10 

Critical Mass Data Obtained with Bare, Aluminum-Walled 
Cylinders of UOz(NO& Solution 

(The data are expressed In terms of reflector savings.) 

Reflector Saving (S) in cm for Cylinder Diameter 
Cont., in Inches of: 

g U235/llter H/U235 N/U235 10 12 15 --- 

36 733 2.86 3.49 
53 493 2.86 3.49 3.36 
73 352 2.86 3.03 3.07 

105 240 2.86 2.87 2.95 3.02 

73 327 7.48 2.82 2.86 
102 230 7.48 2.70 2.71 

237 88 7.48 1.36 1.75 

TABLE IV.11 

Critical Mass Data Obtained with Water-Reflected Aluminum-Walled 
Cylinders of UOr(NO& Solution 

(The data are expressed in terms of reflector savings.) 

Reflector Saving (S) in cm for Cylinder Diameter 
Cont., in Inches of: 

g U235/llter H/U295 N/U235 8 9 10 12 15 ----- 

36 733 2.86 6.70 6.52 
53 493 2.86 6.53 6.31 6.32 
73 352 2.86 6.33 6.25 6.08 6.24 

105 240 2.86 6.27 6.22 6.22 6.25 6.17 

359 61.8 2.86 5.63 5.54 5.48 6.06 

73 327 7.48 6.09 6.01 6.08 
102 230 7.48 6.04 6.01 6.02 
237 88 7.48 5.16 5.00 5.15 5.32 
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4.2.4 REFLECTOR MATERIAL AND THICKNESS 

Experiments were performed with U02(NOa)2 solutions(40s) in which the 
reflector thickness and material were varied on the lateral surfaces 
of 8- and lo-inch-diameter cylinders. The reflectors employed were 
water, stainless steel, and stainless steel surrounded by water. In 
the first two cases the top and bottom were bare and in the third case, 
wster reflected. Reflector savings consistent with the values in 
Table IV.10 and IV.11 were assigned to these surfaces, and the 
reflector savings on the lateral surface were determined. In some 
cases small adjustments in the values of reflector saving used for the 
top and bottom were necessary to obtain a reflector saving for 3.5 or 
4.5 inches of water on the lateral surface consistent with the fact 
that these thicknesses are nearly effectively Infinite. 

It is convenient to express these results in terms of the albedo of the 
particular thickness and material relative to that of an Infinite water 
reflector where the albedo is the ratio of the neutron current returned 
by the reflector to that entering it. If the assumption is made that 
the reflector saving as a function of thickness is independent of 
vessel shape, the shape may be taken to be an infinite slab. In terms 
of the reflector savings and material buckling the albedo of the 
reflector is then given by 

sin Bm (S-S,) . 
B r = sin Bm (S+S,) (44 

where So is the bare extrapolation distance. In Figures 4.8 and 4.9, 
Br/@H o is plotted against reflector thickness for water and stainless 
steel%eflectors where p&O is the albedo of an infinitely thick water 
reflector. In Figure 4.10, @r/BH20 is plotted against the thickness 
of stainless steel separating the uranium solution from an infinitely 
thick water reflector% The curves are nearly independent of solution 
concentration and may be used not only for uranium solutions of other 
concentrations but also for plutonium and U2" solutions. In using 

* If the data of Tables IV.3, IV.4, and 1v.6 are used to obtain points 
on Figure 4.10 corresponding to a stainless steel thickness of 
l/16 inch, a tide scatter in the data is observed. In particular, 
for a 15-inch-diameter cylinder at an H/U235 ratio of 499, 
B&H20 = 0.75, and for an 8-Inch cylinder at an H/U2" ratio of 
58.8, f3~/~H20 = 0.9% Although the steel wall might be expected to 
be slightly more effective at high H/U2" values, a variation of this 
magnitude is too great, and leads one to suspect that there are 
inaccuracies in these data. 
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Thickness, inches 

FIG. 4.8 ALBEDO OF VARIOUS THICKNESSES OF H20 RELATIVE TO THAT 
OF AN INFlNlTELY THICK WATER REFLECTOR 
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the curves to obtain the reflector saving for a particular case, it is 
convenient to express Equation 4.4 as 

(4.5) 

Other reflector materials have been studied. In one experimenG4a3) a 
pair of slabs of U02F2 xlxtion interacting in water was reflected on 
the outer surfaces by .-.x r and by a l-inch-thick layer of "Plexiglas" 
surrounded by water. The water thicknesses were effectively infinite. 
"Plexiglas"(4e8), stee1(4e8), carbon(4e2), fire brickt402), and 
magnesia (4e8) have also been investigated with U02F2 solutionse The 
albedos of these reflectors relative to an infinite thickness of Hz0 
are recorded in Table IV.12, ,ai series of experiments(4e1) has been 
performed in which stainless z-,- -1 cylinders containing U02F2 solutions 
were enclosed in 0.020~Inch-thi.:;~; cadmium and surrounded by water. 
Results are given in Table IV.13 as reflector savings, 

For reflector materials, for which data obtained with solutions are not 
available, data obtained with metal systems may be used to give some 
indication of the effectiveness of a particular material as a reflector. 
Some caution should be exercised, however, because of the large 
difference in the neutron energy spectra t particularly in nonmoderating 
reflectors. Thus, lead as a reflector enclosing uranium (93e5$ U235) 
metal is less effective than water up to a thickness of about 7 inches, 
but a &inch-thick layer of lead adjacent to an assembly of uranium- 
aluminum alloy slugs in water was found (4e11) to be a slightly better 
reflector than an infinitely thick layer of water. 

In some cases calculations may be required to determine the effectiveness 
of a reflector, Two energy groups of neutrons are generally sufficient 
to give satisfactory results. The calculations should be normalized to 
agree with reflector savings obtained by fitting data to bucklings in 
cases where data are available. Codes for the IBM 650 are available at 
the Savannah River Laboratory for performing such calculations in slab 
geOmetrye 

4.2.5 INTERSECTIONS OF CYLINDERS 

Investigations of critical conditions for intersecting pipes have been 
made(4e2) with U02F2 solutions with concentrations (337-538 g U235/l) 
corresponding to minimum volume. The pipes had l/16-inch-thick- 
aluminum walls and had diameters of 4, 5, and 7e5 inches. The two 
types of intersection investigated were a 60’ Y and a 90' cross. The 
four arms of the cross and the three arms of the Y were each at least 
24 inches long, measured from the center of the intersection. The 
5-inch cross and 5-inch Y, when reflected by an effectively infinite 
amount of water, became critical before they were completely filled 
with solution. A greater height of solution (measured from the 
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TABLE IV.12 

Effectiveness of Various Reflectors Compared with 
an Infinite Thickness of Water 

Vessel 

6x 480inch-s lab 

6x 480inch-s lab 0.70 
6x 48.inch-s lab 0.35 
6x 48-inch-s lab 0.17 
6x 48.inch-s lab 0.18 
6x 48-inch-s lab 0.24 

6x 48.inch-s lab 0.27 

6x 48.inch-s lab o.oT/ 
6x 48.inch-s lab 0.081 
6x 48.inch-s lab 0.55 

6x 48-inch-s lab 0.41 

20-I rich-dia. cyl. 0.089 

Reflector Material H/U- 

1 inch of "Plexiglas" backed by 337 
water 

1 inch of "Plexiglas" 3TI 
l/2 inch of stainless steel 337 
2 inches of magnesia (0.32 g/cc) 337 
4 inches of magnesia (0.24 g/cc) 337 
4 inches of magnesia at Oe24 g/cc 337 

backed by 2 inches of magnesia 
0.32 g/cc 

2 inches of magnesia at 0.32 g/cc 337 
backed by 4 inches of magnesia 
0.24 g/cc 

3 inches of "Styrofoam" 
6 inches of "Styrofoam" 
3 inches of "Styrofoam" backed 

by water 
6 inches of "Styrofoam" backed 

by water 
0.5 inch of fire brick 

2.0 inches of fire brick 

5.5 inches of fire brick 

0.5 inch of carbon 

1 inch of carbon 

2 inches of carbon 

3e5 inches of carbon 

5.5 inches of carbon 

1 inch of wet fire brick backed 
by water 

2 inches of wet fire brick 
backed by water 

2 inches of wet fire brick 

3 inches of carbon backed by 
water 

5.5 inches of carbon backed by 
water 

5.5 inches of carbon backed by 
water with 0.25 inch of water 
between vessel and carbon 

Same as above but, with 0.5 inch 
of water 

293 
293 
293 

293 

27.1 

27.1 

27.1 

27.1 

27.1 

27.1 

27.1 

27.1 

27.1 

27.1 

27.1 

27.1 

27.1 

27.1 

reflected on bottom 
20.inch-dia. cyl. 
reflected on bottom 
20.inch-dia. cyl. 
reflected on bottom 
20.inch-dia. cyl. 
reflected on bottom 
20-inch-dia. cyl. 
reflected on bottom 
20-inch-dia. cyl. 
reflected on bottom 
20-inch-dia. cyl. 
reflected on bottom 
20-inch-dia. cyl. 
reflected on bottom 
20-inch-dia. CYL 
reflected on bottom 
20-inch-dia. Cyle 
reflected on bottom 
20-inch-dia. cpl. 
reflected on bottom 
20-inch-dia. cyl. 
reflected on bottom 
20-inch-dia. cyl. 
reflected on bottom 
20-inch-dia. cyl. 
reflected on bottom 

0.17 

0.32 

0.25 

0.42 

0.69 

Oe82 

0.95 

0.95 

0.93 

0.69 

1.17 

1.26 

1.28 

20-inch-dia. cyl. 
reflected on bottom 
20-inch-dia. cyl. 
reflected on bottom 
20.inch-dia. cyl. 
reflected on bottom 

1.30 

1.26 

1.24 

Same, but with 0.75 inch of water 27.1 

Same, but with 1.0 inch of water rl.1 
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TABLE IV.13 

Critical Mass Data Obtained with Water-Enclosed, Cadmium-Wrapped, 
Stainless-Steel-Walled Cylinders of U02F2 Solution 

(The data are expressed in terms of reflector savings.) 

Reflector Saving (S) in cm for Cylinder Diameter 
Conce, 

g U235/liter H/U235 
in Inches of: 

8 9 10 12 - - - - 

52 499 4.84 

114 226 4.34 

116 221 4.49 

148 174 07 4e24 

205 123.2 4.30 

288 86.4 4.17 4.24 4.31 

396 62.7 4.16 4.13 4.11 

424 l  56.7 4.36 

538 43.9 3.93 3e92 4.06 

724 31.6 3@79 4.02 

827 26.2 -4e22 

869 24.4 -3*53 

intersection of center lines) was required in the final arm being 
filled in the Y than in the cross. It was not possible to make the 
reflected &inch cross, or the unreflected 5-inch Y or 7.5.inch cross 
critical, and extrapolation of the reciprocal source-neutron 
multiplication curve indicated that filling the final arm to infinite 
height would still not make the system critical. 

The minimum critical diameters of reflected and unreflected infinitely 
long cylinders are respectively 5.75 and 8.70 inches (see Figure 4.6). 
In the reflected case, the cross and Y intersections are thus 
equivalent to an increment of between 0.75 inches (5e75 - 5.0) and 
1.75 inches (5.75 - 4.0) in diameter, or to an increase in reflector 
saving of more than 0.95 cm but less than 2.22 cm. In the unreflected 
case, the cross intersection is equivalent to an increase in reflector 
saving of less than 1.5 cm. Since a 7.59inch Y was not investigated, 
the same statement cannot be made concerning it. Although in the 
reflected case the cross is closer to being critical than the Y, the 
same statement cannot be made for the unreflected case because of the 
interaction between the two arms at 60~ to each other. 
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4.2.6 MINIMUM CRITICAL CONCENTRATION ~~~ 

At sufficiently high dilution, absorption of neutrons by hydrogen makes 
criticality impossible for solutions (or mixtures) of U235 in 
hydrogenous materials. The critical and safe concentrations are 
readily obtained from Equations 4.1 and 4e2e In the absence of nitrogen 
the minimum critical (k = 1) H/U235 ratio is 2185, and the corresponding 
concentration in aqueous solution is 11.94 g U235/le The minimum safe 
(k - 0.95) ratio is 2408, and the maximum safe concentration in aqueous 
solution IS IO.83 g U235/1e Experiments(4e15) performed with dilute 
uranyl nitrate solutions indicate that the minimum critical 
concentration is actually slightly higher than 11.94 g/l, namely 
12.2 g U235/le In Table IV.14 the data obtained in these experiments, 
performed in unreflected stainless-steel-walled cylinders, are presented 
as reflector savings obtained by equating material and geometric 
bucklings. The negative values obtained at low concentrations indicate 
that the calculated material bucklings are too large; they also point. to 
the desirability of using the second approach, Section 1.4 for fitting 
data when the buckling is small. 

TABLE IV.14 

Critical Mass Data Obtained with Dilute 
Solutions of U02(NO& 

(The N/U ratio IS about 3.8. The data 
are expressed as reflector savings.) 

Cont., 
g U235/liter H/U295 S, cm 

25.9 1000 4.39 

16.13 1604 4.29 

14.22 1821 3.16 

13.59 1905 0.82 

13.24 1951 0.62 

13.07 1981 - 1.42 

12.92 2000 - 4.95 

12.61 2052 -25.96 
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4.3 AQUEOUS SOLUTIONS OF URANIUM CONTAINING LESS THAN 93.5% U235 

Data for solutions of uranium (93e5$ U235) may be used as points of 
departure for calculating bucklings and hence critical and safe 
conditions for solutions of uranium containing lower concentrations 
Of U235e For a particular solution concentration (in moles/liter) the 
neutron spectrum may be assumed independent of the concentration of 
U235 in the uranium. All non-l/v events in U235 may then be assumed 
to be included in an effective value of q (identical with the thermal 
value), as is assumed when k is taken to be qf for uranium (93e5$ U235) 
SOlUtiOnS. The non-l/v events in U238 consist of high energy fissions 
and resonance absorptions that may be allowed for by the factors E and 
p in the four-factor formula for ke Since for simplicity the product 
of these two factors is assumed to be unity in calculations made for a 
concentration of 93e5%, U235 the product must be normalized to unity at 
this concentration in extrapolating the data to lower concentrations. 
(For the highest concentration of UO F 2 2 solution for which data existi 
3e77 molar, ep is calculated to be 0.98 at a uranium composition of 
93e5$ U235, 6.5% U238e The product approaches unity as the solution 
concentration decreases.) 

Calculations of k and Bg for aqueous solutions of U02F2 in which the 
uranium contains less than 93.5% U235 have been made for this Handbook 
by the procedure outlined above. The same approximations regarding 
f, qr L2, and z were made as for the uranium (93e5% U235) solutions. 
T%e fast fission factor e was obtained from a three-group calculation 
involving Hansen%(2e7) cross sections for U235 and U238 and removal 
cross sections for oxygen and hydrogen calculated from the neutron 
spectrum obtained in calculating ?: for this Handbook. The removal 
cross sections of fluorine were assumed to equal those of oxygen. The 
resonance escape probability, p, was calculated from the resonance 
integral of U238, which in turn was calculated as a function of 
scattering cross section per U238 atom from resonance parameters and 
from data giving the resonance integral both in pure U238 and at 
infinite dilution. The buckling was calculated as before from the 
one-group expression. 

A code, which is available at the Savannah River Laboratory, was 
developed for the IBM 650 to perform these calculations. Values of 
G and k calculated for selected concentrations and assays are given 
in Tables IV.15 and IVe16e These parameters may be used in 
conjunction with the reflector savings determined for uranium 
(93.5% u235) solutions of the same uranium concentration (Figure 4.3 
or Tables IV.2 through IV.9) to give critical and safe conditions for 
solutions in which the uranium contains lower concentrations of U235e 
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TABLE IV.15 

Dependence of B2 on Solution Concentration and on 
Isotopic Composition of Uranium 

Solution 
Cont., moles B2 (cm-= x 104) for Isotopic Composition In $ U2" of: 
U02F2/liter H/U 93.5 - 75 - 50 30 15 5 3 2 1 ------- 

3*77 25.3 324.9 304.6 283.2 261.3 226.4 133.12 70.59 15.68 -76.65 
2.45 41.4 319.1 301.2 280.1 254.6 208 .g 923 22.84 -33.10 
2.14 48.2 316.6 299.8 278.2 250.9 201.4 77.76 6.90 -48.47 
1.83 56.8 313.5 297.2 274.8 245.3 191.0 59.97 -11.57 
1.59 66.9 310.0 293b9 270.6 238.5 179.3 41.43 -30.02 

1.37 77.7 306.2 290.2 265.7 231.1 166.8 23*59 -47.07 
1.16 93.0 301.0 284.9 258.7 220.4 150.21 1.63 -67.25 
0.933 115 293.6 277.1 248.4 205.4 -7.94 -24.66 
0.610 180 273.3 254.8 219.4 165.4 74.50 -77.50 
0.358 308 236.8 214.3 168.8 101.97 22.07 -132.8 
0.238 467 198.1 171.6 118.50 45.37 -52.82 
0.156 706 150.16 120.01 61.63 -12.84 
0.118 934 113.04 81.20 21.47 -50.47 
0.0851 1300 65.71 33.08 -25.47 
0.0774 1430 51.62 19.02 -38.64 

TABLE 1v.16 

Dependence of k on Solution Concentration and on 
Isotonic Com~osltlon of Uranium 

Solution 
Cont., moles k for Isotopic Composition In $ U2'" of: 
U02F2/llter H/U 93.5 75 50 30 15 5 3 2 1 p--p----- 

3.77 25.3 2.0429 1.9786 1.9115 

2.45 41.4 2.0261 1.9699 1.9044 
2.14 48.2 2.olgl 1 .g662 1.8996 
1.83 56.8 2.0102 1.9590 1.8904 
1.59 66.9 2.0000 1.9497 1.8784 
1.37 77.7 1.9891 1.9393 1.8646 
1.16 93.0 1.9737 1 .g240 1.8442 
0.933 115 1.9522 1.9014 1.8140 
0.610 180 1.8922 1.8356 1.7267 
0.358 308 1.78r7 1.7128 1.5696 
0.238 467 1.6635 1.5796 1.4073 

0.156 706 1.5113 1.4128 1.2163 
0.118 934 1.3900 1.2832 1.0765 
0.0851 1300 1.2306 1.1174 0.9077 
0.0774 1430 1.1820 1.0678 0.8593 

1.8440 

1.8267 
1.8164 
1.8006 

1.7809 
1.7589 
1.7272 
1.6817 
1.5574 
1 l 3519 

1.1600 
0.9537 
0.8154 

1.7373 
1.6870 
1.6648 
1.6333 
1.5975 
1.5589 
1.5067 
1.4354 
1.2589 
1.0079 
0.8070 

1.4448 1.2402 1.0542 0.7274 

1.3147 1.0795 0.8826 
1.2667 1.0242 0.8267 
1.2073 0.9590 
1.1444 0.8928 
1.082g 0.8305 
1.0058 0.7556 
0.9115 

0.7156 
0.5006 
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The code may also be used to determine the minimum concentration of 
U235 in uranium for which k can be made unity in homogeneous aqueous 
U02F2 systems. Since an extrapolation of buckling3 is not being made, 
the normalization of ep to unity at a concentration of 93.5% is not 
made here. The minimum concentrations for which the maximum values of 
k are 0.95, 0.98, and 1.00 are calculated to be respectively 0.916, 
0.990, and 1.042$ U235 by weight. The hydrogen-teuranium ratios 
corresponding to maximwn k is approximately 5. These results are in 
excellent agreement with experimental results(4012), which give 1.02 
50.02 wt s& u235 as the minimum concentration for which the maximum 
value of k is unity in homogeneous mixtures of UOa and H&O. The 
experimental H/U ratio for which k is maximum is about 5. 
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4.4 PLUTONIUM SOLUTIONS 

4.4.1 THEORY 

There are apparently a number of compensating effects that make it 
possible to represent the buckling of uranium (-93.5% U235) solutions 
adequately by the simple relation 

where 7 is a constant and f is the ratio of thermal cross sections, 
with a small l/v correction (determined for a Maxwellian distribution of 
neutrons) applied to the U235 cross section. It appears unlikely, 
however, that such a simple representation would be adequate for 
plutonium solutions. Plutonium-239 has a large resonance peak at 
0.3 ev at the upper end of the thermal region in which the ratio of 
absorptions to fissions is considerably smaller than at energies on 
either side. Both 7 and f are therefore strongly dependent on the 
neutron energy spectrum, which is in turn dependent on the plutonium 
concentration. In addition, plutonium-240 has a very large absorption 
resonance at 1 ev, which must be treated properly. 

As a compromise between a multigroup calculation of buckling and the 
simple expression used for U235 solutions, the one-group model is used 
for the buckling with k being the sum of contributions from four energy 
regions. The highest energy region extends from 0.1 Mev to 00. In this 
region Pu240 is assumed equivalent to Pu*=', and Hansen's cross 
sections(2'7) for P-u*" and removal cross sections calculated for H, 0, 
and N are employed. The next region extends from 6.25 ev to 0.1 Mev. 
Capture in Pu"" is considered insignificant, and capture in Pu*" is 
calculated from the resonance integral, which in turn is calculated as 
a function of the scattering cross section per Pu23e atom. The neutron 
spectrum is assumed to vary as l/E. In this region r) is calculated 
from resonance parameters to be 1.61. The third region extends from 
0.625 to 6.25 ev. The neutron spectrum is assumed here also to vary as 
l/E Absorptions in the Pu240 
the'resonance integral, 

resonance at 1 ev are calculated from 

section per Pu240 atom. 
which is a function of the scattering cross 

Allowance is made for l/v absorptions. The 
absorption cross section of Pu23e in this region is determined from 
cross section curves and the l/E spectrum. The value calculated for 
q is 2.15. In the fourth or thermal region lying below 0.625, 
AmsterQ4"') cross sections for Pu23e and for l/v absorbers are used. 
The l/v absorbers considered are Pu240 (295 b), H, N, and Fe (present 
as an impurity in the Hanford experiments). The diffusion area, L*, 
is computed from the cross sections in this region as D. me 

k-1 = computation of k by this procedure and of B* as 'mTJ where 7: is given 
in Figure 4.2, has been coded for the IBM 650, and the code is 
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available at the Savannah River Laboratory. Since Amster's cross 
sections are for Pu*'~ ratios greater than or equal to 100, the code 
is not valid for lower ratios. 

4.4.2 PLUTONIUM NITRATE SOLUTIONS 

Critical experiments(4'14) have been performed at Hanford with g-, lo-, 
11-j and 124nch diameter stainless-steel-walled cylinders and with 
119, 12-, 13-, 14-, and 15-inch-diameter stainless-steel-walled spheres 
containing plutonium nitrate solutions and surrounded by an effectively 
infinite thickness of water. The thickness of the stainless steel wall 
was 0.050 inch for the spheres and 0.062 inch for the cylinders. The 
parameters that were varied in the experiments were the nitrate ion 
concentration, the acid normality, the concentration of Pu21ro in the 
plutonium, and the plutonium concentration. Reflector savings 
determined by fitting the data to bucklings calculated by the procedure 
outlined in the preceding section are recorded in Table IV.17. All the 
data for plutonium nitrate solutions are presented including, in a 
number of cases, duplicate runs to illustrate the order of magnitude of 
the experimental error. As can be seen from the table the bulk of the 
experiments were performed at plutonium concentrations between 25 and 
60 grams per liter. The total spread in S is 0.75 cm. 

Extrapolation outside the range of the experiments could be performed 
by means of calculated bucklings and an average value of S. It is 
desirable, however, to make use of any trends in S that may be observed. 
If for the critical spheres the acid normality is plotted against the 
H/Pu23e ratio, it is apparently possible (see Figure 4.11) to represent 
the data within experimental error by parallel straight lines. If the 
data are interpolated and extrapolated on these straight lines to give 
values at acid normalities of 0, 2, 4, and 6 and if three nitrate ions 
are assumed per plutonium atom (the data show considerable variation in 
this figure), reflector savings determined from the sphere dimensions 
and from bucklings calculated for these points bear out trends 
exhibited by the values of Table IV.17. Plotting values for the same 
acid normality against plutonium concentration shows a trend toward 
higher reflector savings as the plutonium concentration increases. 
This same trend is exhibited by the data obtained with cylinders. 
There appears to be no appreciable trend in reflector saving with Pu240 
concentration in the plutonium. 
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TABLE IV. 17 

Critical Mass Data Obtained with Water-Reflected, 
Stainless-Steel-Walled Spheres and Cylinders of Plutonium Solutions 

(The data are expressed in terms of reflector savings.) 

Cont., 
g Pu/liter 

25.02 
25.10 
25.83 
26.23 
26.33 
26.45 
26.69 
26.77 
27.05 
27*39 
27 091 
27.92 
27 095 
28.50 
28.63 
28.78 
29.61 
29.74 
29.82 
29.94 
30.15 
30.33 
30.75 
30 079 
30.79 
30.81 
31.04 
31.14 
31.72 
31.79 
32.41 
33.17 
33.54 
33.81 
34.06 
34.07 
34.59 
34.81 
35.53 
35.65 
35.82 

H/pu2=' $ Pu24o 

1049 3.12 
1046 3.12 
1005 3.12 

978 0.54 
984 0.54 
976 2.90 
971 0.54 
958 0.54 
937 3.12 
927 0.54 
908 0.54 
928 1.76 
928 1.76 
875 0.54 
871 0.54 
920 3.12 
887 3.12 
882 3.12 
896 '4.05 
893 4.05 
871 3.12 
857 3.12 
859 4.05 
858 4.05 
860 4.40 
843 2.85 
853 4.40 
840 2.90 
825 4.05 
798 3.12 
809 4.40 
788 1.76 
773 2.85 
756 4.05 
767 1.76 
750 4.05 
747 1.76 
742 1.76 
686 3.12 
717 1.76 
682 ,7 12 

Acid 
g NO&lter Normality Vessel 

116 1.60 l+inch-dia. sphere 7.09 
116 1.60 150inch-dia. sphere 7.06 
147 2.08 15-inch-dia. sphere 6.97 
107 1.41 l&inch-dia. sphere 7.14 
77.3 0.99 l&inch-dia. sphere 6.96 

134 1.09 120inch-dia. cylinder 6.59 
78.3 0.97 14-inch-dia. sphere 6186 

107 1.42 lb-inch-dia. sphere 6.98 
212 3.07 15.inch-dia. sphere 6.93 
137 1.90 14-inch-dia. sphere 6.95 
138 1.85 lb-inch-dia. sphere 6.81 
110 1.42 140inch-dia. sphere 6.99 
109 1.44 140inch-dia. sphere 6.99 
187 2.70 14-Inch-dia. sphere 6.90 
188 2.72 140inch-dia. sphere 6.88 

87.4 1.02 l&inch-dia. sphere 7.01 
110 1.40 l&inch-dia. sphere 6.93 
115 1.51 14-Inch-dia. sphere 6*93 

87.5 1.01 14-Inch-dia. sphere 7.01 
87.5 1.01 14.inch-dia. sphere 6.98 

109 1.39 14.Inch-dia. sphere 6.80 
143 1.92 14.inch-dia. sphere 6.94 
119.3 1.44 14.inch-dia. sphere 6.94 
119.3 1.44 l&inch-dia. sphere 6.93 
126 1.63 140inch-dia. sphere 7.07 
136 1.78 ll-inch-dia. cylinder 6.57 
127 1.71 14.Inch-dia. sphere 7.03 
114 1.44 12.Inch-dia. cylinder 6.61 
147 1.88 l&inch-dia. sphere 6.87 
208 2.90 14.Inch-dia. sphere 6.93 
158 2.22 14-inch-dia. sphere 6.91 

86.2 1.02 13-inch-dia. sphere 7.03 
137 1.76 ll-inch-dia. cylinder 6.64 
211 2.92 lkinch-dia. sphere 6.79 

87.1 1.04 13.inch-dia. sphere 6.89 
211 2.92 14-inch-dia. sphere 6.75 
117 1.44 13-inch-dia. sphere 6.92 
116 1.46 13-inch-dia. sphere 6.89 
311 4.32 l&inch-dia. sphere 6.73 
145 1.88 13.inch-dia. sphere 6.88 
308 4.39 l&inch-dia. sphere 6.69 

s, cm 
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Cont., 
g Pu/liter 

36.38 
36.52 
36.90 
x.84 
37.99 
38.11 
38.74 
38.83 
39.10 
39.10 
39.62 
40.69 
41.10 
41.12 
41.19 
41.73 
42.29 
44.12 
44.64 
47.21 
48.75 
48.98 
49.26 
49.26 
50.25 
50- 39 
51.80 
54.53 
56.20 
56.75 
59 a93 
60.35 
61.49 
62.47 
63.75 
63.99 
64.16 
70.22 
73.92 
76.93 
77.22 
77.40 
85.14 
99.09 

log.16 
log.16 
135.8 

H/pu23e $ Pu240 
686 4.05 
719 2.90 
666 2.83 
649 4.05 
686 3.12 
686 3.12 
635 4.05 
665 3.12 
663 2.85 
663 2.85 
592 3.12 
624 3.12 
618 3.12 
581 4.05 
580 4.05 
603 2.83 
615 2.90 
561 3.12 
555 3.12 
553 2.83 
535 2.90 
527 2.90 
524 2.85 
524 2.85 
5.17 3.12 
515 3.12 
498 3.12 
478 2.83 
450 3.12 
445 3.12 
418 3.12 
415 3.12 
421 2.83 
412 2.85 
388 3.12 
407 2.90 
386 3.12 
344 3.12 
353 2.83 
334 2.85 
309 3.12 
332 2.85 
304 2.83 
261 2.83 
234 2.83 
234 2.83 
183 3.12 

TABLE IV. 17 (Continued) 

Acid 
g NOa/liter Normality Vessel S, cm 

272 
107 
3oo 
334 
132 
128 
335 
156 
138 
138 
408 
205 
205 
385 
385 
215 
127 
270 
269 
117 
116 
139 
142 
142 
139 
138 
163 
120 
207 
207 
237 
237 
134 
146 
270 
121 
270 
322 
126 
146 
359 
152 
151 
137 
166 
166 
229 

( 1 a The sphere was subcritical by an UnknOWn amount and the ret iprocal neutron 
multiplication curve was concave as the concentration was i ncreased. 

3.69 
1.39 
4.28 
5.46 
1.64 
1.67 
5.46 
2.01 
1.70 
1.70 
5.75 
2.90 
2.90 
5.40 
5.40 
2.77 
1.36 
3.63 
3.71 
1.38 
1.27 
1.38 
1.63 
1.63 
1.61 
1.57 
2.20 
1.36 
2.49 
2.49 
3.20 
3.20 
1.34 
1.52 
3.62 
1.17 
3.62 
4.07 
1.78 
1.52 
4.72 
1.41 
1.29 
1.37 
1.68 
1.68 
1.81 

140inch-dia 
120inch-dia 
ll-inch-dia 
140inch-dia 
130inch-dla 
13-inch-dia 
140inch-dia 
13-inch-dia 
100inch-dia 
ll-inch-dia 
14-inch-dia 
130inch-dia 
13-Inch-dia 
140Inch-dia 
14.inch-dia 
ll-Inch-dia 
120Inch-dia 
130inch-dia 
130Inch-dla 
11.0inch-Ma 
12-inch-dia 
ll-inch-dia 
lo-inch-dla 
10.inch-dla 
12-Inch-dia 
12.inch-dia 
12.inch-dia 

g-Inch-dia 
12.inch-dia 
12-inch-ma 
120inch-dia 
120Inch-dia 

g-Inch-dia 
10.inch-dia 
120inch-dia 
ll-Inch-dia 
120inch-dia 
120inch-dia 

g-inch-dia 
lo-inch-dia 
12.Inch-dia 
10.inch-dia 

g-inch-dla 
g-inch-dia 
g-Inch-dia 

12.Inch-dia 
ll-inch-dla 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

sphere 6.65 
cylinder 6.51 
cylinder 6.59 
sphere 6.90 
sphere 6.86 
sphere 6.84 
sphere 6.79 
sphere 6.86 
cylinder 6.87 
cylinder 6.82 
sphere 6.65 
sphere 6.87 
sphere 6.83 
sphere 6*59 
sphere 6.58 
cylinder 6.65 
cylinder 6.55 
sphere 6.78 
sphere 6.75 
cylinder 6.69 
cylinder 6.70 
cylinder 6.83 
cylinder 6.89 
cylinder 6.90 
sphere 7.05 
sphere 7.04 
sphere 7.08 
cylinder 6.85 
sphere 7.01 
sphere 6.98 
sphere 7.00 
sphere 6.99 
cylinder 6.90 
cylinder 7.06 
sphere 7.01 
cylinder 6.84 
sphere 7.00 
sphere 6.99 
cylinder 7.02 
cylinder 7.17 
sphere 6.99 
cylinder 7.10 
cylinder 7.13 
cylinder 7.17 
cylinder 7.26 
cylinder 7.08 
sphere a ( > (7.56 
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Two experiments(4'14) were performed with 13=inch=dlameter, Z&gage 
aluminum-walled spheres containing plutonium nitrate solution and 
surrounded by an infinite water reflector. The data are expressed as 
reflector savfngs in Table 1v.18. Comparison of these reflector 
savings with values for stainless-steel-walled spheres at the same 
acid normality, Pu240 concentration, and plutonium concentration, 
obtained by interpolation, shows that the reflector saving with 
stainless steel walls is about 0.25 cm smaller, which is in agreement 
with similar results obtained with uranium solutions. ?"fle ratio of 
the albedos for the water-reflected stainless steel and aluminum 
spheres is 0.935, in excellent agreement with Figure 4.10. 

TABLE Iv. 18 

Critical Mass Data Obtained with Water-Reflected, 
Aluminum-Walled Spheres of Plutonium Solution 

(The data are expressed in terms of reflector savings.) 

Cont., Acid 
g Pu/llter H/Pu23s $ PI,I~~' g N03/llter Normality Vessel s, cm 

36@27 729 3.12 93.1 1.15 130inch-dia. sphere 7.20 
37.11 705 3.12 125 1.66 13-Inch-dia. sphere 7.22 

Five experiments(4014) were performed In a bare 16.inch-diameter 
stainless-steel-walled sphere. The results, expressed as reflector 
savings, are given in Table IV.19. Comparison of these reflector 
savings with corresponding values for reflected stainless steel spheres, 
obtained by interpolation, gives an average ratio of unreflected to 
reflected of 0.54 and an average difference between reflected and 
unreflected of 3.14 cm. 

TABLE IV.19 

Critical Mass Data Obtained with Bare, 
Stalnless-Steel-Walled Spheres of Plutonium Solution 

(The data are expressed in terms of reflector savings.) 

Cont., Acid 
g Pu/liter H/PII~'~ 5 Pu240 g N03/liter Normality Vessel S, cm 

34.80 763 4.15 104 1.12 16-inch-dia. sphere 3.82 

36.22 733 4.15 log' 1.31 160inch-dia. sphere 3.65 

38.31 691 4.15 163 2a79 16-inch-dia. sphere 3.72 

38.15 679 4.15 180 2.58 16-inch-dia. sphere 3.72 
43.20 578 4.15 282 4.18 16-inch-dia. sphere 3.63 
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4.4.3 EXTRAPOLATIONS OF DATA 

Because of the large number of variables involved with plutonium 
solutions, graphical representation of critical and safe conditions 
is not feasible unless restrictions are placed on these variables. In 
this Handbook tabular presentation is employed so that anyone using 
the Handbook can make the plots he considers most useful, if he 
considers such plots necessary to interpolate between tabulated values. 
For the tabular presentation, concentrations of 5, 10, 15, 20, 30, 40, 
53, 70, 90, 120, 150, and 200 g of plutonium per liter, nitric acid 
normalities of 0, 2, 4, and 6, and plutonium-240 concentrations in the 
plutonium of 0, 2, and 4% are chosen. The plutonium is assumed to be 
present as Pu(NO&. The hydrogen concentration is calculated from 
the Hanford formula(4014): hydrogen concentration = 111.8 - hydrogen 
ion concentration - 0.0535 x nitrate ion concentration where all 
concentrations are in g/l. Critical bucklings for these conditions 
are presented in Table IV.20. The corresponding values of k are given 
in Table IV.21 and the H/Pu~~' ratios in Table IV.22. 

TABLE IV.20 

Material Bucklings of Aqueous Solutions of Pu(NO~)~ 

g, cmw2 
HN& Normality 0 2 4 
9 Pu24w 0 2 4 0 2 4 0 2 4 -p---p--- 

Cont., 
g P-u/liter 

200 

150 
120 
90 
70 
50 
40 

30 
20 
15 
10 

.02445 .02232 .02102 .023go .02176 

.0243g .02257 ,02136 .02380 .021g7 

.02418 .02258 .02145 .02357 .021g5 

.02366 .02231 .02i2g .02300 A2164 

.o22g8 .02183 ,020go .02227 .02111 

.02168 .02072 ,01ggo .02ogo l 01995 

.02032 .oig47 .01870 .01g52 .01867 
l  01797 .01723 .01653 .01715 .01641 
l  01359 .o12g6 .01236 .01273 .01211 
.oogg1 .oog36 .00881 .oogo4 .00850 
.00424 .00377 .00330 .00341 .002g5 

.02045 .02329 .02114 

.02075 .02316 .02132 

.02082 .ozgi .02130 

.02062 .02231 .02og5 

.02018 .02153 .02036 

.01g13 .02oog .01g14 

.017g1 .01870 .01785 

.01571 .01632 .01558 

.01151 .olMg .01128 

.ovg6 .00822 .00768 

.00248 a0264 .0021g 

.olg84 .02250 .02037 .01gog 

.02011 .02236 .02053 l  01933 

.02017 .022og a2048 .o lg36 

.01gg2 .o2146 .02011 .01g10 

.01g43 .02065 .oig49 .01857 

.01833 .01g17 .01822 .01742 

.017og .01778 .o16g4 .o161g 

.014go .01541 .01468 .01401 

.olo6g .01102 .01042 . oog84 

.00715 go0739 .00686 .00635 

.00174 .001g3 .0014g .00105 

6 
0 2 4 --- 
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TABLE IV.21 

Multlpllcatlon Constants of Aqueous Solutions of Pu(NO& 

k 
HN03 Normalltx 0 2 4 6 
94 F7.124u 0 2 4 0 2 4 0 2 4 0 2 4 P--P---P--P- 

Cont., 
g FU/llter 

200 

150 
120 

90 
70 
SO 
40 

30 
20 

15 
10 

5 

1.7916 1.7-i' 1.6805 1.7867 1.7164 1.6734 1.7816 1.7098 1.6663 1.7761 1.7028 

1 a7913 1.7324 1.6932 1.7852 1.7250 1.6851 1 a7792 1.7175 1.6770 1.7733 1.7101 
1.7862 1.7345 1.6980 1.7796 1.7262 1.6888 1.77rl 1.7184 1.6805 1.7657 1.7100 
1.7724 1.7287 1.6954 1.7637 1.7188 1.6850 1.7554 1.7095 1.6749 1.7470 1.7000 

1.7534 1 l 7159 1.6856 1.7424 1.7040 la6733 1.7320 1.6926 1.6611 1.7215 1.6813 

1.7159 1.6847 1.6577 1.7021 1.6703 1.6429 1.6883 1.6560 1.6283 1.6747 1.6418 
1.6750 1.6470 1.6219 1.6594 1.6310 1.6056 1.5444 1.6154 1.5895 1.6297 1.6001 
1.6026 1 l  5779 1.5548 1.5847 1 l  5597 1.5363 1.5673 1.5420 1.5184 1.5503 1.5246 
1.4626 1.4415 1.4211 1.4406 1.4194 1.3989 1.4197 1.3983 1.3776 1.3996 1.3780 

1.3417 1.3227 1.3041 1.3169 1 l  2979 1.2792 1.2935 l.rT43 1.2556 1.2712 1.2520 

1.1489 1.1325 1.1160 1.1217 1.1052 1.0888 1. og6o 1.wg6 1.0633 1.0719 1.0556 
.8006 .7881 a7755 a7740 .7617 .7493 a7494 a7373 a7252 .7266 .7148 

TABLE IV.22 

1.6589 
1.6689 
1.6715 
1.6649 
1.6494 
1.6137 

1.5739 
1.5009 
1.3571 
1.2331 

1.0393 
a7029 

H/Pu"' Ratio for Aqueous Solutions of Pu(NO& 

H/pu== 
HN03 Normality 0 2 4 6 
$ Pu24u 0 2 4 0 2 4 0 2 4 -- 0 2 4 -- -- 

Cont., 
g Pu/llter 

250 96.2 98.2 100 91.8 93.7 95.6 87.4 89.2 91.1 83.1 84.8 86.5 
200 123 125 128 117 120 122 112 114 116 106 log 111 
150 167 170 174 160 163 166 152 155 159 145 148 151 
120 211 216 220 202 206 210 193 197 201 184 188 191 
90 285 291 297 rl3 278 284 260 '266 V1 248 253 259 
70 369 x7 384 353 361 368 338 345 352 322 329 336 
50 521 531 542 499 509 519 477 # 497 455 464 474 
40 653 667 680 626 639 652 598 611 623 571 583 595 
30 874 a92 911 838 855 a73 801 817 a35 765 780 796 
20 1316 1343 ini 1261 1287 1314 1207 1231 1257 1152 1175 1200 

15 1758 1794 1831 1685 1720 1755 1612 1645 1679 1539 1571 1603 
10 2642 2696 2753 2533 2585 2638 2423 2473 2524 2314 2361 2410 

5 5294 5402 5515 5075 5179 5287 4856 4955 5058 4637 4731 4830 
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Reflector savings for an infinite water reflector, obtained by adding 
0.25 cm to the values for stainless-steel-walled spheres surrounded by 
water, are presented in Table IV.23. In making the extrapolations out- 
side the range of the data, the procedures previously outlined, based 
on Figure 4.11, were followed, and consideration was given to the 
subcriticality of the ll-inch sphere (see Table IV.17). These 
reflector savings, calculated from the data obtained with spheres, are 
greater than the corresponding values for cylinders and in most cases 
are considerably greater than for spheres of U235 solutions at the 
same concentrations (see Figure 4.3); hence the bucklings with which 
they are associated are probably too small. As the discussion in 
Chapter I indicates, applying these reflector savings to cylinders and 
slabs will result in underestimates of the critical dimensions and 
thus be conservative from the point of view of nuclear safety. 

The reflector savings, So, for bare systems are obtained from the 
values of Table IV.23 by subtracting 3.39 cm (3.14 + O.25), since the 
U 235 solution data indicate that a constant difference rather than a 
constant ratio is the better approximation. The values of So are 
required in determining the effect of reflectors other than infinitely 
thick water. 

TABLE 1v.23 

S for Water-Reflected Spheres of Pu(NO& Solution 

S, cm 
HN03 Normality 0 2 4 
pi Pu24u 0 2, 4 0 2 4 0 2 4 0 2 4 ,-, - - - - - - - - - 

Cont., 
g Pu/lIter 

200 7.75 7.75 7.75 7.60 7.60 7.60 7.45 7.45 7.45 7.25 7.25 7.25 

150 7.75 7.75 7.75 7.60 7.60 7.60 7.45 7.45 7.45 7.25 7.25 7.25 

120 7.75 7.75 7.75 7.60 7.60 7.60 7.45 7.45 7.45 7.25 7.25 7.25 

90 7.70 7.70 7.70 7.55 7.55 7.55 7.40 7.40 7.40 7.20 7.20 7.20 

70 7.65 7.65 7.65 7.45 7.45 7.45 7.24 7.24 7.24 7.00 7.00 7.00 

50 7.52 7.52 7.52 7.29 7.29 7.29 6.97 6.97 6.97 6.75 6.75 6.75 

40 7.42 7.42 7.42 7.15 7.15 7.15 6.90 6.90 6.90 6.75 6.75 6.75 

30 7.30 7.30 7.30 7.15 7.15 7.15 7.06 7.06 7.06 7.00 7.00 7.00 

20 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 

15 7.65 7.65 7.65 7.65 7.65 7.65 7.65 7.65 7.65 7.65 7.65 7.65 

10 7.85 7.85 7.85 7.85 7.85 7.85 7.85 7.85 7.85 7.85 7.85 7.85 
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4.4.4 CRITICAL AND SAFE CONDITIOKS 

Safe bucklings, determined from the relation BE = 
given in Table IV.24. In Tables IV . 25 and w.26 

k 
o.gg - 1 32 

k- 1 mt arc 
critical and safe 

masses of plutonium (as Pu(HO&) in water-reflected spheres are 
given. In Tables IV.27 an<.3 111.28 criUca1 and safe water reflected 
infinite cylinder diameters are given. In Tables IV.29 and IV.30 
critical and safe water-reflected infinite slab thicknesses are 
given. For finite slabs and finite cylinders, the critical and safe 
dimensions can be obtained from Equation 1.9 or 1.10 and the proper 
choice of buckling and reflector saving or from Figure 4.7 if 
attention is given to the buckling labels for the curves rather than 
the concentration labels. 

TABLE Iv.24 

Safe Buckllngs (keff - 0.95) for Aqueous Solutions of Pu(NO& 

Safe Buckling (keff - O.g5), crnm2 
HN03 Normality 0 2 4 6 
9 Pup- 0 2 4 0 2 4 0 2 4 0 2 4 -P-P-P------ 

Cont., 
4 Pu/llter 

200 

150 
120 

90 
70 
50 
40 

30 
20 

15 
10 

.02722 .o24g8 .02362 .02661 .024fl 

l o2715 .02524 .02397 .02651 .02458 
.o26g3 .02525 .o24o6 .02626 .02456 
.026x .o24g6 ,o@g .02566 .02423 
.02565 .02445 .02347 .02488 .02366 
.02428 .o2327 .02241 .02343 .02244 
.02284 .021g5 .02114 .oag8 .02108 
.02036 l  01958 .01885 .oig47 .01&o 
.01574 .01508 .01444 .01481 .01416 
.01186 .01128 .01qo .01og2 .01035 
.00588 .00538 .oo48g .oo4g8 .00450 

.022gg .o25g4 .o236g .02232 a02507 .02284 .0214g 

.o233O .02580 .02387 .02260 .02492 .02300 .02174 
902337 .02554 .02385 .02266 .02464 .02295 .02177 
.02316 .02490 .02347 .0223g a02397 .02255 .0214g 
.o226g a2408 .02285 .02187 .023x .o218g .o2og3 
.02157 .02255 .02156 .02071 .02155 .02055 .Olg71 
.02028 .0210g .o2olg l 01939 .02008 .olgzo .01841 
.o17g6 .01857 .01780 .01708 001758 .01681 .01611 
.o1353 .01x0 .01326 a1264 .01295 .01232 .01171 
.oog78 .01003 .oog46 .008g1 .oog12 .00856 .00803 
.00400 .00415 .00368 .00320 l oo337 .002go .00244 
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TABLEI XV.25 

Critical Masses of FU In Water-Reflected Spheres of Pu(NO& Solution 

Critical Mass of Pu, kg 
HNOs Normality 0 2 4 6 
9 m""* ---- 0 2 4 0 ---- 2 4 0 2 4 0 2 4 --- 

Cont., 
g m/liter 

200 

150 
120 

90 
70 
50 
40 
30 
20 

15 
10 

1.57 1.96 2.26 i .72 2.15 2.49 1.90 2.38 2.74 2.15 2.70 3.11 
1.19 1.44 1.63 1.31 1.58 1.81 1.44 lm75 2.00 1.64 1.98 2.27 

.g70 1.14 1.29 1.07 1.26 1.43 1.18 1.40 I*59 1.35 1.60 1.81 

.778 .893 a997 a859 .gg3 1.11 ,955 1.10 1.24 1.09 1.26 I.41 
0655 .741 .818 0739 ,834 .g24 .836 .947 1.05 ,962 1.09 1.21 

a553 ,614 .672 .631 .701 .769 ,736 .818 l 895 ,848 .g44 1.04 
9525 l  577 .631 .605 .667 l 73o .697 ,768 .844 l 797 .880 -969 
l 527 .578 ,632 9 599 &g 8723 .678 .746 .818 J73 .851 l % 
.620 .686 l 754 .711 .788 .872 .818 .go8 1.01 l 950 1.06 1.19 
l 859 .g61 1.08 1.03 1.16 1.32 1.24 1.41 1.61 1.52 1.74 2.02 

2.76 3.41 4.30 4.06 5.24 7.06 6.34 8.73 12.87 10.81 16.66 29.64 

TABLE 1~1.26 

Safe Masses (key = 0.95) of Pu In Water-Reflected Spheres of Pu(NO& Solution 

Safe Mass (keff = 0.95) of Pu, kg 
HNO- Normal1 ty 0 2 4 6 
$ Pu24w 0 2 4 0 2 4 0 2 4 0 2 4 P-P-P -P-P-P- 

Cont., 
6 Pu/llter 

200 1.21 1.49 1.71 1.33 1.65 1.89 1.47 1.82 2.10 1.68 2.08 2.39 
150 .gog 1.09 1.24 1.01 1.21 1.37 1.12 1.34 1.53 1.27 I*53 1.75 
120 8743 .873 .g84 .824 .g70 1.09 .g15 1.08 1.21 1.04 1.23 1.39 , 

90 .595 A81 .758 .661 .760 .846 .738 .84g .g48 .845 .g74 1.09 
70 ,502 .564 .624 .5@ .641 -707 .644 .728 .805 l 749 .845 8933 
50 .423 .46g .512 .485 ‘536 l  587 .!B .62g .a7 l 659 l 731 .800 

40 .400 l w a479 .463 .510 9555 9537 l 590 .645 .614 .676 l 73g 
30 ,401 l w 0475 ,456 l  497 l 543 .514 l 563 .615 ,584 .642 ,704 
20 l  455 l  499 .547 .518 ,570 -7 ,593 .652 .722 .686 0759 ,843 

15 l  599 .663 0738 a707 l 789 .882 .840 .g4o 1.06 1.01 1.14 1.29 

10 1.52 1.80 2.14 2.06 2.48 3.07 2.87 3a55 4.53 4.16 5.38 7.26 
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TABLE IV.27 

Critical Diameters of Infinite, Water-Reflected Cylinders of Pu(NO& Solution 

Critical Cylinder Diameter, Inches 
HN03 Normality 0 2 4 6 
% Puz4o 0 2 4 0 2 4 0 2 4 0 2 4 

Cont., 
g Pu/liter 

200 

150 
120 

90 

70 

50 
40 

30 
20 

15 
10 

6.01 6.57 6.96 6.26 6.85 7.26 6.54 7.16 7.57 6.92 7.56 7.99 

6.02 6.51 6.85 6.29 6.79 7.17 6.58 7.10 7.49 6.96 7.51 7.92 

6.07 6.50 6.82 6.35 6.79 7.14 6.64 7.11 7.47 7.03 7.52 7*91 
6.25 6.61 6.92 6.54 6.93 7.24 6.85 7.26 7.59 7.26 7.69 8.03 

6.47 6.80 7.07 6.83 7.17 7.46 7.21 7.57 7.88 7.67 8.05 8.38 

6.94 7.24 7.50 7.36 7.67 7.95 7.88 8.20 8.50 8.36 8.71 9.03 

7.45 7.73 8.01 7993 8.23 8.52 8.42 8.74 9.06 8.89 9*23 9*57 

8.77 8.67 8.98 8.83 9.15 9.48 9.27 9.61 9995 9.75 10.11 lo.48 

10.~7 10.77 11.16 lo.92 11.35 11.78 11.51 il.97 12.45 12.17 12.68 13.22 

13.00 13.55 14.15 13.90 14.52 15.20 14.86 15.58 16.37 16.00 16.84 17.74 

22.90 24.66 26.78 26.25 28.69 31.85 30.68 34.28 3g.22 36.93 42.88 52.27 

TABLE 1v.28 

Safe Diameters of Infinite, Water-Reflected Cylinders of Pu(NO& Solution 

Safe (keff = 0.95) Cylinder Diameter, Inches - - 
HN03 Normality 0 2 4 6 
j6 Pu240 0 2 4 0 2 4 0 2 4 0 2 4 ------p---p- 

Cont., 
g Pu/liter 

200 
150 

120 
90 

5.37 5.88 6.22 5.63 6.15 6.51 5.89 6.44 6.81 6.25 6.82 7.21 

5.39 5.82 6.13 5.65 6.09 6.42 5.93 6.39 6.73 6.28 6.77 7.14 

5.44 5.82 6.11 5.71 6.10 6.40 5.98 6.40 6.72 6.35 6.79 7.13 

5.60 5.92 6.19 5.88 6.22 6.50 6.17 6.53 6.83 6.56 6.94 7.25 

70 5.80 6.08 6.34 6.14 6.45 6.71 6.50 6.82 7.10 6.95 7.28 7.58 

50 6.23 6.50 6.73 6.63 6.90 7.15 7.12 7.41 7.67 7.59 7.89 8.17 

40 6.69 6.94 7.18 7.14 7.41 7.67 7.61 7.89 8.17 8.05 8.35 8.64 

30 7.52 7.79 8.04 7.94 8.21 8.50 8.33 8.64 8.93 8.77 9.09 9.41 

20 9.22 9.55 9.89 9.69 10.05 10.42 10.20 10.57 lo.98 10.77 11.19 11.64 

15 11.3’7 11.81 12.29 12.10 12.60 13.12 x.89 13.44 14.04 13.81 14.45 15.11 

10 18.51 lg.65 20.91 20.64 22.04 23.78 23.22 25.02 27.28 26.47 28.95 32.15 
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TABLE IV.29 

Critical Thicknesses of Infinite, Water-Reflected Slabs of Pu(NO.& Solution 

Critical Slab Thickness, inches 
HN03 Normality 0 . 2 4 6 
$ Pud4u ---- 0 2 4 0 2 4 0 2 4 0 2 4 --p--p -- 

Cont., 
g Pu/liter 

200 

150 
120 

90 

70 

50 
40 

30 
20 

15 
10 

1.81 2.18 2.43 2.02 2.40 2.67 2.24 2.64 2.91 2.54 2.96 3.24 
1.81 2.13 2.36 2.03 2.36 2.61 2.26 2.61 2.86 2.56 2.92 3.19 
1.85 2.13 2.34 2.07 2.36 2.59 2.30 2.61 2.84 2.61 2*93 3.19 
leg8 2.22 2.41 2.21 2.46 2.67 2.45 2.72 2.94 2.77 3.06 3.28 

2.13 2.35 2.53 2.43 2.65 2.84 2.73 2.97 3.17 3.09 3.35 3.56 
2.48 2.67 2.85 2.81 3.02 3.20 3.24 3.46 3.65 3.62 3.85 4.06 

2.84 3.02 3.20 3.22 3.43 3.61 3.61 3.82 4.03 3.96 4.19 4.41 
3.48 3.67 3.87 3.81 4.02 4.24 4.13 4.35 4.57 4.46 4.69 4.93 
4.74 5.00 5.26 5.10 5.38 5.66 5.48 5.78 6.09 5-91 6.25 6.60 

6.40 6.76 7.15 6.99 7.39 7.84 7.62 8.09 8.60 8.36 8.91 pjo 

12.81 13.96 15.35 15.00 16.59 18.65 17.89 20.25 23.47 21.97 25.86 31.99 

TABLE 1v.30 

Safe (k&f = 0.95) Thicknesses of Infinite, Water-Reflected Slabs of Pu(NO& Solution 

Safe Slab Thickness, inches 
HNO3 Normality 0 2 4 6 
%  PuZ40 0 2 4 0 2 4 0 2 4 0 2 4 

Cont., 
g Pu/llter 

200 

150 
120 

90 
70 

50 
40 

30 

20 

15 
10 

1.39 1.72 1.94 1.60 1.94 2.17 1.81 2.17 2.41 2.11 2.48 2.73 
1.40 1.68 1.89 1.61 1.91 2.11 1.83 2.14 2.36 2.13 2.44 2.68 

1.43 1.68 1.87 1.65 1.91 2.11 1.87 2.15 2.35 2.17 2.46 2.68 

1*55 1.76 1.94 1.78 2.00 2.18 2.01 2.25 2.44 2.32 2.57 2.77 

1.70 1.89 2.05 1.98 2.18 2.35 2.27 2.48 2.66 2.63 2.85 3.04 

2.02 2.19 2.34 2.34 2.52 2.68 2.75 2.94 3.11 3.11 3*31 3.50 
2.34 2.50 2.67 2.71 2.89 3.06 3.09 3.27 3.45 3.41 3.61 3.80 

2 l g2 3.09 3.26 3.24 3.41 3.60 3.52 3*71 3.91 3.81 4.02 4.24 

3*99 4.20 4.43 4.30 4.53 4.77 4.63 4.87 ’ 5.14 5.00 5.28 5.57 

5.33 5.62 5.94 5.81 6.14 6.48 6.33 6.69 7.08 6.93 7.35 7.78 
9.94 lo.69 11.51 11.34 12.25 13.39 13.02 14.20 15.67 15.15 16.77 18.86 

443 



7~ the Har;fzr4.1 prcscniat~oz cf the critical mass data .C -. (4.14) the 
lzgzrithm of the critical mass was found to vary approximately 
lirzarly with the nitrate ion concentration. From extrapolations of 
such linear plots and from calculations of bucklings with nitrate 
abscrt, reflector savings for solutions containing no nitrate are 
cbtained. These values, together with the corresponding critical and 
safe buckli,Yigs are given in Table IV.31. The critical and safe masses 
cf water-reflected spheres with nc nitrate present are given in 
Table 111.32, the critical and safe infinite cylinder diameters in 
Table IV.33, and the critical and safe infinite slab thicknesses in 
Table IV.34. 

TABLE IV. 31 -m- 

S, B$ acd B's (keff = 0.95) for 
Plutcnium Solutions Containing No Nitrate Ion . 

S, cm 2 
Bm t cmW2 BE (k,rf = 0.95), cmo2 

YP 0 
u2 40 

corx l J  

g Pu/liter 
200 

150 
120 

90 7-7 I=95 L93 .02381 

70 
50 
40 

30 
20 

15 
10 

8.33 8.23 8.40 

8.10 8.16 8.13 
8.04 8.06 8.05 .02435 

7.82 7.82 7.78 

7.65 7.63 7.63 
7.50 7*57 7.53 

7.39 7.41 7.35 
7.52 7.49 7~44 

7.84 7.75 7.66 
8.02 8.13 7.99 

0 2 

.02468 

.02458 

.02312 

.0217g 

.02042 

.01805 l o1731 

.01365 
l oogg6 

.00427 

.02263 

.02281 

.02280 

.02248 

.02%03 

.02085 

l 01957 

.01302 

l oog41 
.00380 

--- 
4 0 2 4 

.02136 l o2746 

.02162 002735 
l 02168 
.02147 

.02108 

.42003 

.01881 

.01661 

.01242 
iOO886 

000333 

.027ll 

.02653 

.02580 

l 02439 

.022g5 

.02044 

.01580 

l 011g1 
l 00590 

.02531 l 02397 

.0254g .02424 

.02548 .02430 

.02514 .02408 

.02463 .02366 

002341 l O2255 

.02205 .02125 

.olg67 l 0189 3 

.01514 .01451 

.01133 .01075 

.00541 .004g2 
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TABLE IV.32 

Critical and Safe (keff = 0.95) Masses of Water-Reflected 
Spheres of Plutonium Solution Containing No Nitrate Ion 

Critical Mass, kg 
0 2 4 

Safe (k,rf = 0.95) Mass, kg 
0 2 4 

Cone,, 

200 1.33 1.70 1.88 1.01 1.28 lb41 
150 1.07 lb27 1.46 .811 8958 1.10 
120 . 89 1.04 1.18 l 675 8 789 l 890 

90 l 735 l 83 l 93 . 561 . 629 l 703 
70 l 62 l 70 l 78 8 474 l 532 . 594 , 

50 l 531 l 59 8648 l 405 l 450 l 492 

40 b 509 0553 l 61O l 389 .421 a462 
30 l s13 .561 l 620 l 389 l 424 l 466 
20 l 61 l 675 l 750 l 447 l 493 .  542 
15 l 83 l 94 1.07 l 579 l 649 l 729 
10 2.7 3.3 4*2 1.49 1@73 2.09 

TABLE IV. 33 

Critical and Safe (keff = 0.95)Dlameters of Infinite, Water-Reflected 
Cylinders of Plutonium Solution Containing No Nitrate Ion 

Critical Cylinder Diameter, inches Safe Cylinder Diameter, inches 
& Pu240 0 2 4 0 2 4 

Cont., 
g Pu/liter 

200 

150 
120 

90 
70 
50 
40 
30 
20 

15 
10 

5.49 6.11 6.34 
5.70 6.12 6.48 
5.81 6.19 6.52 
6*08 6.n 6.68 
6.29 6.61 6.91 
6.81 7blO 7*TT 
7*35 7.58 7.88 
8*27 8.56 8.91 

10.30 10.70 llb14 
12.80 13.42 14eog 
22.69 24*34 26.53 

4.87 
5.07 
5.17 
5.43 
5.63 
6.10 

6.59 
7.42 
9.15 

11~8 

18.35 

5.42 

5.43 
5.52 
5.68 
5.91 
6*x 
6.79 
7*67 
9.50 

11 b70 
19.33 

5.62 
5.76 
5.81 
5.95 
6.19 
6.60 
7.06 
7.98 
9.86 

12,23 
20.72 
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TABLE Iv.34 

Critical and Safe (keff = 0.95) Thicknesses of Infinite, 
Water-Reflected Slabs of Plutonium Solution Containing No Nitrate Ion 

Critical Slab Thickness, inches Safe Slab Thickness, inches 
% pu**O 

Cont., 
g Pu/liter 

230 

150 
120 1.60 1.84 2.06 

90 
70 
50 
40 

30 
20 

15 
10 12.63 13.67 15.14 

0 2 4 

1.31 1.74 1.85 

1.51 1.77 2.01 

1.82 1.99 2.20 

1.98 2.18 2 l 39 

2.36 2.56 2.73 
2.75 2.88 3.09 
3.38 3.57 3.81 I 
4.67 4.94 5.25 
6.22 6.65 7.11 

0 2 

0 906 1.30 1.37 
1.10 1.32 1.54 

1.18 1.40 1.59 
1.40 1.54 1.72 

1.54 1.72 1.92 

1.89 2.07 2.23 
2.26 2.37 2.56 

2.83 2.99 3.20 

3.92 4.16 4.41 

5.17 5.52 5.90 

9.79 10.40 11.35 

4 

By multiplying the slab thicknesses obtained from Tables IV.33 and 
IV.34 by the concentration and plotting th e resulting product against 
the concentration, a minimum mass per unit area is determined. These 
minima can be used to provide safe mass limits when precipitation is 
a possibility. The critical and safe values expressed as grams of 
plutonium per square foot of horizontal surface are given in 
Table IV.35 as a function of plutonium-240 concentration. The minima 
in the curves of mass per unit area occur at a concentration of about 
17 g Pu/liter. 

TABLE IV. 35 

Minimum Critical and Maximum Safe (keff = 0.95) 
Concentration of Plutonium Per Unit Area in 

Solutions Containing No Nitrate Ion 

% Pu240 Minimum Critical Mass, g/ft* Maximum Safe Mass, g/ft* 
0 217 182 
2 233 194 
4 246 207 
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Critical and safe concentrations of plutonium can be calculated for 
unlimited amounts of solutions; these concentrations correspond 
respectively to k = 1 and k = 0.95. They are useful in cases where 
concentration control alone is relied on to ensure safety. In 
Table 1v.36, the critical and safe concentrations of plutonium in 
unlimited amounts of solution are tabu1ate.d as a function of nitric 
acid normality and PUCK' concentration. Values are also given for 
the case of no nitrate in the event the plutonium is present as some 
other compound. The results are expressed both in terms of 
concentration and of H/Pu*=~ ratio since the solvent may be a 
hydrocarbon rather than water. 

TABLE 1v.36 

Critical and Safe (keff = 0.95) Concentrations of 
Plutonium in Infinite Amounts of Solution 

Critical Cont., Safe (keff = 0.95) cont., 
Pu Compound HN03 Normality $ PUCK' g/liter 
No Nitrate 

Ion 
0 

0 

0 

Pu(NO3h 0 

0 

0 

2 

4 

0 7.42 

2 7.66 
4 7.88 

0 7.44 
2 7.68 
4 7.90 
0 7.85 
2 8.10 
4 8.34 
0 8.27 
2 8.53 
4 8.80 
0 8.68 
2 8.95 
4 9.24 

H/pU23a 

3570 

3535 
3500 

3535 
3515 
3490 
3215 
3185 
3160 
2930 

2900 

2870 
2665 
2640 
2615 

g/liter 

6.73 

6.94 3905 

7.14 3875 

6.75 3900 
6.95 3880 
7.16 3855 
7.15 3550 
7.34 3525 
7.55 3490 
7.49 3225 
7.73 3200 
7.95 3170 
7.86 2935 
8.10 2915 
8.36 2890 

H/pU23e 

3940 
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4.4.5 NATURE OF SOLVENT 

The critical and safe conditions given in Tables IV.25 through IV.35 
and the bucklings given in Table IV.20 apply to aqueous solutions or 
slurries. If the solvent is organic or if the plutonium is held in an 
ion exchange resin, k will be essentially the same as in an aqueous 
solution at the same H/Pu*=' ratio (and at the same N/Pu*~' ratio if 
nitrate is present). If the hydrogen density in the solvent is less 
than in water (or in nitric acid), the buckling is less, due to a 
greater migration area. In this case it is conservative to use the 
safe and critical conditions for aqueous solutions with the same 
H/Pu~~' ratio. If the hydrogen density is greater in the solvent, 
allowance must be made for this fact. The proper procedure is to 
calculate ?; as was done for this Handbook for nitric acid solutions. 
A code for the IBM 650 is available at the Savannah River Laboratory 
for performing such a calculation. In the absence of such a 
calculation, M* may be assumed to vary approximately inversely as the 
hydrogen density in the solvent, and adequate margins of safety should 
be employed to compensate for errors introduced by this approximation. 
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CHAPTER V - INTERACTION 

5.1 INTRODUCTION 

One of the more difficult problems encountered in nuclear safety is that 
of determining interactions between units which if individually isolated 
would be subcritical, but which if brought close together could 
co:-zstitute a critical assembly. Since complete isolation of units from 
reflectors or from other units is often impractical, it is important 
to have some means of calculating the reduction in size that must be 
made to permit a certain minimum separation between units or between 
a unit and a reflector. A large amount of experimental data 
exists (5*1'5*8) against which methods of calculation may be checked; 
but, except where a specific situation happens to duplicate one 
studied experimentally, direct reference to such data may not be very 
helpful. A generally conservative method has been developed(5.s) for 
computing interactions between units in air. In water, interactions 
can, be computed satisfactorily by two-group methods. In the present 
chapter methods of calculating interaction in air are described first. 

5.2 INTERACTIONS IN AIR 

5.2.1 INTERACTIONS BETWEEN FISSIONABLE UNITS 

Consider two interacting surfaces (see Figure 5.1). The total* neutron 
current out of the surroundings that enters surface No. 1 is some 
fraction p l2 of the total neutron current into the surroundings from 
Surface No. 2 and vice versa. If Jout represents the total current 
out of the surroundings and Jin represents the total current into the 
surroundings, the following equations must be satisfied: 

and 
b out = P12J2 in 

52 out = p21Ji ino 

The albedo of the surroundings is equal to Jout divided by Jin. Thus 
the equations may be written as 

and 
BiJi in - Pi252 in = 0 

'P21J1 in + B2J2 in = 0 

where f3 is the albedo. They are satisfied only if plp2 = p12p21, which 
becomes p = p if the two interacting units are identical. 

*The total current is the current in neutrons of all energies per cm* 
per second integrated over the entire surface under consideration. 
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FIG. 5.1 INTERACTING SLAB AND CYLINDER 



5.2.2 CALCULATION OF D 

Simplifying assumptions are made so that p can be calculated solely 
from the geometry of the system. In particular, the directions of 
travel of the neutrons issuing from a surface are assumed to have a 
cosine distribution and the neutron current is assumed to be independent 
of position on the surface. The latter assumption is good if the two 
surfaces are of equal size and shape, but as will be shown later, can 
be poor if they are not. The resulting equation for p is 

ws 
P = 

costi cosw 
7TR2 

/dS 
dSdS' 

(54 

where S and St denote the two surfaces (e.g., a cylinder and a slab 
as in Figure 5.1), R denotes the distance from an element of surface 
on one to an element of surface on the other, and q and qf denote the 
angles R makes with normals to the elements of surface. This 
integration is not readily performed for curved surfaces, and they are 
approximated by flat surfaces, i.e., a circular cylinder is replaced 
by a square cylinder with a base of equal area and a sphere by a cube 
of equal volume, axis-to-axis or center-to-center distances remaining 
the same. 

The basic equation for p is derived for two rectangular surfaces at 
right angles to each other since the integral in Equation 5.1 cannot 
be evaluated easily for parallel surfaces except for circular discs, 
rectangles with one infinite dimension, or finite rectangles at a 
large separation compared to the dimensions of the rectangles. Results 

.' for parallel surfaces are obtained by subtracting from unity the 
contributions reaching slabs perpendicular to the parallel slabs. For 
example, the fraction of the neutrons from a rectangle (see Figure 5.2) 
in the (X,2) plane at Y = 0 with vertices at (O,O,O), (2,0,0), (2,0,1), 
and (O,O,l) reaching a parallel plane at Y = 1 with vertices at (O,l,O), 
(3,190), (3,1,% and (0,1,2) is obtained by subtracting from unity 
the fractions that reach perpendicular rectangles with vertices at: 

(%%O), (0,%2), (0,1,2), and (%l,O) 
(3~0~0)~ (3,0,% (3,1,2), and (3&O) 

(w,o), (O,Lo), (3,1,0), and (3,0,0) 

(0,0,2), (%1,2), (3,1,2), and (3,0,2) 

The fraction in the reverse direction (i.e., those from the larger 
rectangle reaching the smaller) is readily obtained by noting that 
the integral in the numerator of Equation 5.1 is the same whichever 
rectangle is considered as the emitter, and hence that the fraction 
from the larger reaching the smaller is obtained by multiplying the 
fraction from the smaller reaching the larger by the ratio of the 
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FIG. 5.2 INTERACTION BETWEEN TWO PARALLEL PLANES 
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smaller to the larger surface area. The general case is not as simple 
as pictured in the example, but the same procedures apply. 

The‘fraction of the neutrons from a rectangle with dimensions 2a x 2h 
reaching a perpendicular rectangle with dimensions 2d x 2g with the 
rectangles arranged as shown in Figure 5.3 is 

Y'+a+b)2 + (X+e)' sin (Z+f-2') 

(Y*+a+b)2 + (X+e)' + (Z+f-Z*)2 

+ (Z+f-z1)2 log (Y1+a+b)2 + (X+e)2 
4 (Z+f-zq2 ) 

+ (Yf+a+b)2 + (X+e)’ log (Yr+a+b)2 + (X+e)' 
4 (Yt+a+b)2 + (X+e)2 + (Ztf-Zf)2] '(5.2) 

where Y1 and 2' are measured along the 2a and 2h edges of the vertical 
plane and X and 2 along the 2d and 2g edges of the horizontal plane, 
and where the summation is made over the 16 terms resulting from setting 
Yr equal to -a and a, X equal to -e (or -d if e> d) and d, 2 equal to 
-g and g, and 2' equal to -h and h. The separation between the nearer 
edge of 'rectangular surface 4ah and the plane of surface 4dg is b. The 
separation between centers of the rectangles in the direction that the 
2h and 2g edges have in common is f. The separation between the trace 
of rectangle 4ah obtained by projection onto the plane of 4dg and a line 
through the center of 4dg parallel to the 2g edge is e. Where e<d, p 
includes only contributions from the front face of 4ah. An IBM 650 code, 
which is available at the Savannah River Laboratory, has been prepared 
for evaluating Equation 5.2. 

By subtracting contributions calculated from Equation 5.2 with b = o, 
f = o, e = d, and g = h from unity, p has been calculated for equal, 
parallel rectangles as a function of c~ and c where CG is the separation 
between surfaces divided by the smaller dimension of the surface and 
0 is the smaller dimension divided by the larger dimension. The results 
are plotted in Figure 5.4 against CG and against l/a for a>l. In 
Figure 5.5 the region of small l/a is blown up for greater accuracy in 
reading the graph. This region is of importance when large numbers 
of units interact. 
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FIG. 5.3 INTERACTION BETWEEN PERPENDICULAR RECTANGLES 
(The 29 and 2h l dgos are paroll~~ 
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507 



-i- 

I 
I 

! I 1  
I / I 

I 
- 3  / + - - - .  

I 
I i 

I 

- I - - -  .-  - -  1  -  - -  
/ 4  
I 1  1  

I 
- / - - - - -y - - -  

- .-  .+--  - ;  -  .----  LI - - -  

1  

-‘-++ . -_  
!  
,  

P  

0 .1  

I--* i ; i  i  i  i  ‘i i  
. 

i  i  i  
. 

i  i  i  . ,.. . ,I ., .1. 

I-- 
1  

0.2  0 .3  
l /a 

FIG . 5 .5  p  F O R  P A R A L L E L  R E C T A N G U L A R  S L A B S , l /o so .36  

5 0 8  



5.2.3 ALBEDO EXPRESSION 

For a slab the albedo at the surface is given by 

sin B(S-S ) tan BS-tan BS 
B 

0 0 

= sin B(S+S ) = tan BS+tan BS (5.3) 
0 0 

where B is the square root of the buckling in the direction normal to 
the surface, S is the effective reflector saving provided by the 
surroundings, and So is the bare extrapolation distance determined by 
fitting data for unreflected vessels to calculated bucklings, as 
described in Chapters II and III. In some applications it is desirable 
to work with the total albedo defined as 

J L out +J 
B, = J 

R out 

L in +J R in 

where L and R denote the left- and right-hand surfaces of the slab. The 
expression for BT is 

sin B&S 
0 

) 
B, = 

sin B(S+S 
0 

) 

where 25 = SR + S Lo 

For an infinite cylinder the expression for B, is 

Jo(2.4059BSo) Jo( 2.405.Bs) I 

B, = 
J1(2.405-Bs) J1(2.405-BS,) . 
Jo(%405-Bg) + J,(2.405-BSo) 

(5.4) 

(5.5) 

J1(2. 4050Bs) J1(2.405-BSo) 

For a sphere the expression is 

p, = 
1 + (.rr-BE)cot Bs 1 + (n-BSo)cot BSo 0 

?T-B5 
(5@6) 

+ n-BSo b 
1 + (n-BS)cot Bg 1 + (n-BS,)cot BS, 

For the cylinder and sphere 5 Is the effective reflector saving of the 
surroundings averaged over the entire surface of the cylinder or sphere. 
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5a 2.4 CALCULATION OF THE INTERACTION 

The interactlon problem can be stated in several ways. Thus in the 
case of two parallel identical slabs, B2, So, the dimensions of 
the interacting surfaces, and the separation between the surfaces may be 
given, and the safe slab thickness may be required. Solution of the 
equation B = p with p read from Figure 5.4 or 5.5 gives the critical 
value of 3 and the critical thickness as n/B - 2:. The safe thickness 
corresponding to a choice of keff is then readily calculated as: 

T 7r 
safe =E- m 

2s l 

Conversely, the surface dimensions and thickness of the slabs and the 
buckling may be given, and the safe separation may be required. In 
this case, the safe buckling and hence a safe value of s are used in 
the equation f3 = p and the solution gives the safe value of p from 
which the safe separation can be determined. For a safe separation to 
exist, the safe 3 must be greater than So. In some cases the surface 
dimensions, the thickness, the separation, and the buckling may all be 
given. Solution of p = p then gives s from which the geometric buckling 

can be calculated as 7r= and hence keff and the multiplication can 
be determined. (T+25)=' 

For square cylinder and cube approximations to circular cylinders and 
spheres, it is necessary to assume that Jin is independent of the 
emitting face as well as of position on the face if &, as expressed 
by Equations 5.5 and 5.6, is to be employed in the calculation. This 
approximation is nonconservative, but it tends to compensate for 
conservatism in some of the other approximations and to yield fairly 
good results when compared with experiment. It is poorest when the 
separation between units and the number of units are small, sometimes 
giving nonconservative results (see Reference 5.9). 

In the case of slabs the above approximation is convenient, but 
permitting the currents at the left and right surfaces to have different 
values does not greatly complicate the calculation. For n parallel 
slabs the equations are: 

J = P J 
IR out lR,zL 2L In 

P J = J 
2L, 1R 1R in 2L out 

J = 
(n-1)R out P’ 

. . 
J 

(n-i)R,nL nL in 

P J J 
nL, (n-OR (n-1)R in = nL out ’ 

For equally spaced, identical slabs the p’s and the slab thicknesses 
are all equal, and the following matrix equation can be derived: ' 
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where 
L 

M= 

MPMP....PM 
- 0 1 = 0, - 1 

. 

- sin 2B(S+S ) sin 2Bz 
n 

- sin 2BF sin 2B(s-S 
0 

) 

and 

[ 

P 
P = 

0 

0 

I 

. 

UP 

There are n M matrices and (n-1) P matrices in the product. For two 
slabs the result is 

sin 2B(Z-S 
0 

) 
P = = 

sin 2BE 
B = B, + 

sin 2BS 
0 

sin 2Bs > 

since in this case 2s = S + So. For three slabs the result is 

+ 
sin 2BS ' 

0 
l 

sin 2B5 

For an infinite number of slabs, the result is p = PT. With small 
numbers of closely spaced slabs these or other equations derived on 
the same basis should be employed. 

Where the currents may be assumed independent of the face, equations 
may be written in terms of the total albedo as 

- BTrJ, jrl + p J 
12 2 in + . l . + P,,Jn in = 0 

l 0 0 

pn~J~ in + ‘nzJ2 in ’ l l l - ‘TnJn in = ’ 

l t5m 

If the units are identical, the BT's are all equal and BT is determined 
as the appropriate eigenvalue of the matrix of coefficients of the gin'sa 
The expressions obtained for two, three, and an infinite number of 
equally spaced identical slabs in this approximation are respectively 
P = 28~9 p = fi pT# and p = BT. If the units are not identical, all 
BTfs except one can be specified or relations between the BT's may be 
found. For example, with two slabs of unequal thickness either the 
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thickness of one can be specified and the equation solved to give the 
critical thickness of the other, or the ratio of the two thicknesses 
can be specified and the equation solved for one or the other of the 
thicknesses. 

The Pij required in Equation 5.7 are simple modifications of values 
calculated from Equation 5.2 or read from Figures 5.4 or 5.5. For 
parallel slabs pij is l/2 the value read from Figures 5.4 or 5.5 since 
only l/2 the total interacting surface of one slab sees an adjacent 
slab. For cylinders in the square cylinder approximation the factor 
is l/4 and for spheres it is l/6. 

Shielding of one unit by another results in a reduction in the pij for 
some situations. For parallel identical slabs numbered consecutively, 

For spheres in a regular array, contributions 
) next nearest, etc., are calculated with the array 

considered infinite in all directions. Contributions, from neighbors 
sufficiently far away that +pij would become greater than unity as a 

result of their contributions, are multiplied by a factor chosen to 
make the sum exactly unity. More distant neighbors are assumed to be 
completely shielded by the intervening spheres. In the actual finite 
array this same factor is employed, and the same neighbors are included. 
A similar procedure is employed for regular arrays of cylinders. The 
cylinders are considered infinite in length and the array infinite in 
extent for the purpose of determining the factor to be applied to 
contributions from the most distant neighbor included. For some types 
of finite arrays of both spheres and cylinders, this procedure may 
require modification, since units on the boundary may not be shielded 
from each other to the same extent as in an infinite array. 

As pointed out earlier, the assumption that the current is independent 
of position on the interacting surface may be poor if surfaces are not 
congruent; for example, if a very large slab (1) and a small slab 

. (2) are parallel to each other, p12 - 1 and p21- 0 if calculations are 
made on the basis that the current is independent of position. If both 
slabs have the same thickness, and if the small slab is large enough 
that /31 ? p2, the equation BIB2 = p1p2 leads to the result p z 0, which 
is clearly wrong. This difficulty may be avoided by considering the 
larger slab to be made up of a number of small slabs in edge-to-edge 
contact. 

In interaction problems involving unequal slabs or cylinders, or slabs 
at right angles to each other, perpendicular faces of a particular unit 
may.be involved so that more than one buckling component is required. 
For example, both the end and large side surfaces of slabs may be 
involved in the interaction; hence, the albedos at both the end and side 
surfaces will enter into the calculations. The equations for the 
currents at the surfaces have to be solved subject to the condition 
that in each slab the sum of the buckling components equals the material 
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buckling. In such situations, the calculation is considerably simplified 
if contributions to and from the smaller surfaces are considered as 
entering or leaving the larger surfaces so that only the albedos at 
the large surfaces need be considered. Since the numerator of 
Equation 5.1 represents the number of neutrons reaching one surface 
from another, and the denominator represents the area of the emitting 
surface, all neutrons can be treated as coming from the large surface 
by always making the denominator the area of the large surface. 

When regular arrays are being investigated, Equation 5.7 may be greatly 
simplified if the currents for equivalent units are lumped together. 
If, for example, three identical units are equally spaced in a line, the 
two outer units are equivalent. If the outer units are designated 1 
and the center unit 2, the equations become: 

- BJ I in + p~2J2 in = O 
and 

2P J 8J = 0 
21 i in - . 

2 in 

In an infinite regular array all units are equivalent; hence there is 
only a single equation. 

5.2 l 5 INTERACTIONS WITH REFLECTORS 

The interaction between a unit and a reflector is calculated in a manner 
similar to that employed for the interaction between fissionable units. 
If the current emitted by the reflecting surface may be assumed 
independent of position, 

BJ uuin= J u out = %rJr out = %rarJr in = pur BrPruJu in 

where u denotes the fissionable unit and r the reflector, and where 
B, IS the albedo of the reflector. Thus pu = PurPru&. 

Situations in which the current from the reflector may be considered 
independent of position are; (1) ones in which a surface of a fissionable 
unit faces a reflecting surface of equal size and shape, and (2) ones 
in which symmetry requires that the current distribution be uniform, 
as for example, a spherical unit surrounded by a concentric reflecting 
spherical shell. In other situations the reflector can be broken up into 
a number of surfaces equal in size to the surface of the fissionable 
unit, and the current distribution can be assumed uniform in each of 
these subdivisions. In all these situations it is apparent from 
Equation 5.1 that 

P 
Interacting area of fissionable unit = 

ur Interacting area of reflector pru (5.8) 
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where pur is the fraction of the neutrons emitted by the reflector 
that reaches the fissionable unit and Pru is the fraction of the 
neutrons emitted by the fissionable unit that reaches the reflector. 

For the particular case of a slab parallel to an infinite plane 
reflector, the fraction (pur) of the neutrons that is returned from 
the reflector can be calculated by integrating the contributions to the 
slab from elements of surface of the plane reflector over the entire 
surface of the reflector. Results of this integration for an infinite 
plane reflector parallel to a circular disc and to an infinite slab 
of finite height are presented in Figure 5.6 as functions of disc radius 
or slab height and of separation from the reflector. Other shapes may 
be approximated by a disc of equal area or by an infinite slab of equal 
smaller dimension, whichever approximation gives the smaller pur. Since 
the reflector is infinite, Pru is unity. 

Although the albedo of the reflector can be calculated from its 
properties, it is much better to determine it from experimental results 
such as those given in Chapter IV, so that the correct result will be 
ensured in the limit of zero separation. When the reflector is in 
contact with the fissionable unit, 

B 
sin B(S-So) 

= sin B(S+So) = 'r 

With S = Sry the reflector savings of the reflector when in contact. 
Hence Br is determined by the buckling and the reflector saving. For 
curved surfaces, such as a spherical shell surrounding a sphere, the 
effect of the radius of curvature on Br must be taken into account. 
This can be done by eliminating the properties of the reflector from 
the equation pr = Jr out 

Jr in 
by the use of albedos obtained with the 

reflector in contact with the curved surface and with the reflector 
in contact with a flat surface of the same fissionable material. . 
In the case of a sphere of radius %, Br for a reflector of radius 
R is given by 

B = 
r 

1 
R 

0 + ( ) R 

(5*9) 

where PO is the albedo with the reflector in contact with the sphere 
and Ben is the albedo with the reflector in contact with a slab of 
the same material, For cylinders, &, as a function of radius can also 
be found in terms of PO and &,, but an analytical expression cannot 
be written. 
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Occasionally, the components of a multicomponent reflector may be 
separated from each other as well as being separated from the surface 
of the fissionable unit. For example, consider a slab reflected by 
material A in contact with it, material B separated from it by a distance 
dB3 and material C separated from the slab by a distance dC. Suppose 
that the reflectors are infinite in extent so that Figure 5.6 may be 
used to obtain pur. A simple, conservative expression for the albedo 
at the surface of the slab is 

B = b,)B, +, (p,B-P,c)~ 
F 

,,+ p,&c 
’ I*Q r”/ .‘-J,’ 1 3 I’ 1r1 / 6 ,.i: ’ 

where B, is the albedo provided for the unit by the system of reflectors, 
PA is the albedo of reflector A with the others removed to infinity, 
GAB is the albedo with reflectors A and B In contact and C removed to 
infinity, and pABC is the albedo with all three reflectors in contact. 
Both pi and puC are determined by the separations dB and dC between 
the unit and the reflector in question with the distances so adjusted 
that PUB = 1 when B is in contact with A and p, = 1 when A, B, and C 
are in contact. If B and C should be in contac ! with each other but 
not with A, they would form a new medium BT. In this case there would 
be no third material so that put would be zero and the equation would 
reduce to 

B = 
U (1 P - uB' )B A + p&~&' 

5.2.6 INTERACTIONS WITH OTHER UNITS AND WITH REFLECTORS 

In the general case fissionable units interact both with other units 
and with reflectors. If the units are of different sizes and shapes 
and of different materials, the situation becomes very complicated, and 
it is difficult to give any handy rules of thumb. In such situations 
generous margins of safety should be allowed in the assumptions made 
to simplify the calculations, e.g., all units may be taken to have the 
size of the largest unit. 

Given a number of fissionable units and a number of reflecting surfaces 
on which the current may be assumed independent of position, equations 
of the following form may be written. 

(+ Ul +'ul 9 JJU1 in + 'III usJu2 in + l oo + '~1 r?rIJrl in + l oo = O t # 

0-P B >J = 
ri,ri ri ri in P ri rnBrnJrg in + l oo + 'r1 ulJul in + l oo (5010) t 9 
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The p and p 
U1,Ul rl,ri terms are required since some of the neutrons 

entering a unit may be emitted by an equivalent unit and some of the 
neutrons emitted by a reflector may re-enter it. The Jr in terms 
can be eliminated from these equations and a homogeneous set of linear 
equations in J, in can be obtained. For a solution to exist the determi- 
nant of the coefficients must be zero, and the set of &Is that gives this 
result can be found, provided the relations between the &Is are known. 
Since it is clear that the albedos at the surface of the fissionable 
units are total albedos, the subscript T has been dropped. Equation 
5.10 takes its simplest form when all the units are identical so that 
B = B = B etc l ,  

Ul u2 u3 
and when the current distribution may be 

considered uniform over the entire surface of the reflector so that 
only one reflecting surface is required. When the reflector entirely 
surrounds the units, the fraction of the neutrons reaching the reflector 
from a particular unit is obtained by subtracting from unity the 
fractions that reach all other units. It seems reasonable to assume 
that the fraction of the neutrons reaching this same unit from the 
reflector is given by Equation 5.8. 

5.2.6.1 Sample Calculations 

To illustrate the methods of calculation presented in this chapter, the 
various steps involved in calculating the interactions in a 3 by 3 by 3 
cubic array of 200kg spheres of uranium (93.5% U235) with a lattice 
spacing of 11 inches are,given for an unreflected array and for m 
array enclosed inside a reflecting cube measuring 3 feet on $-side. 
This particular example was chosen because it has been studied 
experimentally.(5'8) Since the dimensions and spacings of the units 
are specified, the calculation yields the albedo BT from which the 
reflector saving 3 is calculated and hence the keff of the system. 

The 27 units can be divided into four groups within each of which all 
units occupy equivalent positions. Thus there are 1 central, 6 face 
centered, 12 edge centered, and 8 corner units. If the groups are 
numbered in this order, Equation 5.10 becomes: 

- BTJl In + 6P12J2 In + 12P,sJs In + 8P14J4 In + P B J lr r r In = O# 

PZIJ1 ln + (4P 
22 

-B,)J 
2 In 

+ (4p +49' +4p" )J 
23 23 23 3 In 

+ (4~ +4p' )J 
24 24 4 In + p,,BrJ~ in = O' 

‘31~1 In + (2p +2p' +2p" )J + 
32 32 32 In (4p +4p' 2 33 33 +T)JJ In 

+ (2p +4p' +2p” )J = 0, 
34 34 34 41n+P pJ 3r r r In 
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'41Jl in 
+ (3p12+3p’ )J 

42 
2 ln + (3~ +6p’ +3p” >J 

43 43 43 3 In 

-BJ 
T4in+P BJ 

= 0, and  
4r r r in 

J 
r in = PrlJ, in + 6P J 

r2 2 in 
+129 J 

133 3 in 
+8p J 

r4 4 in 
+P BJ 

rr r r In* 

In the absence of the reflector pr = 0  and the fifth equation is not 
required. In the presence of the reflector the fifth equation is 
used to eliminate Jr in from the other four equations so that again 
four homogeneous equations in J  

1  in' 
J  

2 In' 
J  

3 in' 
andJ are 

4 in 
obtained. The various p’s in the above equations are calculated for 
pairs of individual units. The primes are used to denote p’s 
corresponding to greater separations between units of the same type. 
Thus, for example, a  face-centered unit interacts with four edge- 
centered units (pz3) separated from it by one lattice spacing, s, with 
four (~(29) separated from it by fi s, and with four (p"23) separated 
from it by fl s. 

In order to calculate the values of p, the uranium spheres are 
considered to be cubes of the same volume 20,000 

18.8 = 1064 cm3 = (4.02 in?). 

The face-to-face separation is therefore obtained by subtracting 4.02 in. 
from the center-to-center separation in inches. Values of p are then 
obtained by multiplying values read from Figure 5.5 with 
1  4.02 -- 
a- center-to-center separation - 4.02 and c = 1  by 1/6. The center- 
to-center separation involved, the various p's that correspond to' these 
separations, and the values of p  are given in the following table. 

Center-to-Center 
Separation, inches P ij Value 

11 P 
12' 

P 
21' 

P 
23' P 32' 34' P P 0.01465 

43 

ll+E 

11 Jy 

P P 
13' 31' 

P 
22' 

P 
24) 

P P 
42' 33 

0.00600 

P P P t 
14' 41' 23' 

P t 
32 

0.00362 

11 fi P t 1 P t 1 
23' 32' 

P r 
34' 

P T 0.00200 
43 

11 as P I P t 
24' 42' 

P t 0.00165 
33 

11 x 3  P t 1 P t T  
34' 

0.00100 
43 

Shielding of one unit by another makes some values of p zero. Thus 
p44 = 0 since intervening central, edge-centered, or face-centered 
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units prevent a corner unit from "seeing" any of the other 7 corner 
units. To determine whether any other shielding is present, consider 
the neighbors at separations up to and including 3s that a unit would 
have in an infinite lattice and sum its contributions to these neighbors. 
This sum is performed in the following table and is well below unity; 
hence aside from units in a direct line, there is no shielding of units 
by intermediate units. 

Center-to-Center Fraction Reaching 
Separation, inches No. of Neighbors These Neighbors 

11 6 0.08790 

11 x %E 12 0.07200 

11 x fi 8 0.02896 

11 x fi 24 o.04800 

11 x fi 24 0.03960 

11x 3 24 0.02400 
0.30046 

In the reflector the current is assumed to be independent of position. 
The reflector area of a cube (six sides, 36 inches on a side) is 6 sides 
x 36 in. x 36 in. = 7776 in.2; the unit area is 6 sides x 4.02 in. x 
4.02in. = 96.96 in.2. Thus p , P t P , and P are obtained by v ir - 2r - 3r 
multiplying p p p 96.96 

ri' r2' r3' 
and p by - 

r4 7776 
where 

P = 1 - 6p - 12p 
ri 21 31 

P = 1-p -4p -4p -4p’ - 
r2 12 22 32 32 

P = l-p -2p -2p’ -2p” -- - - r3 13 23 23 

- 8P 
41’ 

4P ff - 4P - 4P 1 
32 42 42) 

33 33 

- 4P I - 2p" and 
43 43) 

P = 1 - p - 3p - 3~’ - 3p - 6~’ - 3p” 
r4 14 24 24 34 34 34' 

The fraction of the neutrons emitted by the reflector that re-enters 
it is given by p rr = 1 - p - 6p - 12~ - 8p 

ir 2r 3r 4r' 
In the experiment(5'8) the reflector was concrete. Let this be 
approximated by infinitely thick wateqthen a good value for the 
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reflector saving, whether for a sphere of uranium or for a slab, is 
4.1 cm (see Section 2.2.1). The bare extrapolation distance is taken 
to be 2.15 cm in both cases. Then with the reflector in contact with 
a uranium sphere with a material buckling of 0.0837 cm-* (Section 2.2.1) 
and a radius R. = 6.76 cm, 8, = 0.32334 (from Equation 5.6); and with 
the reflector in contact with a uranium slab Boo = 0.55017 (from 
Equation 5.3). The actual reflector may be assumed to have an 
equivalent radius of 6 x 2.54 

v 
3 7r = 56.7 cm. Applying Equation 5.9 then 

3 
leads to a value of 0.51913 for &. 

The matrices whose eigenvalues are to be determined in the unreflected 
and reflected cases are respectively, 

r 0 0.0879 0.0720 0.028961 

I 0.01465 0.00600 0.00362 0.04054 0.02295 0.02400 0.05895 0.08108 0.03060 0.03060 0.03930 o J 
and 

0.130046 0.159654 0.089441 

0.068147 0.172896 0.093953 
0.086449 0.12608 0.10518 l 

0.070465 0 l 157771 o. 0681858 1 
An IBM 650 code, obtained by the Savannah River Laboratory from 
International Business Machines,was used to obtain the four eigenvalues 
for each matrix. In each case only one eigenvalue corresponds to the 
value of @T desired. This value can be chosen from an inspection of 
the four values obtained for each matrix since two can be rejected 
immediately because they are negative and a third can be rejected 
because it is smaller than that corresponding to the interaction of two 
units. The results obtained were 

and 8, = 0.1235 unreflected 

BT = 0.3331 reflected. 

From these albedos, s can be obtained from Equation 5.6 and keff can be 
calculated as keff = k . 

k-l 7rL where, (see Section 2.2.1) for 
' + c (R+g)* 

uranium (93.5s U235), k = 2.3 and G = 0.0837 cmg2 and where R, the 
radius of the 20,kg sphere, is 6.335 cm. The results may be compared 
with the multiplications observed(5'8) with an essentially unreflected 
array and with the reflected array. For the unreflected array the 
calculations give s = 2077 ,cm> keff, = 0.807, and a reciprocal over-all 
neutron multiplication of @  = A = 

1 1 -k eff = 0.193. For the 
0 1 -k eff 
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reflected array the calculations give 5 = 4.18, keff = 0.964. The 
experiments indicate multiplications of 0.195 and 0.031 respectively for 
the bare and reflected arrays, but they were not performed with uranium 
spheres but with composite units equivalent in reactivity (when isolated) 
to 20 kg of uranium (93.5% U235 ). When this difference in the units is 
taken into consideration it appears that for this situation the calculation 
may underestimate keff by as much as 5s. 

For situations of this sort, the maximum safe kef 
g 

should be taken to 
be 0.90 to allow for possible nonconservatism in he calculation. The 
calculations thus show that it is unsafe to have twenty-aeven 20-kg 
spheres of uranium (93.5s U235 ) in the reflected cubic array for which 
the calculations were made. A safe array of these units can be achieved 
by increasing their spacing, by decreasing the amount of reflection, or 
by changing the shape of the array. 
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5.3 INTERACTIONS IN WATER 

Water, in sufficient thickness effectively isolates fissionable units 
from each other through the absorption of neutrons by hydrogen. In 
principle, then, an infinite subcritical array is possible in water 
whereas it is impossible in air. For certain groupings the critical 
and safe sizes are actually larger when water is present between the 
units than when it is not, despite the reflection introduced by water. 
In some cases, as for example in the storage of spent enriched fuel 
elements, storage and handling in water is necessary. Thus, there are 
circumstances when it may be desirable or necessary to have fissionable 
units interacting with each other in water. 

For separations between units of > 8 inches of water the effect of the 
interaction on keff is negligible when compared with margins of safety 
ordinarily allowed for reflected units. In some applications smaller 
separations may be desirable at the price of smaller unit sizes. In 
other cases the unit size may be restricted to discrete dimensions, 
i.e., the width of one element in parallel rows of fuel elements. In 
these circumstances methods of calculating the thickness of water 
required between units to provide an adequate margin of safety are 
necessary. A two-group model provides sufficient accuracy, and codes 
are available at the Savannah River Laboratory for performing such 
calculations on the IBM 650. 
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